Corn starch was used as a templating agent,and an oxide mixture containing alumina,magnesia,zirconia and yttria was added in the sol-gel state.After slip casting,curing at 85℃,drying and sintering,high-performance po...Corn starch was used as a templating agent,and an oxide mixture containing alumina,magnesia,zirconia and yttria was added in the sol-gel state.After slip casting,curing at 85℃,drying and sintering,high-performance porous alumina ceramics were obtained.The properties of the porous alumina ceramics were analyzed by means of SEM,XRD,flexural strength and porosity.The research findings showed that,when the starch content was 1 wt%,the prepared ceramic mainly consisted of four phases:α-Al_(2)O_(3),MgAl_(2)O_(4),ZrO,and YSZ.The flexural strength reached 157.27 MPa,the flexural strength of the green body was about 3 MPa,and the porosity was around 30%.展开更多
The influence of Ga and Bi on the microstructure and electrochemical performance of Al-7Zn-0.1Sn (mass fraction,%) sacrificial anodes was investigated by means of optical microscopy (OM),scanning electron microsco...The influence of Ga and Bi on the microstructure and electrochemical performance of Al-7Zn-0.1Sn (mass fraction,%) sacrificial anodes was investigated by means of optical microscopy (OM),scanning electron microscopy/energy dispersive X-ray analysis (SEM/EDAX) and electrochemical measurements.It was found that the coarse dendrites structure transformed into the equiaxed grains as well as a small amount of dendrite grains after adding Ga and Bi into Al-Zn-Sn alloys.A high current efficiency of 97% and even corrosion morphology were obtained for Al-7Zn-0.1Sn-0.015Ga-0.1Bi alloy.The results indicate that the proper amount of Ga and Bi is effective on improving the microstructure and electrochemical performance of Al-Zn-Sn alloy.展开更多
HF etching of sacrificial layers with different The existing model cannot fit the experimental data well perimental data increases with etching time. A modified structures, namely channel, bubble, and joint-channel, i...HF etching of sacrificial layers with different The existing model cannot fit the experimental data well perimental data increases with etching time. A modified structures, namely channel, bubble, and joint-channel, is studied. The error of etching rate between the existing model and the exmodel considering the diffusion coefficient as a function of HF concentration and temperature is proposed. The etching rate coefficient as a function of temperature and the effect of reaction production are also considered in the modified model. For the joint-channel structure, a new mathematical model for the etching profile is also adopted. Experimental data obtained with channel, bubble, and joint-channel structures are compared with the modified model and the previous model. The results show that the modified model matches the experiments well.展开更多
A piezoresistive silicon accelerometer fabricated by a selective,self-stopping porous silicon (PS) etching method using an epitaxial layer for movable microstructures is described and analyzed.The technique is capable...A piezoresistive silicon accelerometer fabricated by a selective,self-stopping porous silicon (PS) etching method using an epitaxial layer for movable microstructures is described and analyzed.The technique is capable of constructing a microstructure precisely.PS is used as a sacrificial layer,and releasing holes are etched in the film.TMAH solution with additional Si powder and (NH_4)_2S_2O_8 is used to remove PS through the small releasing holes without eroding uncovered Al.The designed fabrication process is full compatible with standard CMOS process.展开更多
ZnO nanoparticles were synthesized via a direct precipitation method followed by a hetero- geneous azeotropic distillation and calcination processes, and then characterized by X-ray power diffraction, scanning electro...ZnO nanoparticles were synthesized via a direct precipitation method followed by a hetero- geneous azeotropic distillation and calcination processes, and then characterized by X-ray power diffraction, scanning electron microscopy, transmission electron microscopy, and ni- trogen adsorption-desorption measurement. The effects of Pt-loading amount, calcination temperature, and sacrificial reagents on the present ZnO suspension were investigated, photocatalytic H2 evolution efficiency from the The experimental results indicate that ZnO rianoparticles calcined at 400℃ exhibit the best photoactivity for the H2 production in comparison with the samples calcined at 300 and 500℃, and the photoeatalytie H2 production efficiency from a methanol solution is much higher than that from a triethanolamine solution. It can be ascribed to the oxidization of methanol also contributes to the H2 production during the photochemical reaction process. Moreover, the photocatalytic mechanism for the H2 production from the present ZnO suspension system containing methanol solution is also discussed in detail.展开更多
A new technique to fabricate silicon condenser microphone is presented.The technique is based on the use of oxidized porous silicon as sacrificial layer for the air gap and the heavy p+-doping silicon of approximately...A new technique to fabricate silicon condenser microphone is presented.The technique is based on the use of oxidized porous silicon as sacrificial layer for the air gap and the heavy p+-doping silicon of approximately 15μm thickness for the stiff backplate.The measured sensitivity of the microphone fabricated with this technique is in the range from -45dB(5.6mV/Pa) to -55dB(1.78mV/Pa) under the frequency from 500Hz to 10kHz,and shows a gradual increase at higher frequency.The cut-off frequency is above 20kHz.展开更多
Al-Zn-Mg alloys with different Zn/Mg mass ratios were evaluated as sacrificial anodes for cathodic protection of carbon steel in 3.5 wt.%Na Cl solution.The anodes were fabricated from pure Al,Zn and Mg metals using ca...Al-Zn-Mg alloys with different Zn/Mg mass ratios were evaluated as sacrificial anodes for cathodic protection of carbon steel in 3.5 wt.%Na Cl solution.The anodes were fabricated from pure Al,Zn and Mg metals using casting technique.Optical microscopy,SEM-EDS,XRD and electrochemical techniques were used.The results indicated that with decreasing Zn/Mg mass ratio,the grain size ofα(Al)and the particle size of the precipitates decreased while the volume fraction of the precipitates increased.The anode with Zn/Mg mass ratio>4.0 exhibited the lowest corrosion rate,while the anode with Zn/Mg mass ratio<0.62 gave the highest corrosion rate and provided the highest cathodic protection efficiency for carbon steel(AISI 1018).Furthermore,the results showed that the anode with Zn/Mg mass ratio<0.62 exhibited a porous corrosion product compared to the other anodes.展开更多
The experiments focused on the influence of magnesium and titanium as additional alloying elements on the microstructure and electro-chemical behavior of Al-Zn-In sacrificial anodes. The electrochemical behavior of th...The experiments focused on the influence of magnesium and titanium as additional alloying elements on the microstructure and electro-chemical behavior of Al-Zn-In sacrificial anodes. The electrochemical behavior of the aluminum sacrificial anode with 3 wt.% sodium chloride solution was studied by electrochemical impedance spectroscopy (EIS) tests. It was found that a microstructure with few precipitates and refined grains could be achieved by adding 1 wt.% Mg and 0.05 wt.% Ti to the Al-Zn-In alloy,resulting...展开更多
In this study, effects of manganese and magnesium content on the electrochemical properties of Al-Zn-ln sacrificial anode were studied in 0.5 mol/L NaCl solution (pH=5). The aluminum base alloy with different amount...In this study, effects of manganese and magnesium content on the electrochemical properties of Al-Zn-ln sacrificial anode were studied in 0.5 mol/L NaCl solution (pH=5). The aluminum base alloy with different amounts of Mn and Mg were melted at 750℃, then casted at molds at 25℃. Corrosion experiments were mounted to determine the optimal effect of Mn and Mg on the efficiencies of the aluminum alloy anodes. The corroded and unexposed sample surfaces were subjected to microstructure characterization by optical and scanning electron microscopy. AI-Zn-ln alloy doped with 0%, 0.01%, 0.05%.0.2% and 0.3% by weights of Mn and 0%, 0.5%, 1.0%, 1.5%, 2.0%, 2.5% and 3.0% by weights of Mg were prepared to determine the effect of Mn and Mg on anode efficiency in the environment. The different microstructures of the evolved AI- Zn-ln-Mg-Mn alloy were correlated with the anode efficiencies. The Al-5.0%Zn-2.0%Mg-0.15%Mn-0.02%ln gave the best anode efficiency (about 83%). The microstructures of the corroded surface of the optimized alloy revealed decreased distribution of the pockets of localized attacks which are characteristics of pitting (or crevice) corrosion.展开更多
In this study, sacrificial components were incorporated into self-centering railway bridge piers to improve the lateral stiffness. The seismic response of this new detail was investigated. First, the method to compute...In this study, sacrificial components were incorporated into self-centering railway bridge piers to improve the lateral stiffness. The seismic response of this new detail was investigated. First, the method to compute the initial uplift moment of the self-centering pier is given. In addition, shaking table tests were conducted on a free-rocking pier without sacrificial components, which was used to validate a two-spring numerical model. Good agreement was obtained between the numerical results and experimental data. Furthermore, the validated model was employed to investigate the influence of sacrificial components on the seismic response of rocking piers. For this purpose, two models were developed, with and without sacrificial components. Nonlinear response history analysis was then performed on both models under three historical motions. The results showed that compared to the one without sacrificial components, the rocking pier with sacrificial components has comparable displacement at the top of the pier, and maximum uplift moment at high amplitude motion. Therefore, incorporating sacrificial components into the rocking pier can increase the lateral stiffness at service load and low amplitude frequent earthquakes but can produce comparable response at high seismic excitation. These results provide support for performance-based seismic design of self-centering rocking piers.展开更多
Three-dimensional(3D)bioprinting is a powerful approach that enables the fabrication of 3D tissue constructs that retain complex biological functions.However,the dense hydrogel networks that form after the gelation of...Three-dimensional(3D)bioprinting is a powerful approach that enables the fabrication of 3D tissue constructs that retain complex biological functions.However,the dense hydrogel networks that form after the gelation of bioinks often restrict the migration and proliferation of encapsulated cells.Herein,a sacrificial microgel-laden bioink strategy was designed for directly bioprinting constructs with mesoscale pore networks(MPNs)for enhancing nutrient delivery and cell growth.The sacrificial microgel-laden bioink,which contains cell/gelatin methacryloyl(GelMA)mixture and gelled gelatin microgel,is first thermo-crosslinked to fabricate temporary predesigned cell-laden constructs by extrusion bioprinting onto a cold platform.Then,the construct is permanently stabilized through photo-crosslinking of GelMA.The MPNs inside the printed constructs are formed after subsequent dissolution of the gelatin microgel.These MPNs allowed for effective oxygen/nutrient diffusion,facilitating the generation of bioactive tissues.Specifically,osteoblast and human umbilical vein endothelial cells encapsulated in the bioprinted large-scale constructs(≥1 cm)with MPNs showed enhanced bioactivity during culture.The 3D bioprinting strategy based on the sacrificial microgel-laden bioink provided a facile method to facilitate formation of complex tissue constructs with MPNs and set a foundation for future optimization of MPN-based tissue constructs with applications in diverse areas of tissue engineering.展开更多
To improve lower current efficiency of Mg-based sacrificial anode,a Mg-based sacrificial anode material with yttrium addition was investigated.Its electrochemical properties were evaluated by the galvanostatic method,...To improve lower current efficiency of Mg-based sacrificial anode,a Mg-based sacrificial anode material with yttrium addition was investigated.Its electrochemical properties were evaluated by the galvanostatic method,and its microstructure and constitution were characterized by metallurgical microscope and X-ray diffraction.The results showed that,the addition of yttrium refined dentrite grains,maximized current efficiency,and minimized potential of magnesium sacrificial anode.When 0.1% yttrium was doped,the anode showed the highest current efficiency,62.5%,which improved its current efficiency by 14%.展开更多
Although bioinspired sacrificial bonds have been demonstrated to be efficient in improving the mechanical properties of polymer materials, the effect of binding energy of a specific dynamic bond on the ultimate mechan...Although bioinspired sacrificial bonds have been demonstrated to be efficient in improving the mechanical properties of polymer materials, the effect of binding energy of a specific dynamic bond on the ultimate mechanical performance of a polymer network with dual-crosslink remains unclear. In this contribution, diamine and sulfur curing package are introduced simultaneously into a sulfonated cis-1,4-polyisoprene to create dually-crosslinked cis-1,4-polyisoprene network with sulfonate-aminium ionic bonds as the sacrificial bonds. Three diamines (primary, secondary and tertiary) with the same spacer between the two nitrogen atoms are used to create the ionic bonds with different binding energies. Although the binding energy of ionic bond does not affect the glass transition temperature of cis-1,4-polyisoprene (IR), it exerts definite influences on strain-induced crystallization and mechanical performance. The capabilities of diamine in dissipating energy, promoting strain-induced crystallization and enhancing the mechanical performance are in the same order of secondary diamine 〉 primary diamine 〉 tertiary diamine. The variations in mechanical performances are correlated to the binding energy of the ionic bond, which is determined by pKa values.展开更多
Oxide films are incorporated into melts by an entrainment process, and are expected to be present in most metals, but particularly cast Al alloys. The oxides are necessarily present as folded-over double films (bifi...Oxide films are incorporated into melts by an entrainment process, and are expected to be present in most metals, but particularly cast Al alloys. The oxides are necessarily present as folded-over double films (bifilms) that are effectively cracks. Their effect on the electrochemical behaviour of cast Al-SZn-0.021n sacrificial anodes was studied in 3 wt pct sodium chloride solution using the NACE efficiency evaluation. Three methods were employed to entrain progressive amounts of oxide in the alloy, including the addition of Al-Zn-ln maching chips to the charge, increasing the pouring height, and agitating the melt. The introduction of oxide bifilms in the cast alloy resulted in the deterioration of the electrochemical properties of the sacrificial anodes, such as current capacity and anode efficiency, and introduced increasing variability in these properties. The results suggest that corrosion behaviour is strongly related to the presence of bifilms suspended in the liquid alloy because bifilms provide crack paths allowing the corrodant to penetrate deeply into the metal matrix, and simultaneously provide localized galvanic cells because of the precipitation of Fe rich intermetallic compounds on their outer surfaces.展开更多
The integration of high strength and toughness concurrently is a vital requirement for elastomers from the perspective of long-term durability and reliability. Unfortunately, these properties are generally conflicting...The integration of high strength and toughness concurrently is a vital requirement for elastomers from the perspective of long-term durability and reliability. Unfortunately, these properties are generally conflicting in artificial materials. In the present work, we propose a facile strategy to simultaneously toughen and strengthen elastomers by constructing 3 D segregated filler network via a simple latex mixing method.The as-fabricated elastomers are featured by a microscopic 3 D interconnected segregated network of rigid graphene oxide(GO) nanosheets and a continuous soft matrix of sulfur vulcanized natural rubber(NR). We demonstrate that the interconnected segregated filler network ruptures preferentially upon deformation, and thus is more efficient in energy dissipation than the dispersed filler network. Therefore, the segregated filler network exhibits better reinforcing effects for the rubber matrix. Moreover, the excellent energy dissipating ability also contributes to the outstanding crack growth resistance through the release of concentrated stress at the crack tip. As a result, the strength, toughness and fatigue resistance of the nanocomposites are concurrently enhanced. The methodology in this work is facile and universally applicable, which may provide new insights into the design of elastomers with both extraordinary static and dynamic mechanical performance for practical applications.展开更多
The sacrificial anode protection system for the steel pipe piles of the 3rd berth of Dandong; wharf at Dandong port has operated for eight years. In this paper, the program design and the protection effect of the sacr...The sacrificial anode protection system for the steel pipe piles of the 3rd berth of Dandong; wharf at Dandong port has operated for eight years. In this paper, the program design and the protection effect of the sacrificial anode protection system are presented. The results of various inspections show that the piles are protected very satisfactorily.展开更多
In this paper, the effects of zinc (Zn) and magnesium (Mg) addition on the performance of an aluminum-based sacrificial anode in seawater were investigated using a potential measurement method. Anodic efficiency, ...In this paper, the effects of zinc (Zn) and magnesium (Mg) addition on the performance of an aluminum-based sacrificial anode in seawater were investigated using a potential measurement method. Anodic efficiency, protection efficiency, and polarized potential were the parameters used. The percentages of Zn and Mg in the anodes were varied from 2% to 8% Zn and 1% to 4% Mg. The alloys produced were tested as sacrificial anodes for the protection of mild steel in seawater at room temperature. Current efficiency as high as 88.36% was obtained in alloys containing 6% Zn and 1% Mg. The polarization potentials obtained for the coupled (steel/Al-based alloys) are as given in the Pourbaix diagrams, with steel lying within the immunity region/cathodic region and the sacrificial anodes within the anodic region. The protection offered by the sacrificial anodes to the steel after the 7th and 8th week was measured and protection efficiency values as high as 99.66% and 99.47% were achieved for the A1-6%Zn-l%Mg cast anode. The microstructures of the cast anodes comprise of intermetallic structures of hexagonal Mg3Zn2 and body-centered cubic A12Mg3Zn3. These are probably responsible for the breakdown of the passive alumina film, thus enhancing the anode efficiency.展开更多
The incineration of sacrificial offerings is a significant widely practiced custom that is also a kind of neglected air pollution source in China.Our results showed that the emission factors of particulate matter,SO_(...The incineration of sacrificial offerings is a significant widely practiced custom that is also a kind of neglected air pollution source in China.Our results showed that the emission factors of particulate matter,SO_(2),CO,NO_(x),and VOCs emitted from the incineration of sacrificial offerings with purification systems were reduced by 95%,19%,9%,82%,and 42%,respectively,compared with those without a purification system,revealing a significant effect of the flue gas purification system on reducing particulate matter and gaseous pollutants.The emission level of air pollutants from the incineration of sacrificial offerings remained stable before 2013 and then showed a remarkable decrease after the implementation of China′s Air Pollution Prevention Action Plan in 2013.The emissions of TSP(total suspended particulate),PM_(10),PM_(2.5),and NO_(x)in 2009 were 8222,6106,5656 and 15,878 ton,respectively,obviously higher than 3434,2551,2305 and 8579 ton in 2019.Such trend was affected by both the quantity of incineration and the installation rate of purification systems after the Emission Standard of Air Pollutants for Crematory(GB 13801-2015)issued in China.Distinct spatial distribution of atmospheric pollutants from incineration of sacrificial offerings was found with higher in the east and south of China than the west and north of China,which is proportional to the regional economy and population.The maximum ground-level concentration typically occurred at 0.12-0.2 km from the pollution source,posing potential health risks to people entering and exiting funeral and burial sites and nearby residents.展开更多
The morphology of MAX phase powders significantly influences their microwave absorption properties.However,the traditional synthesis via solid-state reactions produces irregular powders,and the preparation of MAX phas...The morphology of MAX phase powders significantly influences their microwave absorption properties.However,the traditional synthesis via solid-state reactions produces irregular powders,and the preparation of MAX phase powders with specific morphology remains a challenge.Herein,(VTiCr)Al C MAX phase microrods were fabricated for the first time in NaCl/KCl molten salts using vanadium,titanium,chromium,aluminum,and short carbon fibers as precursors.It was found that despite acting as a carbon source,carbon fibers also acted as sacrificial templates.By adjusting the molar ratio of metal powders and short carbon fibers,a series of carbon fiber@(V_(0.8)Ti_(0.1)Cr_(0.1))_(2)AlC microrods with core-sheath structure were also obtained.Carbon fiber@(V_(0.8)Ti_(0.1)Cr_(0.1))_(2)AlC microrods with a molar ratio of 8:2 showed the optimum microwave absorption performance.The reflection loss(RL)value reached up to–63.26 d B at 2.40 mm,and the effective absorption bandwidth(EAB)was about 5.28 GHz with a thickness of2.02 mm.Based on the electromagnetic parameter analysis and theoretical simulation,the enhanced microwave absorption performance was attributed to the synergistic effect of different factors like dielectric loss,magnetic loss,multiple reflection,and scattering.This work offers a facile route to modulate the morphology of MAX phase powders and may accelerate its application as microwave absorbers.展开更多
Similar to lithium-ion batteries(LIBs),during the first charge/discharge process of lithium-ion capacitors(LICs),lithium-intercalated anodes(e.g.,silicon,graphite,and hard carbon)also exhibit irreversible lithium inte...Similar to lithium-ion batteries(LIBs),during the first charge/discharge process of lithium-ion capacitors(LICs),lithium-intercalated anodes(e.g.,silicon,graphite,and hard carbon)also exhibit irreversible lithium intercalation behaviors,such as the formation of a solid electrolyte interface(SEI),which will consume Li^(+)in the electrolyte and significantly reduce the electrochemical performance of the system.Therefore,pre-lithiation is an indispensable procedure for LICs.At present,commercial LICs mostly use lithium metal as the lithium source to compensate for the irreversible capacity loss,which has the demerits of operational complexity and danger.However,the pre-lithiation strategy based on cathode sacrificial lithium salts(CSLSs)has been proposed,which has the advantages of low cost,simple operation,environmental protection,and safety.Therefore,there is an urgent need for a timely and comprehensive summary of the application of CSLSs to LICs.In this review,the important roles of pre-lithiation in LICs are detailed,and different pre-lithiation methods are reviewed and compared systematically and comprehensively.After that,we systematically discuss the pre-lithiation strategies based on CSLSs and mainly introduce the lithium extraction mechanism of CSLSs and the influence of intrinsic characteristics and doping amount of CSLSs on LICs performance.In addition,a summary and outlook are conducted,aiming to provide the essential basic knowledge and guidance for developing a new pre-lithiation technology.展开更多
文摘Corn starch was used as a templating agent,and an oxide mixture containing alumina,magnesia,zirconia and yttria was added in the sol-gel state.After slip casting,curing at 85℃,drying and sintering,high-performance porous alumina ceramics were obtained.The properties of the porous alumina ceramics were analyzed by means of SEM,XRD,flexural strength and porosity.The research findings showed that,when the starch content was 1 wt%,the prepared ceramic mainly consisted of four phases:α-Al_(2)O_(3),MgAl_(2)O_(4),ZrO,and YSZ.The flexural strength reached 157.27 MPa,the flexural strength of the green body was about 3 MPa,and the porosity was around 30%.
基金Project(094200510019) supported by Technology Creative Programmer of Henan for Excellent Talents,ChinaProject(092300410132) supported by the Natural Science Foundation of Henan Province,China
文摘The influence of Ga and Bi on the microstructure and electrochemical performance of Al-7Zn-0.1Sn (mass fraction,%) sacrificial anodes was investigated by means of optical microscopy (OM),scanning electron microscopy/energy dispersive X-ray analysis (SEM/EDAX) and electrochemical measurements.It was found that the coarse dendrites structure transformed into the equiaxed grains as well as a small amount of dendrite grains after adding Ga and Bi into Al-Zn-Sn alloys.A high current efficiency of 97% and even corrosion morphology were obtained for Al-7Zn-0.1Sn-0.015Ga-0.1Bi alloy.The results indicate that the proper amount of Ga and Bi is effective on improving the microstructure and electrochemical performance of Al-Zn-Sn alloy.
文摘HF etching of sacrificial layers with different The existing model cannot fit the experimental data well perimental data increases with etching time. A modified structures, namely channel, bubble, and joint-channel, is studied. The error of etching rate between the existing model and the exmodel considering the diffusion coefficient as a function of HF concentration and temperature is proposed. The etching rate coefficient as a function of temperature and the effect of reaction production are also considered in the modified model. For the joint-channel structure, a new mathematical model for the etching profile is also adopted. Experimental data obtained with channel, bubble, and joint-channel structures are compared with the modified model and the previous model. The results show that the modified model matches the experiments well.
文摘A piezoresistive silicon accelerometer fabricated by a selective,self-stopping porous silicon (PS) etching method using an epitaxial layer for movable microstructures is described and analyzed.The technique is capable of constructing a microstructure precisely.PS is used as a sacrificial layer,and releasing holes are etched in the film.TMAH solution with additional Si powder and (NH_4)_2S_2O_8 is used to remove PS through the small releasing holes without eroding uncovered Al.The designed fabrication process is full compatible with standard CMOS process.
基金This work was supported by the National Natural Science Foundation of China (No.20973128 and No.20871096), the National High Tech Research and Development Program (No.2006AA03Z344), and the Program for New Century Excellent Talents in University of China (No.NCET-07-0637).
文摘ZnO nanoparticles were synthesized via a direct precipitation method followed by a hetero- geneous azeotropic distillation and calcination processes, and then characterized by X-ray power diffraction, scanning electron microscopy, transmission electron microscopy, and ni- trogen adsorption-desorption measurement. The effects of Pt-loading amount, calcination temperature, and sacrificial reagents on the present ZnO suspension were investigated, photocatalytic H2 evolution efficiency from the The experimental results indicate that ZnO rianoparticles calcined at 400℃ exhibit the best photoactivity for the H2 production in comparison with the samples calcined at 300 and 500℃, and the photoeatalytie H2 production efficiency from a methanol solution is much higher than that from a triethanolamine solution. It can be ascribed to the oxidization of methanol also contributes to the H2 production during the photochemical reaction process. Moreover, the photocatalytic mechanism for the H2 production from the present ZnO suspension system containing methanol solution is also discussed in detail.
文摘A new technique to fabricate silicon condenser microphone is presented.The technique is based on the use of oxidized porous silicon as sacrificial layer for the air gap and the heavy p+-doping silicon of approximately 15μm thickness for the stiff backplate.The measured sensitivity of the microphone fabricated with this technique is in the range from -45dB(5.6mV/Pa) to -55dB(1.78mV/Pa) under the frequency from 500Hz to 10kHz,and shows a gradual increase at higher frequency.The cut-off frequency is above 20kHz.
文摘Al-Zn-Mg alloys with different Zn/Mg mass ratios were evaluated as sacrificial anodes for cathodic protection of carbon steel in 3.5 wt.%Na Cl solution.The anodes were fabricated from pure Al,Zn and Mg metals using casting technique.Optical microscopy,SEM-EDS,XRD and electrochemical techniques were used.The results indicated that with decreasing Zn/Mg mass ratio,the grain size ofα(Al)and the particle size of the precipitates decreased while the volume fraction of the precipitates increased.The anode with Zn/Mg mass ratio>4.0 exhibited the lowest corrosion rate,while the anode with Zn/Mg mass ratio<0.62 gave the highest corrosion rate and provided the highest cathodic protection efficiency for carbon steel(AISI 1018).Furthermore,the results showed that the anode with Zn/Mg mass ratio<0.62 exhibited a porous corrosion product compared to the other anodes.
文摘The experiments focused on the influence of magnesium and titanium as additional alloying elements on the microstructure and electro-chemical behavior of Al-Zn-In sacrificial anodes. The electrochemical behavior of the aluminum sacrificial anode with 3 wt.% sodium chloride solution was studied by electrochemical impedance spectroscopy (EIS) tests. It was found that a microstructure with few precipitates and refined grains could be achieved by adding 1 wt.% Mg and 0.05 wt.% Ti to the Al-Zn-In alloy,resulting...
文摘In this study, effects of manganese and magnesium content on the electrochemical properties of Al-Zn-ln sacrificial anode were studied in 0.5 mol/L NaCl solution (pH=5). The aluminum base alloy with different amounts of Mn and Mg were melted at 750℃, then casted at molds at 25℃. Corrosion experiments were mounted to determine the optimal effect of Mn and Mg on the efficiencies of the aluminum alloy anodes. The corroded and unexposed sample surfaces were subjected to microstructure characterization by optical and scanning electron microscopy. AI-Zn-ln alloy doped with 0%, 0.01%, 0.05%.0.2% and 0.3% by weights of Mn and 0%, 0.5%, 1.0%, 1.5%, 2.0%, 2.5% and 3.0% by weights of Mg were prepared to determine the effect of Mn and Mg on anode efficiency in the environment. The different microstructures of the evolved AI- Zn-ln-Mg-Mn alloy were correlated with the anode efficiencies. The Al-5.0%Zn-2.0%Mg-0.15%Mn-0.02%ln gave the best anode efficiency (about 83%). The microstructures of the corroded surface of the optimized alloy revealed decreased distribution of the pockets of localized attacks which are characteristics of pitting (or crevice) corrosion.
文摘In this study, sacrificial components were incorporated into self-centering railway bridge piers to improve the lateral stiffness. The seismic response of this new detail was investigated. First, the method to compute the initial uplift moment of the self-centering pier is given. In addition, shaking table tests were conducted on a free-rocking pier without sacrificial components, which was used to validate a two-spring numerical model. Good agreement was obtained between the numerical results and experimental data. Furthermore, the validated model was employed to investigate the influence of sacrificial components on the seismic response of rocking piers. For this purpose, two models were developed, with and without sacrificial components. Nonlinear response history analysis was then performed on both models under three historical motions. The results showed that compared to the one without sacrificial components, the rocking pier with sacrificial components has comparable displacement at the top of the pier, and maximum uplift moment at high amplitude motion. Therefore, incorporating sacrificial components into the rocking pier can increase the lateral stiffness at service load and low amplitude frequent earthquakes but can produce comparable response at high seismic excitation. These results provide support for performance-based seismic design of self-centering rocking piers.
基金sponsored by the National Nature Science Foundation of China(Nos.U1609207,81827804).
文摘Three-dimensional(3D)bioprinting is a powerful approach that enables the fabrication of 3D tissue constructs that retain complex biological functions.However,the dense hydrogel networks that form after the gelation of bioinks often restrict the migration and proliferation of encapsulated cells.Herein,a sacrificial microgel-laden bioink strategy was designed for directly bioprinting constructs with mesoscale pore networks(MPNs)for enhancing nutrient delivery and cell growth.The sacrificial microgel-laden bioink,which contains cell/gelatin methacryloyl(GelMA)mixture and gelled gelatin microgel,is first thermo-crosslinked to fabricate temporary predesigned cell-laden constructs by extrusion bioprinting onto a cold platform.Then,the construct is permanently stabilized through photo-crosslinking of GelMA.The MPNs inside the printed constructs are formed after subsequent dissolution of the gelatin microgel.These MPNs allowed for effective oxygen/nutrient diffusion,facilitating the generation of bioactive tissues.Specifically,osteoblast and human umbilical vein endothelial cells encapsulated in the bioprinted large-scale constructs(≥1 cm)with MPNs showed enhanced bioactivity during culture.The 3D bioprinting strategy based on the sacrificial microgel-laden bioink provided a facile method to facilitate formation of complex tissue constructs with MPNs and set a foundation for future optimization of MPN-based tissue constructs with applications in diverse areas of tissue engineering.
基金Project supported by the Key Disciplinary Construction Special Fund of Shaanxi Province (101-00X902)
文摘To improve lower current efficiency of Mg-based sacrificial anode,a Mg-based sacrificial anode material with yttrium addition was investigated.Its electrochemical properties were evaluated by the galvanostatic method,and its microstructure and constitution were characterized by metallurgical microscope and X-ray diffraction.The results showed that,the addition of yttrium refined dentrite grains,maximized current efficiency,and minimized potential of magnesium sacrificial anode.When 0.1% yttrium was doped,the anode showed the highest current efficiency,62.5%,which improved its current efficiency by 14%.
基金financially supported by the National Basic Research Program of China(No.2015CB654700(2015CB654703))the National Natural Science Foundation of China(Nos.51673065,51703064,51473050 and 51333003)Fundamental Research Funds for the Central Universities(No.2017PY006)
文摘Although bioinspired sacrificial bonds have been demonstrated to be efficient in improving the mechanical properties of polymer materials, the effect of binding energy of a specific dynamic bond on the ultimate mechanical performance of a polymer network with dual-crosslink remains unclear. In this contribution, diamine and sulfur curing package are introduced simultaneously into a sulfonated cis-1,4-polyisoprene to create dually-crosslinked cis-1,4-polyisoprene network with sulfonate-aminium ionic bonds as the sacrificial bonds. Three diamines (primary, secondary and tertiary) with the same spacer between the two nitrogen atoms are used to create the ionic bonds with different binding energies. Although the binding energy of ionic bond does not affect the glass transition temperature of cis-1,4-polyisoprene (IR), it exerts definite influences on strain-induced crystallization and mechanical performance. The capabilities of diamine in dissipating energy, promoting strain-induced crystallization and enhancing the mechanical performance are in the same order of secondary diamine 〉 primary diamine 〉 tertiary diamine. The variations in mechanical performances are correlated to the binding energy of the ionic bond, which is determined by pKa values.
文摘Oxide films are incorporated into melts by an entrainment process, and are expected to be present in most metals, but particularly cast Al alloys. The oxides are necessarily present as folded-over double films (bifilms) that are effectively cracks. Their effect on the electrochemical behaviour of cast Al-SZn-0.021n sacrificial anodes was studied in 3 wt pct sodium chloride solution using the NACE efficiency evaluation. Three methods were employed to entrain progressive amounts of oxide in the alloy, including the addition of Al-Zn-ln maching chips to the charge, increasing the pouring height, and agitating the melt. The introduction of oxide bifilms in the cast alloy resulted in the deterioration of the electrochemical properties of the sacrificial anodes, such as current capacity and anode efficiency, and introduced increasing variability in these properties. The results suggest that corrosion behaviour is strongly related to the presence of bifilms suspended in the liquid alloy because bifilms provide crack paths allowing the corrodant to penetrate deeply into the metal matrix, and simultaneously provide localized galvanic cells because of the precipitation of Fe rich intermetallic compounds on their outer surfaces.
基金financially supported by the National Natural Science Foundation of China (No. 51673120)。
文摘The integration of high strength and toughness concurrently is a vital requirement for elastomers from the perspective of long-term durability and reliability. Unfortunately, these properties are generally conflicting in artificial materials. In the present work, we propose a facile strategy to simultaneously toughen and strengthen elastomers by constructing 3 D segregated filler network via a simple latex mixing method.The as-fabricated elastomers are featured by a microscopic 3 D interconnected segregated network of rigid graphene oxide(GO) nanosheets and a continuous soft matrix of sulfur vulcanized natural rubber(NR). We demonstrate that the interconnected segregated filler network ruptures preferentially upon deformation, and thus is more efficient in energy dissipation than the dispersed filler network. Therefore, the segregated filler network exhibits better reinforcing effects for the rubber matrix. Moreover, the excellent energy dissipating ability also contributes to the outstanding crack growth resistance through the release of concentrated stress at the crack tip. As a result, the strength, toughness and fatigue resistance of the nanocomposites are concurrently enhanced. The methodology in this work is facile and universally applicable, which may provide new insights into the design of elastomers with both extraordinary static and dynamic mechanical performance for practical applications.
文摘The sacrificial anode protection system for the steel pipe piles of the 3rd berth of Dandong; wharf at Dandong port has operated for eight years. In this paper, the program design and the protection effect of the sacrificial anode protection system are presented. The results of various inspections show that the piles are protected very satisfactorily.
文摘In this paper, the effects of zinc (Zn) and magnesium (Mg) addition on the performance of an aluminum-based sacrificial anode in seawater were investigated using a potential measurement method. Anodic efficiency, protection efficiency, and polarized potential were the parameters used. The percentages of Zn and Mg in the anodes were varied from 2% to 8% Zn and 1% to 4% Mg. The alloys produced were tested as sacrificial anodes for the protection of mild steel in seawater at room temperature. Current efficiency as high as 88.36% was obtained in alloys containing 6% Zn and 1% Mg. The polarization potentials obtained for the coupled (steel/Al-based alloys) are as given in the Pourbaix diagrams, with steel lying within the immunity region/cathodic region and the sacrificial anodes within the anodic region. The protection offered by the sacrificial anodes to the steel after the 7th and 8th week was measured and protection efficiency values as high as 99.66% and 99.47% were achieved for the A1-6%Zn-l%Mg cast anode. The microstructures of the cast anodes comprise of intermetallic structures of hexagonal Mg3Zn2 and body-centered cubic A12Mg3Zn3. These are probably responsible for the breakdown of the passive alumina film, thus enhancing the anode efficiency.
基金supported by the National Natural Science Foundation of China(Nos.21806012,41775127,and 42075112)the Basic Research Fund of CAMS(No.2020Z002)
文摘The incineration of sacrificial offerings is a significant widely practiced custom that is also a kind of neglected air pollution source in China.Our results showed that the emission factors of particulate matter,SO_(2),CO,NO_(x),and VOCs emitted from the incineration of sacrificial offerings with purification systems were reduced by 95%,19%,9%,82%,and 42%,respectively,compared with those without a purification system,revealing a significant effect of the flue gas purification system on reducing particulate matter and gaseous pollutants.The emission level of air pollutants from the incineration of sacrificial offerings remained stable before 2013 and then showed a remarkable decrease after the implementation of China′s Air Pollution Prevention Action Plan in 2013.The emissions of TSP(total suspended particulate),PM_(10),PM_(2.5),and NO_(x)in 2009 were 8222,6106,5656 and 15,878 ton,respectively,obviously higher than 3434,2551,2305 and 8579 ton in 2019.Such trend was affected by both the quantity of incineration and the installation rate of purification systems after the Emission Standard of Air Pollutants for Crematory(GB 13801-2015)issued in China.Distinct spatial distribution of atmospheric pollutants from incineration of sacrificial offerings was found with higher in the east and south of China than the west and north of China,which is proportional to the regional economy and population.The maximum ground-level concentration typically occurred at 0.12-0.2 km from the pollution source,posing potential health risks to people entering and exiting funeral and burial sites and nearby residents.
基金supported by National Natural Science Foundation of China(Grant No.51602184)Natural Science Foundation of Shaanxi Province(Grant no.2020JM-505)the Academic Talent Introduction Program of SUST(134080056)。
文摘The morphology of MAX phase powders significantly influences their microwave absorption properties.However,the traditional synthesis via solid-state reactions produces irregular powders,and the preparation of MAX phase powders with specific morphology remains a challenge.Herein,(VTiCr)Al C MAX phase microrods were fabricated for the first time in NaCl/KCl molten salts using vanadium,titanium,chromium,aluminum,and short carbon fibers as precursors.It was found that despite acting as a carbon source,carbon fibers also acted as sacrificial templates.By adjusting the molar ratio of metal powders and short carbon fibers,a series of carbon fiber@(V_(0.8)Ti_(0.1)Cr_(0.1))_(2)AlC microrods with core-sheath structure were also obtained.Carbon fiber@(V_(0.8)Ti_(0.1)Cr_(0.1))_(2)AlC microrods with a molar ratio of 8:2 showed the optimum microwave absorption performance.The reflection loss(RL)value reached up to–63.26 d B at 2.40 mm,and the effective absorption bandwidth(EAB)was about 5.28 GHz with a thickness of2.02 mm.Based on the electromagnetic parameter analysis and theoretical simulation,the enhanced microwave absorption performance was attributed to the synergistic effect of different factors like dielectric loss,magnetic loss,multiple reflection,and scattering.This work offers a facile route to modulate the morphology of MAX phase powders and may accelerate its application as microwave absorbers.
基金supported by the National Natural Science Foundation of China[grant number 22005318,22075303]the Western Young Scholars Foundations of Chinese Academy of Sciences,the Science Fund of Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing(AMGM2022A02)the Provincial Youth Science and Technology Fund Program of Gansu Province[Project No.21JR7RA092].
文摘Similar to lithium-ion batteries(LIBs),during the first charge/discharge process of lithium-ion capacitors(LICs),lithium-intercalated anodes(e.g.,silicon,graphite,and hard carbon)also exhibit irreversible lithium intercalation behaviors,such as the formation of a solid electrolyte interface(SEI),which will consume Li^(+)in the electrolyte and significantly reduce the electrochemical performance of the system.Therefore,pre-lithiation is an indispensable procedure for LICs.At present,commercial LICs mostly use lithium metal as the lithium source to compensate for the irreversible capacity loss,which has the demerits of operational complexity and danger.However,the pre-lithiation strategy based on cathode sacrificial lithium salts(CSLSs)has been proposed,which has the advantages of low cost,simple operation,environmental protection,and safety.Therefore,there is an urgent need for a timely and comprehensive summary of the application of CSLSs to LICs.In this review,the important roles of pre-lithiation in LICs are detailed,and different pre-lithiation methods are reviewed and compared systematically and comprehensively.After that,we systematically discuss the pre-lithiation strategies based on CSLSs and mainly introduce the lithium extraction mechanism of CSLSs and the influence of intrinsic characteristics and doping amount of CSLSs on LICs performance.In addition,a summary and outlook are conducted,aiming to provide the essential basic knowledge and guidance for developing a new pre-lithiation technology.