Effective isolation between the cement sheath and the sandstone is crucial for the development and production of oil and gas wells in sandstone formations.In this study,a cement-sandstone composite(CSC)was prepared,an...Effective isolation between the cement sheath and the sandstone is crucial for the development and production of oil and gas wells in sandstone formations.In this study,a cement-sandstone composite(CSC)was prepared,and based onμ-CT three-dimensional reconstruction imaging and finite element analysis(FEA)techniques,the stress distribution and potential failure mechanism at the cement-sandstone bonding interface under axial loading were analyzed.The key findings are as follows:(1)stress concentrations are highly likely to form at the gap between the cement and sandstone interface and around interfacial voids,with Von Mises stress reaching critical levels of 18.0-20.0 MPa at these locations,significantly exceeding the stress magnitudes in well-bonded regions;(2)the phenomenon of local stress concentration driven by interfacial defects can be identified as the main basis for predicting damage location in interfacial debonding and continuous shear under axial load;(3)ensuring tight cementation at the cement-sandstone interface and minimizing interfacial voids are paramount for preventing stress-induced failure;(4)the critical Von Mises stress value of 20 MPa at the interface defect can be used as a benchmark for material selection and designed to ensure long-term integrity in oil and gas well applications subjected to similar axial loads.These findings contribute to a more accurate understanding of the failure mechanism of the cement-sandstone interface and to the precise design of material properties,thereby ensuring the long-term integrity of oil and gas well applications subjected to similar axial loads.展开更多
This study proposes a combined hybrid energy storage system(HESS) and transmission grid(TG) model, and a corresponding time series operation simulation(TSOS) model is established to relieve the peak-shaving pressure o...This study proposes a combined hybrid energy storage system(HESS) and transmission grid(TG) model, and a corresponding time series operation simulation(TSOS) model is established to relieve the peak-shaving pressure of power systems under the integration of renewable energy. First, a linear model for the optimal operation of the HESS is established, which considers the different power-efficiency characteristics of the pumped storage system, electrochemical storage system, and a new type of liquid compressed air energy storage. Second, a TSOS simulation model for peak shaving is built to maximize the power entering the grid from the wind farms and HESS. Based on the proposed model, this study considers the transmission capacity of a TG. By adding the power-flow constraints of the TG, a TSOS-based HESS and TG combination model for peak shaving is established. Finally, the improved IEEE-39 and IEEE-118 bus systems were considered as examples to verify the effectiveness and feasibility of the proposed model.展开更多
A class of modified parallel combined methods of real-time numerical simulation are presented for a stiff dynamic system. By combining the parallelism across the system with the parallelism across the method, and rela...A class of modified parallel combined methods of real-time numerical simulation are presented for a stiff dynamic system. By combining the parallelism across the system with the parallelism across the method, and relaxing the dependence of stage value computation on sampling time of input function, a class of modified real-time parallel combined methods are constructed. Stiff and nonstiff subsystems are solved in parallel on a parallel computer by a parallel Rosen-brock method and a parallel RK method, respectively. Their order conditions and convergences are discussed. The numerical simulation experiments show that this class of modified algorithms can get high speed and efficiency.展开更多
A numerical model of an iron bath smelting reduction furnace with side-bottom combined blowing was established to study the influence of blowing arrangements on the stirring effect of the molten pool,and the accuracy ...A numerical model of an iron bath smelting reduction furnace with side-bottom combined blowing was established to study the influence of blowing arrangements on the stirring effect of the molten pool,and the accuracy of numerical simulation was verified by water model experiment.By comparing the flow field of molten pool with single nozzle,double nozzles(symmetrical and asymmetrical),and four nozzles(symmetrical and asymmetrical),the proportion of dead zone,average turbulent kinetic energy,and mixing time,the results show that asymmetrical bottom blowing is better than symmetrical bottom blowing,and the effect of double nozzles bottom blowing was better than that of four nozzles bottom blowing.The mixing effect is the worst under the condition of single nozzle.When the bottom blowing is asymmetrical with double nozzles,the mixing time is the shortest.Under the condition of double nozzles asymmetrical bottom blowing,when the insertion angle and depth of side lance are larger and deeper,the velocity streamline of molten slag layer is denser and the value is larger;meanwhile,the reflux of molten iron layer is larger,the proportion of dead zone is smaller,and the whole molten pool is fully stirred.When the insertion depth of the side lance is deeper,the gas holdup in the molten pool is greater and the stirring of the molten pool is more intense,while the insertion angle has little effect on the gas holdup.By comparing the influence of different side blowing conditions on the slag layer,it is found that the slag layer is divided into two layers by double-layer side lance,with the critical surface of the slag layer at about 200-260 mm from the bottom,and the insertion depth of the lower side lance has a greater influence on the layering of the slag.展开更多
A new method is proposed to produce gas from oceanic gas hydrate reservoir by combining the ocean surface warm water flooding with depressurization which can efficiently utilize the synthetic effects of thermal, salt ...A new method is proposed to produce gas from oceanic gas hydrate reservoir by combining the ocean surface warm water flooding with depressurization which can efficiently utilize the synthetic effects of thermal, salt and depressurization on gas hydrate dissociation. The method has the advantage of high efficiency, low cost and enhanced safety. Based on the proposed conceptual method, the physical and mathematical models are established, in which the effects of the flow of multiphase fluid, the kinetic process of hydrate dissociation, the endothermic process of hydrate dissociation, ice-water phase equilibrium, salt inhibition, dispersion, convection and conduction on the hydrate disso- ciation and gas and water production are considered. The gas and water rates, formation pressure for the combination method are compared with that of the single depressurization, which is referred to the method in which only depres- surization is used. The results show that the combination method can remedy the deficiency of individual producing methods. It has the advantage of longer stable period of high gas rate than the single depressurization. It can also reduce the geologic hazard caused by the formation defor- mation due to the maintaining of the formation pressure by injected ocean warm water.展开更多
Mine rescue capsule is a typical emergency equipment in a coal mine.It provides a safe and confined space for miners when mining disasters occurred.The length of the passenger survival cell is suitable to be adjusted ...Mine rescue capsule is a typical emergency equipment in a coal mine.It provides a safe and confined space for miners when mining disasters occurred.The length of the passenger survival cell is suitable to be adjusted with several predefined modular cells according to various numbers of passengers.Aiming at the shortage of guidance rules for the modular combination design of mine rescue capsule,the configuration situations of survival cells are experimented with static and impact load analysis in ANSYS Workbench.The length range of a single cell,the combination schemes of miner survival section,and the effectiveness proof of assembled rescue capsules were solved sequentially by simulated load analysis on constructed structural models.The modular combination rules of the survival section are developed for variant passenger number ranging from 8 to 20.It also provides a reference for the optimal selection of rescue capsules with the same capacity.The proposed modular rules are effective for the rapid configuration design for mine rescue capsule driven by the number of passengers.展开更多
A peculiarity of control network systems is the automatic implementation mode of monitoring and control, without outside intervention in a control process. This mode imposes rigid restrictions upon transmitted data. A...A peculiarity of control network systems is the automatic implementation mode of monitoring and control, without outside intervention in a control process. This mode imposes rigid restrictions upon transmitted data. All circulating data should comply to the defined time interval in which their reliability is definite. In other word communication has to be predictable and time-constrained in order to produce control output in time. This characteristic corresponds to concept 《determinism》 that characterizes an ability of a protocol to guarantee equivalent and opportune network access with the delay not exceeding definite time interval. For development of a deterministic and noise-resistant protocol is necessary to carry out analysis of an error model obtained by the computer simulation of an electromagnetic process in conditions of variety and intensity of interference. The formalization of the error model gives computer simulation an ability to get the error sequence directly without simulation of the electromagnetic process. The results of the simulation of an error sequence can be used for the expediency analysis of a noise-resistant encoding and the analysis of an error-correcting ability.展开更多
Electroslag surfacing with liquid metal (ESSLM) is an excellent method for producing high quality bimetallic compound rollers. The quality of each compound roller is primarily determined by the metallurgical quality...Electroslag surfacing with liquid metal (ESSLM) is an excellent method for producing high quality bimetallic compound rollers. The quality of each compound roller is primarily determined by the metallurgical quality of the combined interface. A GCrl5/40Cr compound roller is produced using an ESSLM non-consumable electrode electro- slag heating method. The temperature and electric fields produced by the ESSLM system are calculated. As the roller core moves downward in the mold, it passes through five sections., the preheating section, the rapid heating section, the temperature homogenizing section, the bimetal fusing section and the cooling section which listed from the top to bottom of the mold, respectively. The temperature distribution and the degree of the surface temperature fluctuation in the roller core are different for each section. Near the combined interface, four layers are found from the roller core to the cladding layer= the remelting layer, the fusion layer, the interface solidification layer and the chilling layer, re spectively. Among these, the fusion and interface solidification layers are the key transition zones that greatly influ- ence the combination quality. The surface temperature of the roller core prior to cladding is mainly determined by the drawing velocity, and the thickness of the transition layer increases as the drawing velocity decreases. A transition layer that is too thick or too thin will reduce the mechanical properties at the combined interface. Therefore, the drawing velocity should be limited to a moderate range to produce a satisfactory bimetallic Compound roller.展开更多
Effects of the simulated acid rain(AR) and ultraviolet-B(UV-B, 280-320 nm) radiation with a single or two ways simultaneously (AR + UV-B) on the antioxidant enzyme and photosynthesis of the rape seedlings were ...Effects of the simulated acid rain(AR) and ultraviolet-B(UV-B, 280-320 nm) radiation with a single or two ways simultaneously (AR + UV-B) on the antioxidant enzyme and photosynthesis of the rape seedlings were investigated by the hydroponic culture. The results of static experiment indicated that the tolerance of rape seedling to single stress(AR or UV-B) is stronger than that to dual stresses(AR + UV-B). Furthermore, the dual stresses had additive effect on catalase activity, and a synergistic effect on MDA content, net photosynthesis rate, water use efficiency as well as intercellular CO2 concentration. Meanwhile, it has an independent effect on chlorophyll content, stomatal conductance, and transpiration rate as well as membrane permeability. During 64 h restoration course, the dynamic change in the curves of physiological and biochemical indices were not identical, and none of them show a simple linear variation. According to the static and dynamic experiments, it was found that a responsive sequence of catalase activity, membrane permeability, MDA content and photosynthetic characteristics to the above-mentioned stresses was as follows: AR + UV-B 〉 UV-B 〉 AR.展开更多
Slope stability is of critical importance in the process of surface-underground mining combination. The influence of underground mining on pit slope stability was mainly discussed, and the self-stabilization of underg...Slope stability is of critical importance in the process of surface-underground mining combination. The influence of underground mining on pit slope stability was mainly discussed, and the self-stabilization of underground stopes was also studied. The random finite element method was used to analyze the probability of the rock mass stability degree of both pit slopes and underground stopes. Meanwhile, 3D elasto-plastic finite element method was used to research into the stress, strain and rock mass failure resulting from mining. The results of numerical simulation indicate that the mining of the underground test stope has certain influence on the stability of the pit slope, but the influence is not great. The safety factor of pit slope is decreased by 0.06, and the failure probability of the pit slope is increased by 1.84%. In addition, the strata yielding zone exists around the underground test stope. The results basically conform to the information coming from the field monitoring.展开更多
The paper concisely introduced the hoopment of photoplastic simulation and the principle of its appli- cation.Deformations of combine extrusion and strain distributin in the process of upsetting the cylinder with vo...The paper concisely introduced the hoopment of photoplastic simulation and the principle of its appli- cation.Deformations of combine extrusion and strain distributin in the process of upsetting the cylinder with void were studied by this physical photoplasic simulation method. Some important informations obtained from the simulation experiment are helpful to understand the deformation law and the charac- teristics of material flowing.The validity of the physical simulation method and the importance of com- bining the physical simulation method with numerical simulation method together were proposed in the paper.展开更多
A recently developed friction self-piercing riveting(F-SPR)technique based on the combination of fric-tion stir processing and riveting has been reported to possess both solid-state bonding and mechanical fastening ch...A recently developed friction self-piercing riveting(F-SPR)technique based on the combination of fric-tion stir processing and riveting has been reported to possess both solid-state bonding and mechanical fastening characteristics.However,there is still a lack of quantitative understanding of the hybrid en-hancement mechanism,hindering its engineering application.To fill in this gap,the current research investigated the microstructure evolution,microhardness distribution,and miniature-tensile performance of the aluminum alloy AA7075-T6 F-SPR joints by experiments.An accurate numerical simulation model was established to quantitatively evaluate the individual contributions of microstructure,local bonding strength,and macro interlocking to the performance of the joint,which could well explain the experi-mental results.It was found that due to the friction stirring of the rivet,solid-state bonding driven by dynamic recrystallization is realized between the trapped aluminum in the rivet cavity and the bottom aluminum sheet.The solid-state bonding zone has 75%yield strength,81%ultimate tensile strength,and 106%elongation compared to the base material.This solid-state bonding enables the internal interlock-ing between the trapped aluminum and the rivet to withstand the additional load,which forms a novel dual-interlock fastening mechanism and increases the peak cross-tension force by 14.3%compared to the single-interlock joint.展开更多
To study the heat and mass transfer characteristics of alkali metals in a combined porous wick in high-temperature heat pipes,a three-dimensional(3-D)numerical model is constructed by using the finite volume method,Da...To study the heat and mass transfer characteristics of alkali metals in a combined porous wick in high-temperature heat pipes,a three-dimensional(3-D)numerical model is constructed by using the finite volume method,Darcy’s theory,and the theory of local thermal equilibrium.The research finds that the pressure drop of fluids flowing through a combined porous wick exhibits an increasing trend with increasing flow velocity at the inlet and with decreasing permeability of the porous media;a combined porous wick of lower porosity and permeability and larger fluid velocity at the inlet is found to have a less uniformly distributed fluid velocity;the different temperatures of the fluid at the inlet mainly influence the inlet section of the computational model,while having negligible effect thereon in the axial direction(this embodies the thermal homogeneity of such heat pipes).The result reveals that the temperature change in fluids at the inlet does not significantly affect the overall temperature distribution in a combined wick.展开更多
A numerical simulation of the interaction between laminar flow with low Reynolds number and a highly flexible elastic sheet is presented. The mathematical model for the simulation includes a three-dimensional finitevo...A numerical simulation of the interaction between laminar flow with low Reynolds number and a highly flexible elastic sheet is presented. The mathematical model for the simulation includes a three-dimensional finitevolume based fluid solver for incompressible viscous flow and a combined finite-discrete element method for the three-dimensional deformation of solid. An immersed boundary method is used to couple the simulation of fluid and solid. It is implemented through a set of immersed boundary points scattered on the solid surface. These points provide a deformable solid wall boundary for the fluid by adding body force to Navier-Stokes equations. The force from the fluid is also obtained for each point and then applied on the boundary nodes of the solid. The vortex-induced vibration of the highly flexible elastic sheet is simulated with the established mathematical model. The simulated results for both swing pattern and oscillation frequency of the elastic sheet in low Reynolds number flow agree well with experimental data.展开更多
A new combined steel lead damper (NCSLD) was presented. Construction and working mechanism of NCSLD were introduced,pseudo-static tests of the small size dampers which would be used in the subsequent shaking table tes...A new combined steel lead damper (NCSLD) was presented. Construction and working mechanism of NCSLD were introduced,pseudo-static tests of the small size dampers which would be used in the subsequent shaking table tests were carried out for the study of mechanical properties of NCSLD using electro-hydraulic servo press-shear machine. Processing technology of the damper was improved. Shaking table tests under two-dimensional excitation on structural aseismic control of a one-story structure model were carried out using the small size NCSLD; parameters of the structure and shaking table were also introduced. Results indicate that process improvement is beneficial to the implementation of working mechanism of the damper,NCSLD has full hysteresis loop which takes on bilinearity,NCSLD has obvious energy dissipation effect and it can control structural seismic response effectively.展开更多
This study focused on the mechanical behavior of a deep-buried tunnel constructed in horizontally layered limestone,and investigated the effect of a new combined rockboltecable support system on the tunnel response.Th...This study focused on the mechanical behavior of a deep-buried tunnel constructed in horizontally layered limestone,and investigated the effect of a new combined rockboltecable support system on the tunnel response.The Yujingshan Tunnel,excavated through a giant karst cave,was used as a case study.Firstly,a multi-objective optimization model for the rockboltecable support was proposed by using fuzzy mathematics and multi-objective comprehensive decision-making principles.Subsequently,the parameters of the surrounding rock were calibrated by comparing the simulation results obtained by the discrete element method(DEM)with the field monitoring data to obtain an optimized support scheme based on the optimization model.Finally,the optimization scheme was applied to the karst cave section,which was divided into the B-and C-shaped sections.The distribution range of the rockboltecable support in the C-shaped section was larger than that in the B-shaped section.The field monitoring results,including tunnel crown settlement,horizontal convergence,and axial force of the rockboltecable system,were analyzed to assess the effectiveness of the optimization scheme.The maximum crown settlement and horizontal convergence were measured to be 25.9 mm and 35 mm,accounting for 0.1%and 0.2%of the tunnel height and span,respectively.Although the C-shaped section had poorer rock properties than the B-shaped section,the crown settlement and horizontal convergence in the C-shaped section ranged from 46%to 97%of those observed in the B-shaped section.The cable axial force in the Bshaped section was approximately 60%of that in the C-shaped section.The axial force in the crown rockbolt was much smaller than that in the sidewall rockbolt.Field monitoring results demonstrated that the optimized scheme effectively controlled the deformation of the layered surrounding rock,ensuring that it remained within a safe range.These results provide valuable references for the design of support systems in deep-buried tunnels situated in layered rock masses.展开更多
Aiming at the potential presence of mixing automatic identification system(AIS) signals,a new demodulation scheme was proposed for separating other interfering signals in satellite systems.The combined iterative cross...Aiming at the potential presence of mixing automatic identification system(AIS) signals,a new demodulation scheme was proposed for separating other interfering signals in satellite systems.The combined iterative cross-correlation demodulation scheme,referred to as CICCD,yielded a set of single short signals based on the prior information of AIS,after the frequency,code rate and modulation index were estimated.It demodulates the corresponding short codes according to the maximum peak of cross-correlation,which is simple and easy to implement.Numerical simulations show that the bit error rate of proposed algorithm improves by about 40% compared with existing ones,and about 3 dB beyond the standard AIS receiver.In addition,the proposed demodulation scheme shows the satisfying performance and engineering value in mixing AIS environment and can also perform well in low signal-to-noise conditions.展开更多
Ultra-high molecular weight polyethylene(UHMWPE)fiber composite has been extensively used to construct lightweight protective structures against ballistic impacts,yet little is known about its performance when subject...Ultra-high molecular weight polyethylene(UHMWPE)fiber composite has been extensively used to construct lightweight protective structures against ballistic impacts,yet little is known about its performance when subjected to combined blast and fragment impacts.Built upon a recently developed laboratory-scale experimental technique to generate simulated combined loading through the impact of a fragment-foam composite projectile launched from a light gas gun,the dynamic responses of fullyclamped UHMWPE plates subjected to combined loading were characterized experimentally,with corresponding deformation and failure modes compared with those measured with simulated blast loading alone.Subsequently,to explore the underlying physical mechanisms,three-dimensional(3D)numerical simulations with the method of finite elements(FE)were systematically carried out.Numerical predictions compared favorably well with experimental measurements,thus validating the feasibility of the established FE model.Relative to the case of blast loading alone,combined blast and fragment loading led to larger maximum deflections of clamped UHMWPE plates.The position of the FSP in the foam sabot affected significantly the performance of a UHMWPE target,either enhancing or decreasing its ballistic resistance.When the blast loading and fragment impact arrived simultaneously at the target,its ballistic resistance was superior to that achieved when subjected to fragment impact alone,and benefited from the accelerated movement of the target due to simultaneous blast loading.展开更多
A combined dam structure using different concrete materials offers many practical benefits.There are several real-world cases where largevolume heterogeneous concrete materials have been used together.From the enginee...A combined dam structure using different concrete materials offers many practical benefits.There are several real-world cases where largevolume heterogeneous concrete materials have been used together.From the engineering design standpoint,it is crucial to understand the deformation coordination characteristics and mechanical properties of large-volume heterogeneous concrete,which affect dam safety and stability.In this study,a large dam facility was selected for a case study,and various design schemes of the combined dam structure were developed by changing the configurations of material zoning and material types for a given dam shape.Elastoplastic analysis of the damfoundation-reservoir system for six schemes was carried out under dynamic conditions,in which the concrete damaged plasticity(CDP)model,the Lagrangian finite element formulation,and a surface-to-surface contact model were utilized.To evaluate the mechanical properties of zoning interfaces and coordination characteristics,the vertical distribution of the first principal stress at the longitudinal joint was used as the critical index of deformation coordination control,and the overall deformation and damage characteristics of the dam were also investigated.Through a comparative study of the design schemes,an optimal scheme of the combined dam structure was identified:large-volume roller-compacted concrete(RCC)is recommended for the dam body upstream of the longitudinal joint,and high-volume fly ash conventional concrete(CC)for the dam body downstream of the longitudinal joint.This study provides engineers with a reference basis for combined dam structure design.展开更多
Numerical study on near wake flows of a flat plate in three kinds of oncoming flows is made by using the discrete vortex model and improved vorticity creation method. For steady oncoming flow, both gross and detailed ...Numerical study on near wake flows of a flat plate in three kinds of oncoming flows is made by using the discrete vortex model and improved vorticity creation method. For steady oncoming flow, both gross and detailed features of the wake flow are calculated and discussed. Then, in harmonic oscillatory oncoming flow two different wake flow patterns with K_c=2,4 and 10 are obtained respectively. Our results present a new wake flow pattern for low K_c numbers (K_c<5) describing vortex shedding, pairing and moving in a period of the oscillatory flow starting from rest. The calculated drag and inertia force coefficients are closer to experimental data from the U-tube than the previous results of vortex simulation. For in-line combined oncoming flow the vortex lock-in and dynamic characteristics are simulated. The results are shown to be in good agreement with experiments.展开更多
基金supported by the National Natural Science Foundation of China(No.52274026)the National Key Research and Development Program(No.2022YFC2806504)the CNOOC Research Project(No.KJGG-2022-17-04 and NO.KJGG-2022-17-05).
文摘Effective isolation between the cement sheath and the sandstone is crucial for the development and production of oil and gas wells in sandstone formations.In this study,a cement-sandstone composite(CSC)was prepared,and based onμ-CT three-dimensional reconstruction imaging and finite element analysis(FEA)techniques,the stress distribution and potential failure mechanism at the cement-sandstone bonding interface under axial loading were analyzed.The key findings are as follows:(1)stress concentrations are highly likely to form at the gap between the cement and sandstone interface and around interfacial voids,with Von Mises stress reaching critical levels of 18.0-20.0 MPa at these locations,significantly exceeding the stress magnitudes in well-bonded regions;(2)the phenomenon of local stress concentration driven by interfacial defects can be identified as the main basis for predicting damage location in interfacial debonding and continuous shear under axial load;(3)ensuring tight cementation at the cement-sandstone interface and minimizing interfacial voids are paramount for preventing stress-induced failure;(4)the critical Von Mises stress value of 20 MPa at the interface defect can be used as a benchmark for material selection and designed to ensure long-term integrity in oil and gas well applications subjected to similar axial loads.These findings contribute to a more accurate understanding of the failure mechanism of the cement-sandstone interface and to the precise design of material properties,thereby ensuring the long-term integrity of oil and gas well applications subjected to similar axial loads.
基金supported by the State Grid Science and Technology Project (No.52999821N004)。
文摘This study proposes a combined hybrid energy storage system(HESS) and transmission grid(TG) model, and a corresponding time series operation simulation(TSOS) model is established to relieve the peak-shaving pressure of power systems under the integration of renewable energy. First, a linear model for the optimal operation of the HESS is established, which considers the different power-efficiency characteristics of the pumped storage system, electrochemical storage system, and a new type of liquid compressed air energy storage. Second, a TSOS simulation model for peak shaving is built to maximize the power entering the grid from the wind farms and HESS. Based on the proposed model, this study considers the transmission capacity of a TG. By adding the power-flow constraints of the TG, a TSOS-based HESS and TG combination model for peak shaving is established. Finally, the improved IEEE-39 and IEEE-118 bus systems were considered as examples to verify the effectiveness and feasibility of the proposed model.
基金This project was supported by the National Natural Science Foundation of China (19871080).
文摘A class of modified parallel combined methods of real-time numerical simulation are presented for a stiff dynamic system. By combining the parallelism across the system with the parallelism across the method, and relaxing the dependence of stage value computation on sampling time of input function, a class of modified real-time parallel combined methods are constructed. Stiff and nonstiff subsystems are solved in parallel on a parallel computer by a parallel Rosen-brock method and a parallel RK method, respectively. Their order conditions and convergences are discussed. The numerical simulation experiments show that this class of modified algorithms can get high speed and efficiency.
基金The authors wish to express thanks to the National Natural Science Foundation of China(51904278)Shanxi Province Key R&D Program High-tech Project(201903D121093)+1 种基金Major Science and Technology Projects of Shanxi Province(20181101002)General Project of Natural Science Foundation of Shanxi Province(20210302123218)for supporting this work.
文摘A numerical model of an iron bath smelting reduction furnace with side-bottom combined blowing was established to study the influence of blowing arrangements on the stirring effect of the molten pool,and the accuracy of numerical simulation was verified by water model experiment.By comparing the flow field of molten pool with single nozzle,double nozzles(symmetrical and asymmetrical),and four nozzles(symmetrical and asymmetrical),the proportion of dead zone,average turbulent kinetic energy,and mixing time,the results show that asymmetrical bottom blowing is better than symmetrical bottom blowing,and the effect of double nozzles bottom blowing was better than that of four nozzles bottom blowing.The mixing effect is the worst under the condition of single nozzle.When the bottom blowing is asymmetrical with double nozzles,the mixing time is the shortest.Under the condition of double nozzles asymmetrical bottom blowing,when the insertion angle and depth of side lance are larger and deeper,the velocity streamline of molten slag layer is denser and the value is larger;meanwhile,the reflux of molten iron layer is larger,the proportion of dead zone is smaller,and the whole molten pool is fully stirred.When the insertion depth of the side lance is deeper,the gas holdup in the molten pool is greater and the stirring of the molten pool is more intense,while the insertion angle has little effect on the gas holdup.By comparing the influence of different side blowing conditions on the slag layer,it is found that the slag layer is divided into two layers by double-layer side lance,with the critical surface of the slag layer at about 200-260 mm from the bottom,and the insertion depth of the lower side lance has a greater influence on the layering of the slag.
文摘A new method is proposed to produce gas from oceanic gas hydrate reservoir by combining the ocean surface warm water flooding with depressurization which can efficiently utilize the synthetic effects of thermal, salt and depressurization on gas hydrate dissociation. The method has the advantage of high efficiency, low cost and enhanced safety. Based on the proposed conceptual method, the physical and mathematical models are established, in which the effects of the flow of multiphase fluid, the kinetic process of hydrate dissociation, the endothermic process of hydrate dissociation, ice-water phase equilibrium, salt inhibition, dispersion, convection and conduction on the hydrate disso- ciation and gas and water production are considered. The gas and water rates, formation pressure for the combination method are compared with that of the single depressurization, which is referred to the method in which only depres- surization is used. The results show that the combination method can remedy the deficiency of individual producing methods. It has the advantage of longer stable period of high gas rate than the single depressurization. It can also reduce the geologic hazard caused by the formation defor- mation due to the maintaining of the formation pressure by injected ocean warm water.
基金National Natural Science Foundation of China(No.51475459)Fundamental Research Funds for the Central Universities of China(No.2017XKQY040)Priority Academic Program Development of Jiangsu Higher Education Institutions of China(No.PAPD)
文摘Mine rescue capsule is a typical emergency equipment in a coal mine.It provides a safe and confined space for miners when mining disasters occurred.The length of the passenger survival cell is suitable to be adjusted with several predefined modular cells according to various numbers of passengers.Aiming at the shortage of guidance rules for the modular combination design of mine rescue capsule,the configuration situations of survival cells are experimented with static and impact load analysis in ANSYS Workbench.The length range of a single cell,the combination schemes of miner survival section,and the effectiveness proof of assembled rescue capsules were solved sequentially by simulated load analysis on constructed structural models.The modular combination rules of the survival section are developed for variant passenger number ranging from 8 to 20.It also provides a reference for the optimal selection of rescue capsules with the same capacity.The proposed modular rules are effective for the rapid configuration design for mine rescue capsule driven by the number of passengers.
文摘A peculiarity of control network systems is the automatic implementation mode of monitoring and control, without outside intervention in a control process. This mode imposes rigid restrictions upon transmitted data. All circulating data should comply to the defined time interval in which their reliability is definite. In other word communication has to be predictable and time-constrained in order to produce control output in time. This characteristic corresponds to concept 《determinism》 that characterizes an ability of a protocol to guarantee equivalent and opportune network access with the delay not exceeding definite time interval. For development of a deterministic and noise-resistant protocol is necessary to carry out analysis of an error model obtained by the computer simulation of an electromagnetic process in conditions of variety and intensity of interference. The formalization of the error model gives computer simulation an ability to get the error sequence directly without simulation of the electromagnetic process. The results of the simulation of an error sequence can be used for the expediency analysis of a noise-resistant encoding and the analysis of an error-correcting ability.
基金Item Sponsored by National Natural Science Foundation of China(51165030)
文摘Electroslag surfacing with liquid metal (ESSLM) is an excellent method for producing high quality bimetallic compound rollers. The quality of each compound roller is primarily determined by the metallurgical quality of the combined interface. A GCrl5/40Cr compound roller is produced using an ESSLM non-consumable electrode electro- slag heating method. The temperature and electric fields produced by the ESSLM system are calculated. As the roller core moves downward in the mold, it passes through five sections., the preheating section, the rapid heating section, the temperature homogenizing section, the bimetal fusing section and the cooling section which listed from the top to bottom of the mold, respectively. The temperature distribution and the degree of the surface temperature fluctuation in the roller core are different for each section. Near the combined interface, four layers are found from the roller core to the cladding layer= the remelting layer, the fusion layer, the interface solidification layer and the chilling layer, re spectively. Among these, the fusion and interface solidification layers are the key transition zones that greatly influ- ence the combination quality. The surface temperature of the roller core prior to cladding is mainly determined by the drawing velocity, and the thickness of the transition layer increases as the drawing velocity decreases. A transition layer that is too thick or too thin will reduce the mechanical properties at the combined interface. Therefore, the drawing velocity should be limited to a moderate range to produce a satisfactory bimetallic Compound roller.
文摘Effects of the simulated acid rain(AR) and ultraviolet-B(UV-B, 280-320 nm) radiation with a single or two ways simultaneously (AR + UV-B) on the antioxidant enzyme and photosynthesis of the rape seedlings were investigated by the hydroponic culture. The results of static experiment indicated that the tolerance of rape seedling to single stress(AR or UV-B) is stronger than that to dual stresses(AR + UV-B). Furthermore, the dual stresses had additive effect on catalase activity, and a synergistic effect on MDA content, net photosynthesis rate, water use efficiency as well as intercellular CO2 concentration. Meanwhile, it has an independent effect on chlorophyll content, stomatal conductance, and transpiration rate as well as membrane permeability. During 64 h restoration course, the dynamic change in the curves of physiological and biochemical indices were not identical, and none of them show a simple linear variation. According to the static and dynamic experiments, it was found that a responsive sequence of catalase activity, membrane permeability, MDA content and photosynthetic characteristics to the above-mentioned stresses was as follows: AR + UV-B 〉 UV-B 〉 AR.
文摘Slope stability is of critical importance in the process of surface-underground mining combination. The influence of underground mining on pit slope stability was mainly discussed, and the self-stabilization of underground stopes was also studied. The random finite element method was used to analyze the probability of the rock mass stability degree of both pit slopes and underground stopes. Meanwhile, 3D elasto-plastic finite element method was used to research into the stress, strain and rock mass failure resulting from mining. The results of numerical simulation indicate that the mining of the underground test stope has certain influence on the stability of the pit slope, but the influence is not great. The safety factor of pit slope is decreased by 0.06, and the failure probability of the pit slope is increased by 1.84%. In addition, the strata yielding zone exists around the underground test stope. The results basically conform to the information coming from the field monitoring.
文摘The paper concisely introduced the hoopment of photoplastic simulation and the principle of its appli- cation.Deformations of combine extrusion and strain distributin in the process of upsetting the cylinder with void were studied by this physical photoplasic simulation method. Some important informations obtained from the simulation experiment are helpful to understand the deformation law and the charac- teristics of material flowing.The validity of the physical simulation method and the importance of com- bining the physical simulation method with numerical simulation method together were proposed in the paper.
基金support of the National Natural Science Foundation of China(Grant Nos.52025058 and U1764251)the State Key Laboratory of Mechan-ical System and Vibration(Grant No.MSVZD202111)+1 种基金the Japan Society for the Promotion of Science(JSPS)KAKENHI(Grant No.21K14439)Shanghai Jiao Tong University.
文摘A recently developed friction self-piercing riveting(F-SPR)technique based on the combination of fric-tion stir processing and riveting has been reported to possess both solid-state bonding and mechanical fastening characteristics.However,there is still a lack of quantitative understanding of the hybrid en-hancement mechanism,hindering its engineering application.To fill in this gap,the current research investigated the microstructure evolution,microhardness distribution,and miniature-tensile performance of the aluminum alloy AA7075-T6 F-SPR joints by experiments.An accurate numerical simulation model was established to quantitatively evaluate the individual contributions of microstructure,local bonding strength,and macro interlocking to the performance of the joint,which could well explain the experi-mental results.It was found that due to the friction stirring of the rivet,solid-state bonding driven by dynamic recrystallization is realized between the trapped aluminum in the rivet cavity and the bottom aluminum sheet.The solid-state bonding zone has 75%yield strength,81%ultimate tensile strength,and 106%elongation compared to the base material.This solid-state bonding enables the internal interlock-ing between the trapped aluminum and the rivet to withstand the additional load,which forms a novel dual-interlock fastening mechanism and increases the peak cross-tension force by 14.3%compared to the single-interlock joint.
基金supported by the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20180177)the Science and Technology Foundation of Xuzhou,China(Grant No.KH17007)the Natural Science Foundation for Colleges and Universities of Jiangsu Province,China(Grant No.17KJB460015,No.18KJB460028).
文摘To study the heat and mass transfer characteristics of alkali metals in a combined porous wick in high-temperature heat pipes,a three-dimensional(3-D)numerical model is constructed by using the finite volume method,Darcy’s theory,and the theory of local thermal equilibrium.The research finds that the pressure drop of fluids flowing through a combined porous wick exhibits an increasing trend with increasing flow velocity at the inlet and with decreasing permeability of the porous media;a combined porous wick of lower porosity and permeability and larger fluid velocity at the inlet is found to have a less uniformly distributed fluid velocity;the different temperatures of the fluid at the inlet mainly influence the inlet section of the computational model,while having negligible effect thereon in the axial direction(this embodies the thermal homogeneity of such heat pipes).The result reveals that the temperature change in fluids at the inlet does not significantly affect the overall temperature distribution in a combined wick.
基金Supported by Marie Curie International Incoming Fellowship (No. PIIF-GA-2009-253453)
文摘A numerical simulation of the interaction between laminar flow with low Reynolds number and a highly flexible elastic sheet is presented. The mathematical model for the simulation includes a three-dimensional finitevolume based fluid solver for incompressible viscous flow and a combined finite-discrete element method for the three-dimensional deformation of solid. An immersed boundary method is used to couple the simulation of fluid and solid. It is implemented through a set of immersed boundary points scattered on the solid surface. These points provide a deformable solid wall boundary for the fluid by adding body force to Navier-Stokes equations. The force from the fluid is also obtained for each point and then applied on the boundary nodes of the solid. The vortex-induced vibration of the highly flexible elastic sheet is simulated with the established mathematical model. The simulated results for both swing pattern and oscillation frequency of the elastic sheet in low Reynolds number flow agree well with experimental data.
基金Sponsored by the National Natural Science Foundation of China (Grant No. 50508012)Science &Technology Plan Project of Guangdong Province(Grant No. 20055190030)+1 种基金Key Basic Research Project of Science and Technology Ministry (Grant No. 2004CCA03300)Science &Technology Project of Guangzhou Education Bureau(Grant No.08C05)
文摘A new combined steel lead damper (NCSLD) was presented. Construction and working mechanism of NCSLD were introduced,pseudo-static tests of the small size dampers which would be used in the subsequent shaking table tests were carried out for the study of mechanical properties of NCSLD using electro-hydraulic servo press-shear machine. Processing technology of the damper was improved. Shaking table tests under two-dimensional excitation on structural aseismic control of a one-story structure model were carried out using the small size NCSLD; parameters of the structure and shaking table were also introduced. Results indicate that process improvement is beneficial to the implementation of working mechanism of the damper,NCSLD has full hysteresis loop which takes on bilinearity,NCSLD has obvious energy dissipation effect and it can control structural seismic response effectively.
基金supported by the Fundamental Research Funds for the Central Universities (Grant No.2023JBZY024)Beijing Natural Science Foundation (Grant No.9244040)opening Fund of State Key Laboratory of Geohazard Prevention and Geoenvironment Protection,Chengdu University of Technology (Grant No.SKLGP2023K015).
文摘This study focused on the mechanical behavior of a deep-buried tunnel constructed in horizontally layered limestone,and investigated the effect of a new combined rockboltecable support system on the tunnel response.The Yujingshan Tunnel,excavated through a giant karst cave,was used as a case study.Firstly,a multi-objective optimization model for the rockboltecable support was proposed by using fuzzy mathematics and multi-objective comprehensive decision-making principles.Subsequently,the parameters of the surrounding rock were calibrated by comparing the simulation results obtained by the discrete element method(DEM)with the field monitoring data to obtain an optimized support scheme based on the optimization model.Finally,the optimization scheme was applied to the karst cave section,which was divided into the B-and C-shaped sections.The distribution range of the rockboltecable support in the C-shaped section was larger than that in the B-shaped section.The field monitoring results,including tunnel crown settlement,horizontal convergence,and axial force of the rockboltecable system,were analyzed to assess the effectiveness of the optimization scheme.The maximum crown settlement and horizontal convergence were measured to be 25.9 mm and 35 mm,accounting for 0.1%and 0.2%of the tunnel height and span,respectively.Although the C-shaped section had poorer rock properties than the B-shaped section,the crown settlement and horizontal convergence in the C-shaped section ranged from 46%to 97%of those observed in the B-shaped section.The cable axial force in the Bshaped section was approximately 60%of that in the C-shaped section.The axial force in the crown rockbolt was much smaller than that in the sidewall rockbolt.Field monitoring results demonstrated that the optimized scheme effectively controlled the deformation of the layered surrounding rock,ensuring that it remained within a safe range.These results provide valuable references for the design of support systems in deep-buried tunnels situated in layered rock masses.
基金Project(9140C860304) supported by the National Defense Key Laboratory Foundation of China
文摘Aiming at the potential presence of mixing automatic identification system(AIS) signals,a new demodulation scheme was proposed for separating other interfering signals in satellite systems.The combined iterative cross-correlation demodulation scheme,referred to as CICCD,yielded a set of single short signals based on the prior information of AIS,after the frequency,code rate and modulation index were estimated.It demodulates the corresponding short codes according to the maximum peak of cross-correlation,which is simple and easy to implement.Numerical simulations show that the bit error rate of proposed algorithm improves by about 40% compared with existing ones,and about 3 dB beyond the standard AIS receiver.In addition,the proposed demodulation scheme shows the satisfying performance and engineering value in mixing AIS environment and can also perform well in low signal-to-noise conditions.
基金supported by the National Natural Science Foundation of China(Grant No.12032010,11902155 and 12072250)by the Natural Science Foundation of Jiangsu Province(Grant No.BK20190382)+2 种基金by the Research Fund of State Key Laboratory of Mechanics and Control of Mechanical Structures(Grant No.MCMS-I-0222K01)by the Fund of Prospective Layout of Scientific Research for NUAAby the Foundation for the Priority Academic Program Development of Jiangsu Higher Education Institutions。
文摘Ultra-high molecular weight polyethylene(UHMWPE)fiber composite has been extensively used to construct lightweight protective structures against ballistic impacts,yet little is known about its performance when subjected to combined blast and fragment impacts.Built upon a recently developed laboratory-scale experimental technique to generate simulated combined loading through the impact of a fragment-foam composite projectile launched from a light gas gun,the dynamic responses of fullyclamped UHMWPE plates subjected to combined loading were characterized experimentally,with corresponding deformation and failure modes compared with those measured with simulated blast loading alone.Subsequently,to explore the underlying physical mechanisms,three-dimensional(3D)numerical simulations with the method of finite elements(FE)were systematically carried out.Numerical predictions compared favorably well with experimental measurements,thus validating the feasibility of the established FE model.Relative to the case of blast loading alone,combined blast and fragment loading led to larger maximum deflections of clamped UHMWPE plates.The position of the FSP in the foam sabot affected significantly the performance of a UHMWPE target,either enhancing or decreasing its ballistic resistance.When the blast loading and fragment impact arrived simultaneously at the target,its ballistic resistance was superior to that achieved when subjected to fragment impact alone,and benefited from the accelerated movement of the target due to simultaneous blast loading.
基金supported by the National Natural Science Foundation of China(Grant No.51879185)the Fund of the National Dam Safety Research Center(Grant No.CX2019B02).
文摘A combined dam structure using different concrete materials offers many practical benefits.There are several real-world cases where largevolume heterogeneous concrete materials have been used together.From the engineering design standpoint,it is crucial to understand the deformation coordination characteristics and mechanical properties of large-volume heterogeneous concrete,which affect dam safety and stability.In this study,a large dam facility was selected for a case study,and various design schemes of the combined dam structure were developed by changing the configurations of material zoning and material types for a given dam shape.Elastoplastic analysis of the damfoundation-reservoir system for six schemes was carried out under dynamic conditions,in which the concrete damaged plasticity(CDP)model,the Lagrangian finite element formulation,and a surface-to-surface contact model were utilized.To evaluate the mechanical properties of zoning interfaces and coordination characteristics,the vertical distribution of the first principal stress at the longitudinal joint was used as the critical index of deformation coordination control,and the overall deformation and damage characteristics of the dam were also investigated.Through a comparative study of the design schemes,an optimal scheme of the combined dam structure was identified:large-volume roller-compacted concrete(RCC)is recommended for the dam body upstream of the longitudinal joint,and high-volume fly ash conventional concrete(CC)for the dam body downstream of the longitudinal joint.This study provides engineers with a reference basis for combined dam structure design.
基金The project supported by National Natural Science Fundation of China and LNM of Institute of Mechanics. CAS .
文摘Numerical study on near wake flows of a flat plate in three kinds of oncoming flows is made by using the discrete vortex model and improved vorticity creation method. For steady oncoming flow, both gross and detailed features of the wake flow are calculated and discussed. Then, in harmonic oscillatory oncoming flow two different wake flow patterns with K_c=2,4 and 10 are obtained respectively. Our results present a new wake flow pattern for low K_c numbers (K_c<5) describing vortex shedding, pairing and moving in a period of the oscillatory flow starting from rest. The calculated drag and inertia force coefficients are closer to experimental data from the U-tube than the previous results of vortex simulation. For in-line combined oncoming flow the vortex lock-in and dynamic characteristics are simulated. The results are shown to be in good agreement with experiments.