期刊文献+
共找到939篇文章
< 1 2 47 >
每页显示 20 50 100
Nitric oxide synthase 1 inhibits the progression of esophageal cancer through interacting with nitric oxide synthase 1 adaptor protein
1
作者 Zi-Wei Xiao Ying-Chao Zeng +2 位作者 Lin-Tao Ji Jia-Tao Yuan Lin Li 《World Journal of Gastrointestinal Oncology》 2025年第4期427-441,共15页
BACKGROUND Esophageal cancer(ESCA)is among the most prevalent and lethal tumors globally.While nitric oxide synthase 1(NOS1)is recognized for its important in-volvement in various cancers,its specific function in ESCA... BACKGROUND Esophageal cancer(ESCA)is among the most prevalent and lethal tumors globally.While nitric oxide synthase 1(NOS1)is recognized for its important in-volvement in various cancers,its specific function in ESCA remains unclear.AIM To explore the potential role and underlying mechanisms of NOS1 in ESCA.METHODS Survival rates were analyzed using GeneCards and Gene Expression Profiling Interactive Analysis.The effects and mechanisms of NOS1 on ESCA cells were evaluated via the Cell Counting Kit-8 assay,scratch assay,Transwell assay,flow cytometry,quantitative polymerase chain reaction,western blotting,and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-biotin nick end labeling staining.The protein interaction network was used to screen the interacting proteins of NOS1 and validate these interactions through co-immuno-precipitation and dual luciferase assays.Additionally,a nude mouse xenograft model was established to evaluate the effect of NOS1 in vivo.RESULTS The survival rate of patients with ESCA with high NOS1 expression was higher than that of patients with low NOS1 expression.NOS1 expression in ESCA cell lines was lower than that in normal esophageal epithelial cells.Overexpression of NOS1(oe-NOS1)inhibited proliferation,invasion,and migration abilities in ESCA cell lines,resulting in decreased autophagy levels and increased apoptosis,pyroptosis,and ferroptosis.Protein interaction studies confirmed the interaction between NOS1 and NOS1 adaptor protein(NOS1AP).Following oe-NOS1 and the silencing of NOS1AP,levels of P62 and microtubule-associated protein 1 light chain 3 beta increased both in vitro and in vivo.Furthermore,the expression levels of E-cadherin,along with the activation of phosphatidylinositol 3-kinase(PI3K)and protein kinase B(AKT),were inhibited in ESCA cell lines.CONCLUSION NOS1 and NOS1 proteins interact to suppress autophagy,activate the PI3K/AKT pathway,and exert anti-cancer effects in ESCA. 展开更多
关键词 Nitric oxide synthase 1 Nitric oxide synthase 1 adaptor protein AUTOPHAGY Phosphatidylinositol 3-kinase/protein kinase B pathway Esophageal cancer
暂未订购
Effects of different nitric oxide synthases on pulmonary and systemic hemodynamics in hypoxic stress rat model 被引量:1
2
作者 Huan Zhang Yu Zhang +2 位作者 Xiaojun Wang Jie Liu Wei Zhang 《Animal Models and Experimental Medicine》 2025年第2期344-352,共9页
Background:Under hypoxia,exaggerated compensatory responses may lead to acute mountain sickness.The excessive vasodilatory effect of nitric oxide(NO)can lower the hypoxic pulmonary vasoconstriction(HPV)and peripheral ... Background:Under hypoxia,exaggerated compensatory responses may lead to acute mountain sickness.The excessive vasodilatory effect of nitric oxide(NO)can lower the hypoxic pulmonary vasoconstriction(HPV)and peripheral blood pressure.While NO is catalyzed by various nitric oxide synthase(NOS)isoforms,the regulatory roles of these types in the hemodynamics of pulmonary and systemic circulation in living hypoxic animals remain unclear.Therefore,this study aims to investigate the regu-latory effects of different NOS isoforms on pulmonary and systemic circulation in hypoxic rats by employing selective NOS inhibitors and continuously monitoring hemodynamic parameters of both pulmonary and systemic circulation.Methods:Forty healthy male Sprague–Dawley(SD)rats were randomly divided into four groups:Control group(NG-nitro-D-arginine methyl ester,D-NAME),L-NAME group(non-selective NOS inhibitor,NG-nitro-L-arginine methyl ester),AG group(in-ducible NOS inhibitor group,aminoguanidine),and 7-NI group(neurological NOS in-hibitor,7-nitroindazole).Hemodynamic parameters of rats were monitored for 10 min after inhibitor administration and 5 min after induction of hypoxia[15%O2,2200 m a.sl.,582 mmHg(76.5 kPa),Xining,China]using the real-time dynamic monitoring model for pulmonary and systemic circulation hemodynamics in vivo.Serum NO concentra-tions and blood gas analysis were measured.Results:Under normoxia,mean arterial pressure and total peripheral vascular resist-ance were increased,and ascending aortic blood flow and serum NO concentration were decreased in the L-NAME and AG groups.During hypoxia,pulmonary arterial pressure and pulmonary vascular resistance were significantly increased in the L-NAME and AG groups.Conclusions:This compensatory mechanism activated by inducible NOS and en-dothelial NOS effectively counteracts the pulmonary hemodynamic changes induced by hypoxic stress.It plays a crucial role in alleviating hypoxia-induced pulmonary arte-rial hypertension. 展开更多
关键词 hypoxic stress nitric oxide synthase peripheral vascular resistance pulmonary vascular resistance
暂未订购
Berberine restrained proliferation,invasion,and migration by targeting the glycogen synthase kinase 3β/β-catenin pathway in lung adenocarcinoma cells 被引量:1
3
作者 Tenzin Wangmu Chenlu Li +1 位作者 Guangsu Han Ping Yi 《Oncology and Translational Medicine》 2025年第2期58-72,共15页
Background:Lung cancer is one of the deadliest cancers worldwide,creating a pressing need to develop novel drugs that inhibit oncogenic signaling pathways.Numerous studies have shown that berberine(BBR)has anti–lung ... Background:Lung cancer is one of the deadliest cancers worldwide,creating a pressing need to develop novel drugs that inhibit oncogenic signaling pathways.Numerous studies have shown that berberine(BBR)has anti–lung cancer potential.We aimed to explore the anti–lung cancer effect of BBR and related mechanisms by targeting the glycogen synthase kinase 3β(GSK3β)/β-catenin pathway.Methods:Lung adenocarcinoma(LUAD)cells A549 and NCI-H1975 were treated with BBR.Results:Our results showed that BBR inhibited cell proliferation by decreasing c-Myc levels and induced cel cycle arrest in the G0/G1 phase by lowering cyclin D1 levels.BBR induced apoptosis by upregulating cleaved caspase 3 levels.BBR inhibited cell migration and invasion by decreasing N-cadherin levels.Furthermore,BBR upregulated the expression of GSK3βprotein and phospho-β-catenin proteins in the cytoplasm,while decreasing the expression ofβ-catenin protein.Next,LUAD cel s were exposed to CHIR-99021(a GSK3βinhibitor).This treatment led to an increase in c-Myc,cyclin D1,andβ-catenin levels at specific concentrations.BBR partially reversed the effects of CHIR-99021.Finally,LUAD cells were treated with CHIR-99021(4μmoL/L)combined with BBR(30 and 60μmoL/L)for 24 h.The expression of programmed death ligand 1(PD-L1)was assessed by Western blot analysis.Jurkat T cells and A549 cel s were cocultured for 24 h to examine the lactate dehydrogenase release rate.Results suggested that BBR suppressed the expression of PD-L1 and heightened the immune lethality of T cells.Conclusions:BBR suppressed the proliferative activity of LUAD cell lines A549 and NCI-H1975 in vitro,induced cell cycle arrest and cancer cel apoptosis in the G0/G1 stage,and repressed the migration and invasion of cancer cells.BBR reduced the PD-L1 protein expression and enhanced T-cell–mediated cytotoxicity.These effects appear to be related to BBR's regulation of the GSK3β/β-catenin pathway. 展开更多
关键词 BERBERINE Glycogen synthase kinase Lung adenocarcinoma Non‐small cell lung cancer Β-CATENIN
暂未订购
Inhibiting ceramide synthase 5 expression in microglia decreases neuroinflammation after spinal cord injury
4
作者 Wei Zhang Yubao Lu +6 位作者 Ruoqi Shen Yingjie Wu Chenrui Liu Xingxing Fang Liangming Zhang Bin Liu Limin Rong 《Neural Regeneration Research》 SCIE CAS 2025年第10期2955-2968,共14页
Microglia,the resident monocyte of the central nervous system,play a crucial role in the response to spinal cord injury.However,the precise mechanism remains unclear.To investigate the molecular mechanisms by which mi... Microglia,the resident monocyte of the central nervous system,play a crucial role in the response to spinal cord injury.However,the precise mechanism remains unclear.To investigate the molecular mechanisms by which microglia regulate the neuroinflammatory response to spinal cord injury,we performed single-cell RNA sequencing dataset analysis,focusing on changes in microglial subpopulations.We found that the MG1 subpopulation emerged in the acute/subacute phase of spinal cord injury and expressed genes related to cell pyroptosis,sphingomyelin metabolism,and neuroinflammation at high levels.Subsequently,we established a mouse model of contusive injury and performed intrathecal injection of siRNA and molecular inhibitors to validate the role of ceramide synthase 5 in the neuroinflammatory responses and pyroptosis after spinal cord injury.Finally,we established a PC12-BV2 cell co-culture system and found that ceramide synthase 5 and pyroptosis-associated proteins were highly expressed to induce the apoptosis of neuron cells.Inhibiting ceramide synthase 5 expression in a mouse model of spinal cord injury effectively reduced pyroptosis.Furthermore,ceramide synthase 5-induced pyroptosis was dependent on activation of the NLRP3 signaling pathway.Inhibiting ceramide synthase 5 expression in microglia in vivo reduced neuronal apoptosis and promoted recovery of neurological function.Pla2g7 formed a“bridge”between sphingolipid metabolism and ceramide synthase 5-mediated cell death by inhibiting the NLRP3 signaling pathway.Collectively,these findings suggest that inhibiting ceramide synthase 5 expression in microglia after spinal cord injury effectively suppressed microglial pyroptosis mediated by NLRP3,thereby exerting neuroprotective effects. 展开更多
关键词 ceramide synthase 5 gasdermin D MICROGLIA NEUROINFLAMMATION NLRP3 nuclear factor kappa B Pla2g7 PYROPTOSIS sphingomyelin metabolism spinal cord injury
暂未订购
Novel Structural Features of Isoflavone Synthase from Medicago truncatula Shed Light on Its Unique Enzymatic Mechanism
5
作者 SHI Chao YE Zhao-Yang +12 位作者 XU Fei DU Xiang-Ning CHEN Zhang-Xin GU Ming-Yue DENG Jie WANG Wei LIU Liang-Yu WANG Mei-Ying SU Xiao-Dong LIU He-Li SHANG Ming-Ying HUANG Li-Xin CHANG Zhen-Zhan 《中国生物化学与分子生物学报》 北大核心 2025年第8期1204-1213,I0003-I0008,共16页
Isoflavones which mainly distributed in leguminous plants have plenty of health benefits.Isoflavone synthase(IFS)is a membrane-associated cytochrome P450 enzyme(CYP450)which carries out the unique aryl-ring migration ... Isoflavones which mainly distributed in leguminous plants have plenty of health benefits.Isoflavone synthase(IFS)is a membrane-associated cytochrome P450 enzyme(CYP450)which carries out the unique aryl-ring migration and hydroxylation.So far,few crystal structures of plant P450s have been obtained.We determined the crystal structure of IFS from Medicago truncatula at 1.9 by MAD method using a selenomethionine substituted crystal and conducted molecular docking and mutagenesis study.The structure of IFS complexed with imidazole exhibits the helix Iα-loop-helix Iβmotif which corresponds to helix I of other P 450s.Compared with structures of common P450s,IFS/imidazole structure contains an extra domain,i.e.,theγ-domain.The structure reveals a homodimer in which theγ-domain of one molecule interacts with theβ-domain of another.The plane of heme group makes an angle of approximately 40°with the helix Iα-loop-helix Iβmotif.Molecular docking combined with mutagenesis study suggested that Trp-128 and Asp-300 might play important roles in substrate binding and recognition.Phe-301,Ser-303 and Gly-305 from the helix Iα-loop-helix Iβmotif may play important roles in the aryl-ring migration.These novel structural features reveal insights into the unique reaction mechanism of IFS and provide a basis for engineering IFS in leguminous crops for health purpose. 展开更多
关键词 cytochrome P450 enzyme(CYP450) isoflavone synthase(IFS) crystal structure HOMODIMER
原文传递
Genomic and functional analysis of isochorismate synthase genes in sugarcane and their roles in disease resistance
6
作者 Zhen Zeng Xinyu Zhu +4 位作者 Jiaoyun Chen Shilong Zhang Sisi Zhou Kailin Li Wankuan Shen 《The Crop Journal》 2025年第4期1210-1223,共14页
Isochorismate synthase(ICS),a key rate-limiting enzyme in the salicylic acid(SA)biosynthesis pathway in plants,is essential for plant growth and defense against diseases.However,there has been no report on ICS in suga... Isochorismate synthase(ICS),a key rate-limiting enzyme in the salicylic acid(SA)biosynthesis pathway in plants,is essential for plant growth and defense against diseases.However,there has been no report on ICS in sugarcane(Saccharum spp.).In this study,18 SsICSs,42 ShICSs,and 36 SzICSs were identified from the genomes of sugarcane AP85-441(Saccharum spontaneum),XTT22(Saccharum spp.hybrid cultivar),and ZZ1(Saccharum spp.hybrid cultivar),respectively.These were phylogenetically divided into three groups,forming distinct clades that were evolutionarily divergent from those in dicotyledonous species.The evolutionary profile of the ICS gene family suggested expansion through whole-genome duplication/segmental events and strong purifying selection.Promoter cis-element and transcriptome analyses indicated that the ICS gene family responded to disease stress.We cloned the ScICS(isochorismate synthase)gene from sugarcane cultivar XTT22 leaves,and found it was localized in chloroplasts.In vivo and in vitro interaction studies revealed an interaction between ScICS and an ScMYB transcription factor.We showed that ScWRKY28 positively regulated ScICS expression by binding to its promoter.ScICS overexpression in transgenic tobacco confirmed its effectiveness in enhancing disease resistance.There was a significant increase in SA content following pathogen infection along with activation of downstream signaling pathways and defense mechanisms.This study establishes the groundwork for functional studies of sugarcane ICS genes and enhances our understanding of the mechanisms of disease resistance in sugarcane. 展开更多
关键词 Isochorismate synthase SUGARCANE Disease resistance Gene family Transcription factors Salicylic acid
在线阅读 下载PDF
Twinstar is a chitin synthase interacting protein with an essential role in insect cuticle biosynthesis
7
作者 Xu Zou Jiqiang Chen +2 位作者 Yanwei Duan Weixing Zhu Qing Yang 《Journal of Integrative Agriculture》 2025年第1期209-219,共11页
Chitin is an abundant natural biopolymer that plays a crucial role in insect growth and development as a fundamental structural component of the exoskeleton.The membrane-integralβ-glycosyltransferase,chitin synthase,... Chitin is an abundant natural biopolymer that plays a crucial role in insect growth and development as a fundamental structural component of the exoskeleton.The membrane-integralβ-glycosyltransferase,chitin synthase,has been identified as the central component in chitin biosynthesis.However,the precise roles of other proteins in facilitating chitin synthase in chitin biosynthesis remain unclear.In this study,we employed split-ubiquitin membrane yeast two-hybrid(MYTH)and pull-down assays to demonstrate the physical interaction between Twinstar(Tsr),a small molecular protein in the actin-depolymerizing factor ADF/Cofilin protein family,and chitin synthase Krotzkopf verkehrt(Kkv)in Drosophila melanogaster in vitro.The RNA interference(RNAi)-mediated global knockdown of Tsr in D.melanogaster resulted in larval lethality.Furthermore,targeted suppression of Tsr in the tracheal and epidermal tissues also led to larval mortality,while knocking down Tsr in the wing tissues led to wrinkled wings.Additionally,silencing Tsr not only reduced the chitin content in the first longitudinal vein of the wings but also led to the absence of the chitin lamellar structure.To validate the functional conservation of Tsr in other insect orders,the two agricultural pests Ostrinia furnacalis and Tribolium castaneum,representing lepidoptera and coleoptera insects,respectively,were investigated.Knockdown experiments targeting the Drosophila Tsr orthologues OfTsr in O.furnacalis and TcTsr in T.castaneum produced abnormal larvae during molting or pupation in O.furnacalis and lethality in T.castaneum.Our findings not only improve ourknowledge of the chitin biosynthesis machinery in insect cuticles but also provide new potential targets for the control of major agricultural pests. 展开更多
关键词 CHITIN chitin synthase Twinstar insect cuticle pest control
在线阅读 下载PDF
Structure-function insights into the dual role of African swine fever virus pB318L:A typical geranylgeranyl-diphosphate synthase and a nuclear import protein
8
作者 Hai-Fan Zhao Ying Wang +7 位作者 Xiao-Hong Liu Xian-Hui Liu Zhi Geng Zeng-Qiang Gao Li Huang Chang-Jiang Weng Yu-Hui Dong Heng Zhang 《Virologica Sinica》 2025年第2期236-246,共11页
African swine fever virus(ASFV)pB318L is an important protein for viral replication that acts as a membrane-bound trans-geranylgeranyl-diphosphate synthase(GGPPS)catalyzing the condensation of isopentenyl diphosphate(... African swine fever virus(ASFV)pB318L is an important protein for viral replication that acts as a membrane-bound trans-geranylgeranyl-diphosphate synthase(GGPPS)catalyzing the condensation of isopentenyl diphosphate(IPP)with allylic diphosphates.Recently we solved the crystal structure pB318L lacking N-terminal transmembrane region and performed a preliminary structural analysis.In this study,structure-based mutagenesis study and geranylgeranyl pyrophosphate(GGPP)production assay further revealed the key residues for the GGPPS activity.Structural comparison showed pB318L displays a strong similarity to typical GGPPSs instead of protein prenyltransferases.The phylogenetic analysis indicated pB318L may share a common ancestor with the GGPPSs from Brassicaceae plants rather than from its natural host.The subcellular localization analysis showed pB318L is localized in both nucleus and cytoplasm(including the endoplasmic reticulum membrane and mitochondria outer membrane).A unique N-terminal nuclear localization signal(NLS)following the transmembrane region was discovered in pB318L and the NLS was confirmed to be required for the nuclear import.We further revealed the NLS plays an essential role in the interaction with nuclear transporter karyopherin subunit alpha 1(KPNA1).Their interaction may suppress signal transducers and activators of transcription 1(STAT1)translocation and subsequently competitively inhibit nuclear import of IFNstimulated gene factor 3(ISGF3)complex.Our biochemical,structural and cellular analyses provide novel insights to pB318L that acts as an essential GGPPS that promotes viral replication and as a nuclear import protein that may be involved in immune evasion of ASFV. 展开更多
关键词 African swine fever virus(ASFV) PRENYLTRANSFERASE Geranylgeranyl-diphosphate synthase Crystal structure Nuclear localization signal Immune evasion
原文传递
Atractylenolide Ⅰ ameliorates post-infectious irritable bowel syndrome by inhibiting the polymerase Ⅰ and transcript release factor and c-Jun N-terminal kinase/inducible nitric oxide synthase pathway
9
作者 YUAN Jianan CHENG Kunming +4 位作者 LI Chao ZHANG Xiang DING Zeyu LI Bing ZHENG Yongqiu 《Journal of Traditional Chinese Medicine》 2025年第1期57-65,共9页
OBJECTIVE:To explore the therapeutic effect and target of atractylenolide I(AT-I)on post-infectious irritable bowel syndrome(PI-IBS)rats.METHODS:Therefore,the preliminarily mechanism of AT-I in anti-PI-IBS were first ... OBJECTIVE:To explore the therapeutic effect and target of atractylenolide I(AT-I)on post-infectious irritable bowel syndrome(PI-IBS)rats.METHODS:Therefore,the preliminarily mechanism of AT-I in anti-PI-IBS were first predicted by network pharmacology and molecular docking,then the possible signaling pathways were systematically analyzed.Finally,the potential therapeutic targets and possible signaling pathways of AT-I on PI-IBS in Sprague-Dawley(SD)rat model were verified by experiments.RESULTS:AT-I could alleviate PI-IBS symptoms and reduce the expression of tumor necrosis factorα,interleukin-6 and Interferon-gamma in PI-IBS SD rat model and inhibit the c-Jun N-terminal kinase/inducible nitric oxide synthase(JNK/iNOS)pathway.Notably,AT-I treatment could inhibit the overexpression of polymeraseⅠand transcript release factor(PTRF).CONCLUSION:AT-I could alleviate PI-IBS symptoms through downregulation of PTRF and inhibiting the JNK/iNOS pathway.This study not only provides a scientific basis to clarify the anti-PI-IBS effect of AT-I and its mechanism but also suggests a novel promising therapeutic strategy to treat the PI-IBS. 展开更多
关键词 atractylenolideⅠ post-infectious irritable bowel syndrome polymeraseⅠand transcript release factor network pharmacology MAP kinase signaling system nitric oxide synthase typeⅡ
原文传递
Phytoene synthases 1 modulates tomato fruit quality through influencing the metabolic flux between carotenoid and flavonoid pathways 被引量:2
10
作者 Xue Cao Ran Du +13 位作者 Yuanchao Xu Yaoyao Wu Keyi Ye Jing Ma Yaqing Lyu Tianshu Sun Xijian Zhu Zhihong Liu Jian Yin Guangtao Zhu Zejun Huang Hongjun Lyu Sanwen Huang Jinzhe Zhang 《Horticultural Plant Journal》 SCIE CAS CSCD 2024年第6期1383-1397,共15页
The deterioration in fruit quality of commercial tomatoes is a major concern of modern tomato breeding.However,the metabolism and genetics of fruit quality are poorly understood.Here,we performed transgenic and molecu... The deterioration in fruit quality of commercial tomatoes is a major concern of modern tomato breeding.However,the metabolism and genetics of fruit quality are poorly understood.Here,we performed transgenic and molecular biology experiments to reveal that tomato phytoene synthase 1(SlPSY1)is responsible for the accumulation of an important flavor chemical,6-methyl-5-hepten-2-one(MHO).To dissect the function of SlPSY1 in regulating fruit quality,we generated and analyzed a dataset encompassing over 2000 compounds detected by GC-MS and LC-MS/MS along with transcriptomic data.The combined results illustrated that SlPSY1 deficiency imparts novel flavor to yellow tomatoes with 236 volatiles significantly changed and improves fruit firmness,possibly due to accumulation of seven cutins.Further analysis indicated SlPSY1 is essential for carotenoid-derived metabolite biosynthesis by catalyzing prephytoene-PP(PPPP)to 15-cis-phytoene.Notably,we showed that SlPSY1 can influence the metabolic flux between carotenoid and flavonoid pathways,and this metabolic flux was confirmed by silencing SlCHS1.Our study provided insights into the multiple effects of SlPSY1 on tomato fruit metabolome and highlights the potential to produce high-quality fruit by rational design of SlPSY1 expression. 展开更多
关键词 TOMATO FLAVOR METABOLOME Phytoene synthase 1 CAROTENOID Flavonoid
在线阅读 下载PDF
The gene encoding flavonol synthase contributes to lesion mimic in wheat 被引量:1
11
作者 Tingting Dong Hongchun Xiong +8 位作者 Huijun Guo Yongdun Xie Linshu Zhao Jiayu Gu Huiyuan Li Shirong Zhao Yuping Ding Xiyun Song Luxiang Liu 《The Crop Journal》 SCIE CSCD 2024年第3期814-825,共12页
Lesion mimic often exhibits leaf disease-like symptoms even in the absence of pathogen infection,and is characterized by a hypersensitive-response(HR)that closely linked to plant disease resistance.Despite this,only a... Lesion mimic often exhibits leaf disease-like symptoms even in the absence of pathogen infection,and is characterized by a hypersensitive-response(HR)that closely linked to plant disease resistance.Despite this,only a few lesion mimic genes have been identified in wheat.In this investigation,a lesion mimic wheat mutant named je0297 was discovered,showing no alteration in yield components when compared to the wild type(WT).Segregation ratio analysis of the F_(2)individuals resulting from the cross between the WT and the mutant revealed that the lesion mimic was governed by a single recessive gene in je0297.Using Bulked segregant analysis(BSA)and exome capture sequencing,we mapped the lesion mimic gene designated as lm6 to chromosome 6BL.Further gene fine mapping using 3315 F_(2)individuals delimited the lm6 within a 1.18 Mb region.Within this region,we identified 16 high-confidence genes,with only two displaying mutations in je0297.Notably,one of the two genes,responsible for encoding flavonol synthase,exhibited altered expression levels.Subsequent phenotype analysis of TILLING mutants confirmed that the gene encoding flavonol synthase was indeed the causal gene for lm6.Transcriptome sequencing analysis revealed that the DEGs between the WT and mutant were significantly enriched in KEGG pathways related to flavonoid biosynthesis,including flavone and flavonol biosynthesis,isoflavonoid biosynthesis,and flavonoid biosynthesis pathways.Furthermore,more than 30 pathogen infection-related(PR)genes exhibited upregulation in the mutant.Corresponding to this expression pattern,the flavonoid content in je0297 showed a significant decrease in the 4^(th)leaf,accompanied by a notable accumulation of reactive oxygen,which likely contributed to the development of lesion mimic in the mutant.This investigation enhances our comprehension of cell death signaling pathways and provides a valuable gene resource for the breeding of disease-resistant wheat. 展开更多
关键词 Lesion mimic mutant WHEAT Gene mapping Flavonol synthase gene Flavonoid
在线阅读 下载PDF
Carboxyl Ester Lipase Protects Against Metabolic Dysfunction-Associated Steatohepatitis by Binding to Fatty Acid Synthase
12
作者 Yang Song Wei Zhong +9 位作者 Harry Cheuk-Hay Lau Yating Zhang Huayu Guan Mingxu Xie Suki Ha Diwen Shou Yongjian Zhou Hongzhi Xu Jun Yu Xiang Zhang 《Engineering》 SCIE EI CAS CSCD 2024年第10期204-215,共12页
Carboxyl ester lipase(CEL),a pivotal enzyme involved in lipid metabolism,is recurrently mutated in obese mice.Here,we aimed to elucidate the functional significance,molecular mechanism,and therapeutic potential of CEL... Carboxyl ester lipase(CEL),a pivotal enzyme involved in lipid metabolism,is recurrently mutated in obese mice.Here,we aimed to elucidate the functional significance,molecular mechanism,and therapeutic potential of CEL in metabolic dysfunction-associated steatohepatitis(MASH).Hepatocyte-specific carboxyl ester lipase gene(Cel)knockout(Cel^(DHEP))and wildtype(WT)littermates were fed with cholinedeficient high-fat diet(CD-HFD)for 16 weeks,or methionine-and choline-deficient diet(MCD)for three weeks to induce MASH.Liquid chromatography–mass spectrometry and co-immunoprecipitation were employed to identify the downstream targets of CEL.CD-HFD/MCD-fed WT mice received intravenous injections of CEL-adeno-associated viral,serotype 8(AAV8)to induce specific overexpression of CEL in the liver.We observed a decrease in CEL protein levels in MASH induced by CD-HFD or MCD in mice.Cel^(DHEP) mice fed with CD-HFD or MCD exhibited pronounced hepatic steatosis,inflammation,lipid peroxidation,and liver injury compared to WT littermates,accompanied by increased hepatic nuclear factor kappa-light-chain-enhancer of activated B cell(NF-jB)activation.Consistently,Cel knockdown in mouse primary hepatocytes and AML12 cells aggravated lipid accumulation and inflammation,whereas CEL overexpression exerted the opposite effect.Mechanistically,CEL directly bound to fatty acid synthase(FASN),resulting in reduced FASN SUMOylation,which in turn promoted FASN degradation through the proteasome pathway.Furthermore,inhibition of FASN ameliorated hepatocyte lipid accumulation and inflammation induced by Cel knockdown in vivo and in vitro.Hepatocyte-specific CEL overexpression using AAV8-Cel significantly mitigated steatohepatitis in mice fed with CD-HFD or MCD.CEL protects against steatohepatitis development by directly interacting with FASN and suppressing its expression for de novo lipogenesis.CEL overexpression confers a therapeutic benefit in steatohepatitis. 展开更多
关键词 Metabolic dysfunction-associated steatohepatitis Carboxyl ester lipase Fatty acid synthase De novo lipogenesis Treatment
暂未订购
Effect of mutations on acetohydroxyacid synthase(AHAS)function in Cyperus difformis L.
13
作者 Xiaotong Guo Xiangju Li +4 位作者 Zheng Li Licun Peng Jingchao Chen Haiyan Yu Hailan Cui 《Journal of Integrative Agriculture》 SCIE CSCD 2024年第1期177-186,共10页
Cyperus difformis L.is a troublesome weed in paddy fields and has attracted attention due to its resistance to acetohydroxyacid synthase(AHAS)inhibitors.It was found that the amino acid mutation in AHAS was the primar... Cyperus difformis L.is a troublesome weed in paddy fields and has attracted attention due to its resistance to acetohydroxyacid synthase(AHAS)inhibitors.It was found that the amino acid mutation in AHAS was the primary cause for the resistance of Cyperus difformis.However,the effect of different mutations on AHAS function is not clear in Cyperus difformis.To confirm the effect of mutations on AHAS function,six biotypes were collected,including Pro197Arg,Pro197Ser,Pro197Leu,Asp376Glu,Trp574Leu and wild type,from Hunan,Anhui,Jiangxi and Jiangsu provinces,China and the function of AHAS was characterized.The AHAS in vitro inhibition assay results indicated that the mutations decreased the sensitivity of AHAS to pyrazosulfuron-ethyl,in which the I_(50)(the half maximal inhibitory concentration)of wild type AHAS was 0.04μmol L^(-1)and Asp376Glu,Pro197Leu,Pro197Arg,Pro197Ser and Trp574Leu mutations were 3.98,11.50,40.38,38.19 and 311.43μmol L^(-1),respectively.In the determination of enzyme kinetics parameters,the Km and the maximum reaction velocity(Vmax)of the wild type were 5.18 mmol L^(-1)and 0.12 nmol mg^(-1)min^(-1),respectively,and the Km values of AHAS with Asp376Glu,Trp574Leu,Pro197Leu and Pro197Ser mutations were 0.38-0.93 times of the wild type.The Km value of the Pro197Arg mutation was 1.14times of the wild type,and the Vmax values of the five mutations were 1.17-3.33-fold compared to the wild type.It was found that the mutations increased the affinity of AHAS to the substrate,except for the Pro197Arg mutation.At a concentration of 0.0032-100 mmol L^(-1)branched-chain amino acids(BCAAs),the sensitivity of the other four mutant AHAS biotypes to feedback inhibition decreased,except for the Pro197Arg mutation.This study elucidated the effect of different mutations on AHAS function in Cyperus difformis and provided ideas for further study of resistance development. 展开更多
关键词 acetohydroxyacid synthase(AHAS) MUTATION enzyme function Cyperus difformis
在线阅读 下载PDF
Enhancing the radiosensitivity of colorectal cancer cells by reducing spermine synthase through promoting autophagy and DNA damage
14
作者 Yu-Bin Guo Yue-Ming Wu Zhi-Zhao Lin 《World Journal of Gastrointestinal Oncology》 SCIE 2024年第12期4716-4727,共12页
BACKGROUND Colorectal cancer(CRC),the third most common cancer worldwide,has increasingly detrimental effects on human health.Radiotherapy resistance diminishes treatment efficacy.Studies suggest that spermine synthas... BACKGROUND Colorectal cancer(CRC),the third most common cancer worldwide,has increasingly detrimental effects on human health.Radiotherapy resistance diminishes treatment efficacy.Studies suggest that spermine synthase(SMS)may serve as a potential target to enhance the radiosensitivity.AIM To investigate the association between SMS and radiosensitivity in CRC cells,along with a detailed elucidation of the underlying mechanisms.METHODS Western blot was adopted to assess SMS expression in normal colonic epithelial cells and CRC cell lines.HCT116 cells were transfected with control/SMS-specific shRNA or control/pcDNA3.1-SMS plasmids.Assessments included cell viability,colony formation,and apoptosis via MTT assays,colony formation assays,and flow cytometry.Radiosensitivity was studied in SMS-specific shRNA-transfected HCT116 cells post-4 Gy radiation,evaluating cell viability,colony formation,apoptosis,DNA damage(comet assays),autophagy(immunofluorescence),and mammalian target of rapamycin(mTOR)pathway protein expression(western blot).RESULTS Significant up-regulation of SMS expression levels was observed in the CRC cell lines.Upon down-regulation of SMS expression,cellular viability and colonyforming ability were markedly suppressed,concomitant with a notable increase in apoptotic indices.Furthermore,attenuation of SMS expression significantly augmented the sensitivity of HCT116 cells to radiation therapy,evidenced by a pronounced elevation in levels of cellular DNA damage and autophagy.Impor tantly,down-regulation of SMS corresponded with a marked reduction in the expression levels of proteins associated with the mTOR signaling pathway.CONCLUSION Knocking down SMS attenuates the mTOR signaling pathway,thereby promoting cellular autophagy and DNA damage to enhance the radiosensitivity of CRC cells. 展开更多
关键词 Spermine synthase Colorectal cancer RADIOSENSITIVITY AUTOPHAGY DNA damage
暂未订购
Expression of inducible nitric oxide synthase and cyclooxygenase-2 in pancreatic adenocarcinoma:Correlation with microvessel density 被引量:14
15
作者 Hans U.Kasper Hella Wolf +2 位作者 Uta Drebber Helmut K.Wolf Michael A.Kern 《World Journal of Gastroenterology》 SCIE CAS CSCD 2004年第13期1918-1922,共5页
AIM:Cydooxygenases (COX) are key enzymes for conversion of arachidonic acid to prostaglandins.Nitric oxide synthase (NOS) is the enzyme responsible for formation of nitric oxide. Both have constitutive and inducible i... AIM:Cydooxygenases (COX) are key enzymes for conversion of arachidonic acid to prostaglandins.Nitric oxide synthase (NOS) is the enzyme responsible for formation of nitric oxide. Both have constitutive and inducible isoforms.The inducible isoforms (iNOS and COX-2) are of great interest as regulators of tumor angiogenesis,tumorigenesis and inflammatory processes.This study was to clarify their role in pancreatic adenocarcinomas. METHODS:We investigated the immunohistochemical iNOS and COX-2 expression in 40 pancreatic ductal adenocardnomas of different grade and stage.The results were compared with microvessel density and dinicopathological data. RESULTS:Twenty-one (52.5%) of the cases showed iNOS expression,15 (37.5%) of the cases were positive for COX-2. The immunoreaction was heterogeneously distributed within the tumors.Staining intensity was different between the tumors.No correlation between iNOS and COX-2 expression was seen.There was no relationship with microvessel density. However,iNOS positive tumors developed more often distant metastases and the more malignant tumors showed a higher COX-2 expression.There was no correlation with other clinicopathological data. CONCLUSION:Approximately half of the cases expressed iNOS and COX-2.These two enzymes do not seem to be the key step in angiogenesis or carcinogenesis of pancreatic adenocarcinomas.Due to a low prevalence of COX-2 expression,chemoprevention of pancreatic carcinomas by COX-2 inhibitors can only achieve a limited success. 展开更多
关键词 Adenocarcinoma Aged Aged 80 and over Cyclooxygenase 2 Female Humans Immunohistochemistry ISOENZYMES Male Membrane Proteins MICROCIRCULATION Middle Aged Nitric Oxide synthase Nitric Oxide synthase Type II Pancreas Pancreatic Neoplasms Prostaglandin-Endoperoxide synthases
暂未订购
Distribution of constitutive nitric oxide synthase in the jejunum of adult rat 被引量:6
16
作者 ChenYM QianZM 《World Journal of Gastroenterology》 SCIE CAS CSCD 2002年第3期537-539,共3页
AIM: To study the distribution of the constitutive nitric oxide synthase (NOS) in the jejunum of adult rat. METHODS: The distribution of endothelial NOS (eNOS) was detected by immunohistochemistry. Immunofluorescence ... AIM: To study the distribution of the constitutive nitric oxide synthase (NOS) in the jejunum of adult rat. METHODS: The distribution of endothelial NOS (eNOS) was detected by immunohistochemistry. Immunofluorescence histochemical dual staining technique were used for studying the distribution of neuronal NOS (nNOS) and eNOS. The dual stained slides were observed under a confocal laser scanning microscope. RESULTS: Positive neuronal NOS (nNOS) and endothelial NOS (eNOS) cells were found to be distributed in lamina propria of villi, and the epithelial cell was not stained. eNOS was mainly located in submucosal vascular endothelia, while nNOS was mainly situated in myenteric plexus. Some cells in the villi had both nNOS and eNOS. More than 80% of the cells were positive for both nNOS and eNOS, the rest cells were positive either for nNOS or for eNOS. CONCLUSION: The two constitutive nitric oxide synthases are distributed differently in the jejunum of rat. nNOS distributed in myenteric plexus is a neurotransmitter in the non-adrenergic non-cholinergic (NANC) inhibitory nerves. eNOS distributed in endothelial and smooth muscle cells of blood vessels plays vasodilator role. eNOS and nNOS are coexpressed in some cells of lamina propria of villi. NO generated by those NOS is very important in the physiological and pathological process of small intestine. 展开更多
关键词 Animals Immunohistochemistry JEJUNUM Male Nitric Oxide synthase Nitric Oxide synthase Type I Nitric Oxide synthase Type III RATS Rats Sprague-Dawley Research Support Non-U.S. Gov't Tissue Distribution
暂未订购
Subcellular distribution of nitric oxide synthase isoforms in the rat duodenum 被引量:1
17
作者 Petra Talapka Nikolett Bódi +2 位作者 Izabella Battonyai éva Fekete Mária Bagyánszki 《World Journal of Gastroenterology》 SCIE CAS CSCD 2011年第8期1026-1029,共4页
AIM:To study the cell-type specific subcellular distribution of the three isoforms of nitric oxide synthase(NOS) in the rat duodenum.METHODS:Postembedding immunoelectronmicroscopy was performed,in which primary antibo... AIM:To study the cell-type specific subcellular distribution of the three isoforms of nitric oxide synthase(NOS) in the rat duodenum.METHODS:Postembedding immunoelectronmicroscopy was performed,in which primary antibodies for neuronal NOS(nNOS),endothelial NOS(eNOS),and inducible NOS(iNOS),were visualized with protein A-gold-conjugated secondary antibodies.Stained ultrathin sections were examined and photographed with a Philips CM10 electron microscope equipped with a MEGAVIEW II camera.The specificity of the immunoreaction in all cases was assessed by omitting the primary antibodies in the labeling protocol and incubating the sections only in the protein A-gold conjugated secondary antibodies.RESULTS:Postembedding immunoelectronmicroscopy revealed the presence of nNOS,eNOS,and iNOS immunoreactivity in the myenteric neurons,the enteric smooth muscle cells,and the endothelium of capillariesrunning in the vicinity of the myenteric plexus of the rat duodenum.The cell type-specific distributions of the immunogold particles labeling the three different NOS isozymes were revealed.In the control experiments,in which the primary antiserum was omitted,virtually no postembedding gold particles were observed.CONCLUSION:This postembedding immunoelectronmicroscopic study provided the first evidence of celltype-specific differences in the subcellular distributions of NOS isoforms. 展开更多
关键词 Postembedding immunoelectronmicroscopy Subcellular distribution Neuronal nitric oxide synthase Endothelial nitric oxide synthase Inducible nitric oxide synthase
暂未订购
The Effect of Active Oxygen on the Activity of ACC Synthase Induced by Exogenous IAA 被引量:11
18
作者 柯德森 王爱国 +1 位作者 孙谷畴 董良峰 《Acta Botanica Sinica》 CSCD 2002年第5期551-556,共6页
During the course of mungbean (Phaseolus radiatus L.) germination, the rate of ethylene production and the activity of ACC synthase (1_aminocyclopropane_1_carboxylic acid synthase, EC4.4.1.4) began to increase in the ... During the course of mungbean (Phaseolus radiatus L.) germination, the rate of ethylene production and the activity of ACC synthase (1_aminocyclopropane_1_carboxylic acid synthase, EC4.4.1.4) began to increase in the 5th day of germination, and reached its peak in the 10th day and then decreased. The ethylene production and the activity of ACC synthase were obviously promoted by 10 μmol/L exogenous IAA (indole_3_acetic acid). The production of superoxide radical (O -· 2) and hydrogen peroxide (H 2O 2) were also promoted by exogenous IAA, suggesting that there was some relationship between active oxygen production and the activity of ACC synthase induced by exogenous IAA. The production of ethylene and the activity of ACC synthase increased dramatically when the seedlings were treated with exogenous O -· 2, whereas the exogenous H 2O 2 had no effects on the production of ethylene and the activity of ACC synthase. Exogenous SOD (superoxide dismutase, one scavenger of O -· 2) could inhibit the production of ethylene and the activity of ACC synthase, but exogenous CAT (catalase) could not. So it was possible that IAA would stimulate the activity of ACC synthase by inducing the production of O -· 2 in germinating mungbean seedlings, and this might be one of the regulating mechanism of ethylene synthesis in higher plants; the production of H 2O 2 induced by IAA was not the cause of the increase of the activity of ACC synthase and the production of ethylene. 展开更多
关键词 ACC synthase ETHYLENE active oxygen IAA
在线阅读 下载PDF
Research progress on neurobiology of neuronal nitric oxide synthase 被引量:14
19
作者 罗春霞 朱东亚 《Neuroscience Bulletin》 SCIE CAS CSCD 2011年第1期23-35,共13页
Neuronal nitric oxide synthase (nNOS) is mainly expressed in neurons,to some extent in astrocytes and neuronal stem cells.The alternative splicing of nNOS mRNA generates 5 isoforms of nNOS,including nNOS-,nNOS-,nNOS... Neuronal nitric oxide synthase (nNOS) is mainly expressed in neurons,to some extent in astrocytes and neuronal stem cells.The alternative splicing of nNOS mRNA generates 5 isoforms of nNOS,including nNOS-,nNOS-,nNOS-,nNOS-and nNOS-2.Monomer of nNOS is inactive,and dimer is the active form.Dimerization requires tetrahydrobiopterin (BH 4),heme and L-arginine binding.Regulation of nNOS expression relies largely on cAMP response element-binding protein (CREB) activity,and nNOS activity is regulated by heat shock protein 90 (HSP90)/HSP70,calmodulin (CaM),phosphorylation and dephosphorylation at Ser847 and Ser1412,and the protein inhibitor of nNOS (PIN).There are primarily 9 nNOS-interacting proteins,including post-synaptic density protein 95 (PSD95),clathrin assembly lymphoid leukemia (CALM),calcium/calmodulindependent protein kinase II alpha (CAMKIIA),Disks large homolog 4 (DLG4),DLG2,6-phosphofructokinase,muscle type (PFK-M),carboxy-terminal PDZ ligand of nNOS (CAPON) protein,syntrophin and dynein light chain (LC).Among them,PSD95,CAPON and PFK-M are important nNOS adapter proteins in neurons.The interaction of PSD95 with nNOS controls synapse formation and is implicated in N-methyl-D-aspartic acid-induced neuronal death.nNOS-derived NO is implicated in synapse loss-mediated early cognitive/motor deficits in several neuropathological states,and negatively regulates neurogenesis under physiological and pathological conditions. 展开更多
关键词 neuronal nitric oxide synthase cAMP response element-binding protein post-synaptic density protein 95 SYNAPTOGENESIS NEUROGENESIS
原文传递
cDNA Cloning, Expression and Characterization of Taxadiene Synthase, a Diterpene Cyclase from Taxus chinensis 被引量:7
20
作者 王伟 石青 +3 位作者 朱平 欧阳涛 李秾 程克棣 《Acta Botanica Sinica》 CSCD 2002年第2期181-187,共7页
Taxadiene synthase, a diterpene cyclase, catalyzes the conversion of geranylgeranyl diphosphate (GGPP) to taxadiene, a key intermediate in Taxol biosynthesis in yew. A 2 151 bp cDNA fragment encoding taxadiene synthas... Taxadiene synthase, a diterpene cyclase, catalyzes the conversion of geranylgeranyl diphosphate (GGPP) to taxadiene, a key intermediate in Taxol biosynthesis in yew. A 2 151 bp cDNA fragment encoding taxadiene synthase of Taxus chinensis (Pilg.) Rehd. was cloned by homology-based PCR and cDNA library screening. The 5′-terminal 611 bp cDNA fragment of taxadiene synthase was isolated by PCR. The two fragments were ligated together and gave a 2*!712 bp cDNA fragment with a 2*!586 bp open reading frame (ORF), encoding 862 amino acid residues including a presumptive plastidial transit peptide. The taxadiene synthase of T. chinensis most closely resembles the one from T. brevifolia (97% identity). Heterologous overexpression of 2.5 kb cDNA fragment from T. chinensis was obtained using a fusion expression vector pET-32a and the Escherichia coli strain BL21trxB. The expressed proteins from E. coli BL21trxB were present as inclusion bodies. After the inclusion bodies were denatured, renatured and refolded, the recombinant enzyme was purified by a single step with a His-binding metal affinity column. The catalytic product of taxadiene synthase of T. chinensis was detected by capillary gas chromatography-mass spectrometry (GC-MS) and identified as taxa-4(5),11(12)-diene. 展开更多
关键词 Taxus chinensis Taxol biosynthesis taxadiene synthase
在线阅读 下载PDF
上一页 1 2 47 下一页 到第
使用帮助 返回顶部