期刊文献+
共找到344篇文章
< 1 2 18 >
每页显示 20 50 100
Microglia-astrocyte crosstalk regulates synapse remodeling via Wnt signaling
1
作者 Travis E Faust 《四川生理科学杂志》 2025年第9期2117-2117,共1页
Astrocytes and microglia are emerging key regulators of activity-dependent synapse remodeling that engulf and remove synapses in response to changes in neural activity.Yet,the degree to which these cells communicate t... Astrocytes and microglia are emerging key regulators of activity-dependent synapse remodeling that engulf and remove synapses in response to changes in neural activity.Yet,the degree to which these cells communicate to coordinate this process remains an open question.Here,we use whisker removal in postnatal mice to induce activity-dependent synapse removal in the barrel cortex.We show that astrocytes do not engulf synapses in this paradigm.Instead,astrocytes reduce contact with synapses prior to microglia-mediated synapse engulfment. 展开更多
关键词 astrocytes reduce contact synapses Wnt signaling synapse engulfment CROSSTALK MICROGLIA synapse remodeling neural activity
暂未订购
Visual synapse based on reconfigurable organic photovoltaic cell 被引量:1
2
作者 Xiangrong Pu Fan Shu +2 位作者 Qifan Wang Gang Liu Zhang Zhang 《Journal of Semiconductors》 2025年第2期105-112,共8页
The hierarchical and coordinated processing of visual information by the brain demonstrates its superior ability to min-imize energy consumption and maximize signal transmission efficiency.Therefore,it is crucial to d... The hierarchical and coordinated processing of visual information by the brain demonstrates its superior ability to min-imize energy consumption and maximize signal transmission efficiency.Therefore,it is crucial to develop artificial visual synapses that integrate optical sensing and synaptic functions.This study fully leverages the excellent photoresponsivity proper-ties of the PM6:Y6 system to construct a vertical photo-tunable organic memristor and conducts in-depth research on its resis-tive switching performance,photodetection capability,and simulation of photo-synaptic behavior,showcasing its excellent per-formance in processing visual information and simulating neuromorphic behaviors.The device achieves stable and gradual resis-tance change,successfully simulating voltage-controlled long-term potentiation/depression(LTP/LTD),and exhibits various photo-electric synergistic regulation of synaptic plasticity.Moreover,the device has successfully simulated the image percep-tion and recognition functions of the human visual nervous system.The non-volatile Au/PM6:Y6/ITO memristor is used as an artificial synapse and neuron modeling,building a hierarchical coordinated processing SLP-CNN cascade neural network for visual image recognition training,its linear tunable photoconductivity characteristic serves as the weight update of the net-work,achieving a recognition accuracy of up to 93.4%.Compared with the single-layer visual target recognition model,this scheme has improved the recognition accuracy by 19.2%. 展开更多
关键词 organic memristor visual synapse neuromorphic computing PM6:Y6 image recognition
在线阅读 下载PDF
Brain-derived neurotrophic factor signaling in the neuromuscular junction during developmental axonal competition and synapse elimination
3
作者 Josep Tomàs Víctor Cilleros-Mañé +7 位作者 Laia Just-Borràs Marta Balanyà-Segura Aleksandra Polishchuk Laura Nadal Marta Tomàs Carolina Silvera-Simón Manel M.Santafé Maria A.Lanuza 《Neural Regeneration Research》 SCIE CAS 2025年第2期394-401,共8页
During the development of the nervous system,there is an overproduction of neurons and synapses.Hebbian competition between neighboring nerve endings and synapses performing different activity levels leads to their el... During the development of the nervous system,there is an overproduction of neurons and synapses.Hebbian competition between neighboring nerve endings and synapses performing different activity levels leads to their elimination or strengthening.We have extensively studied the involvement of the brain-derived neurotrophic factor-Tropomyosin-related kinase B receptor neurotrophic retrograde pathway,at the neuromuscular junction,in the axonal development and synapse elimination process versus the synapse consolidation.The purpose of this review is to describe the neurotrophic influence on developmental synapse elimination,in relation to other molecular pathways that we and others have found to regulate this process.In particular,we summarize our published results based on transmitter release analysis and axonal counts to show the different involvement of the presynaptic acetylcholine muscarinic autoreceptors,coupled to downstream serine-threonine protein kinases A and C(PKA and PKC)and voltage-gated calcium channels,at different nerve endings in developmental competition.The dynamic changes that occur simultaneously in several nerve terminals and synapses converge across a postsynaptic site,influence each other,and require careful studies to individualize the mechanisms of specific endings.We describe an activity-dependent balance(related to the extent of transmitter release)between the presynaptic muscarinic subtypes and the neurotrophin-mediated TrkB/p75NTR pathways that can influence the timing and fate of the competitive interactions between the different axon terminals.The downstream displacement of the PKA/PKC activity ratio to lower values,both in competing nerve terminals and at postsynaptic sites,plays a relevant role in controlling the elimination of supernumerary synapses.Finally,calcium entry through L-and P/Q-subtypes of voltage-gated calcium channels(both channels are present,together with the N-type channel in developing nerve terminals)contributes to reduce transmitter release and promote withdrawal of the most unfavorable nerve terminals during elimination(the weakest in acetylcholine release and those that have already become silent).The main findings contribute to a better understanding of punishment-rewarding interactions between nerve endings during development.Identifying the molecular targets and signaling pathways that allow synapse consolidation or withdrawal of synapses in different situations is important for potential therapies in neurodegenerative diseases. 展开更多
关键词 acetylcholine release adenosine receptors axonal competition brain-derived neurotrophic factor calcium channels motor end-plate muscarinic acetylcholine receptors postnatal synapse elimination serine kinases tropomyosin-related kinase receptorB
暂未订购
MET receptor tyrosine kinase promotes the generation of functional synapses in adult cortical circuits
4
作者 Yuehua Cui Xiaokuang Ma +7 位作者 Jing Wei Chang Chen Neha Shakir Hitesch Guirram Zhiyu Dai Trent Anderson Deveroux Ferguson Shenfeng Qiu 《Neural Regeneration Research》 SCIE CAS 2025年第5期1431-1444,共14页
Loss of synapse and functional connectivity in brain circuits is associated with aging and neurodegeneration,however,few molecular mechanisms are known to intrinsically promote synaptogenesis or enhance synapse functi... Loss of synapse and functional connectivity in brain circuits is associated with aging and neurodegeneration,however,few molecular mechanisms are known to intrinsically promote synaptogenesis or enhance synapse function.We have previously shown that MET receptor tyrosine kinase in the developing cortical circuits promotes dendritic growth and dendritic spine morphogenesis.To investigate whether enhancing MET in adult cortex has synapse regenerating potential,we created a knockin mouse line,in which the human MET gene expression and signaling can be turned on in adult(10–12 months)cortical neurons through doxycycline-containing chow.We found that similar to the developing brain,turning on MET signaling in the adult cortex activates small GTPases and increases spine density in prefrontal projection neurons.These findings are further corroborated by increased synaptic activity and transient generation of immature silent synapses.Prolonged MET signaling resulted in an increasedα-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid/N-methyl-Daspartate(AMPA/NMDA)receptor current ratio,indicative of enhanced synaptic function and connectivity.Our data reveal that enhancing MET signaling could be an interventional approach to promote synaptogenesis and preserve functional connectivity in the adult brain.These findings may have implications for regenerative therapy in aging and neurodegeneration conditions. 展开更多
关键词 aging circuit connectivity cortical circuits molecular mechanisms neural regeneration NEURODEGENERATION synapses
暂未订购
RGB Color-Discriminable Photonic Synapse for Neuromorphic Vision System
5
作者 Bum Ho Jeong Jaewon Lee +6 位作者 Miju Ku Jongmin Lee Dohyung Kim Seokhyun Ham Kyu-Tae Lee Young-Beom Kim Hui Joon Park 《Nano-Micro Letters》 2025年第4期39-62,共24页
To emulate the functionality of the human retina and achieve a neuromorphic visual system,the development of a photonic synapse capable of multispectral color discrimination is of paramount importance.However,attainin... To emulate the functionality of the human retina and achieve a neuromorphic visual system,the development of a photonic synapse capable of multispectral color discrimination is of paramount importance.However,attaining robust color discrimination across a wide intensity range,even irrespective of medium limitations in the channel layer,poses a significant challenge.Here,we propose an approach that can bestow the color-discriminating synaptic functionality upon a three-terminal transistor flash memory even with enhanced discriminating capabilities.By incorporating the strong induced dipole moment effect at the excitation,modulated by the wavelength of the incident light,into the floating gate,we achieve outstanding RGB color-discriminating synaptic functionality within a remarkable intensity range spanning from 0.05 to 40 mW cm^(-2).This approach is not restricted to a specific medium in the channel layer,thereby enhancing its applicability.The effectiveness of this color-discriminating synaptic functionality is demonstrated through visual pre-processing of a photonic synapse array,involving the differentiation of RGB channels and the enhancement of image contrast with noise reduction.Consequently,a convolutional neural network can achieve an impressive inference accuracy of over 94%for Canadian-Institute-For-Advanced-Research-10 colorful image recognition task after the pre-processing.Our proposed approach offers a promising solution for achieving robust and versatile RGB color discrimination in photonic synapses,enabling significant advancements in artificial visual systems. 展开更多
关键词 Organic field-effect transistor Photonic synapse Excited-state dipole moment RGB color discrimination Neuromorphic visual system
在线阅读 下载PDF
Artificial synapse based on Co_(3)O_(4)nanosheets for high-accuracy pattern recognition
6
作者 Ying Li Xiaofan Zhou +7 位作者 Jiajun Guo Tong Chen Xiaohui Zhang Xia Xiao Guangyu Wang Mehran Khan Alam Qi Zhang Liqian Wu 《Chinese Physics B》 2025年第12期478-483,共6页
Two-dimensional(2D)metal oxides are promising candidates for constructing neuromorphic systems because of their intriguing physical properties,such as atomic thinness and ionic activity.In this work,Co_(3)O_(4)nanoshe... Two-dimensional(2D)metal oxides are promising candidates for constructing neuromorphic systems because of their intriguing physical properties,such as atomic thinness and ionic activity.In this work,Co_(3)O_(4)nanosheets were synthesized using a solvothermal method and integrated into artificial synapses.Based on the synaptic plasticity of the Co_(3)O_(4)nanosheet-based memristive device,an artificial neural network(ANN)was designed and tested.A recognition accuracy of approximately 96% was achieved for the Modified National Institute of Standards and Technology(MNIST)handwritten digit classification task using this ANN.These results highlight the potential of Co_(3)O_(4)nanosheet-based artificial synapses and Al/Co_(3)O_(4)nanosheet/ITO memristor devices as excellent material candidates for neuromorphic hardware. 展开更多
关键词 artificial synapse memristor Co_(3)O_(4)nanosheet synaptic plasticity
原文传递
Neurotransmitter-mediated artificial synapses based on organic electrochemical transistors for future biomimic and bioinspired neuromorphic systems
7
作者 Miao Cheng Yifan Xie +6 位作者 Jinyao Wang Qingqing Jin Yue Tian Changrui Liu Jingyun Chu Mengmeng Li Ling Li 《Journal of Semiconductors》 2025年第1期78-89,共12页
Organic electrochemical transistors have emerged as a solution for artificial synapses that mimic the neural functions of the brain structure,holding great potentials to break the bottleneck of von Neumann architectur... Organic electrochemical transistors have emerged as a solution for artificial synapses that mimic the neural functions of the brain structure,holding great potentials to break the bottleneck of von Neumann architectures.However,current artificial synapses rely primarily on electrical signals,and little attention has been paid to the vital role of neurotransmitter-mediated artificial synapses.Dopamine is a key neurotransmitter associated with emotion regulation and cognitive processes that needs to be monitored in real time to advance the development of disease diagnostics and neuroscience.To provide insights into the development of artificial synapses with neurotransmitter involvement,this review proposes three steps towards future biomimic and bioinspired neuromorphic systems.We first summarize OECT-based dopamine detection devices,and then review advances in neurotransmitter-mediated artificial synapses and resultant advanced neuromorphic systems.Finally,by exploring the challenges and opportunities related to such neuromorphic systems,we provide a perspective on the future development of biomimetic and bioinspired neuromorphic systems. 展开更多
关键词 artificial synapses organic electrochemical transistors NEUROTRANSMITTERS neuromorphic systems
在线阅读 下载PDF
Recent advances in optoelectronic synapses:from advanced materials to neuromorphic applications
8
作者 Fengmei Su Zongyao Wang +1 位作者 Jiawei Wan Dan Wang 《Rare Metals》 2025年第10期6807-6838,共32页
Inspired by the visual neurons of biological systems,optoelectronic synaptic devices integrate photoresponsive semiconductor materials to convert light into electrical signals,enabling biomimetic visual perception sys... Inspired by the visual neurons of biological systems,optoelectronic synaptic devices integrate photoresponsive semiconductor materials to convert light into electrical signals,enabling biomimetic visual perception systems.Achieving memory retention and intelligent perceptual functions continues to pose a major hurdle in the advancement of neuromorphic artificial synapse devices.This review begins with an exploration of biological neural synapses,analyzing the fundamental characteristics and structures of biomimetic optoelectronic synapses.It then delves into the design of device and material structures to achieve postsynaptic current and memory behavior,elucidating their underlying mechanisms.Furthermore,the latest application scenarios of these devices are summarized,highlighting the opportunities and challenges in their future development.This review aims to provide a comprehensive understanding of the advancements in optoelectronic synapses,from material innovations to neuromorphic applications,paving the way for next-generation artificial visual systems and neuromorphic computing. 展开更多
关键词 Optoelectronic synapses Artificial visual system Neuromorphic computing Fading memory Artificial sensory system
原文传递
Multi-scroll hopfield neural network excited by memristive self-synapses and its application in image encryption
9
作者 Ting He Fei Yu +4 位作者 Yue Lin Shaoqi He Wei Yao Shuo Cai Jie jin 《Chinese Physics B》 2025年第12期140-153,共14页
The functionality of the biological brain is closely related to the dynamic behavior generated by synapses in its complex neural system.The self-connection synapse,as a critical form of feedback synapse in Hopfield ne... The functionality of the biological brain is closely related to the dynamic behavior generated by synapses in its complex neural system.The self-connection synapse,as a critical form of feedback synapse in Hopfield neurons,plays an essential role in understanding the dynamic behavior of the brain.Synaptic memristors can bring neural network models closer to the complexity of the brain's neural networks.Inspired by this,this study incorporates the nonlinear memory characteristics of synapses into the Hopfield neural network(HNN)by replacing a single self-synapse in a four-dimensional HNN model with a novel cosine memristor model,aiming to more realistically reproduce the dynamical behavior of biological neurons in artificial systems.By performing a dynamical analysis of the system using numerical methods,we find that the model exhibits infinitely many equilibrium points and can induce the formation of rare transient attractors,as well as an arbitrary number of multi-scroll attractors.Additionally,the model demonstrates complex coexisting attractor dynamics,including transient chaos,periodicity,decaying periodicity,and coexisting chaos.Furthermore,the feasibility of the proposed HNN model is verified using a field-programmable gate array(FPGA).Finally,an electronic codebook(ECB)–mode block cipher encryption algorithm is proposed for image encryption.The encryption performance is evaluated,with an information entropy value of 7.9993,demonstrating the excellent randomness of the system-generated numbers. 展开更多
关键词 self-connected synapses Hopfield neural network multi-scroll attractor field programmable gate array image encryption
原文传递
Computational analysis of genetic loci required for synapse structure and function and their corresponding microRNAs in C. elegans
10
作者 孙阳 赵雅妮 王大勇 《Neuroscience Bulletin》 SCIE CAS CSCD 2006年第6期339-349,共11页
Objective To elucidate the important functions of microRNAs (miRNAs) in regulating synaptic assembly and function, we performed a computational analysis for the genetic loci required for the synaptic structure and f... Objective To elucidate the important functions of microRNAs (miRNAs) in regulating synaptic assembly and function, we performed a computational analysis for the genetic loci required for the synaptic structure and function and their corresponding miRNAs in C. elegans. Methods Total 198 genetic loci required for the synaptic structure and function were selected. Sequence alignment was combined with E value evaluation to investigate and identify the possible corresponding miRNAs. Results Total 163 genes among the 198 genetic loci selected have their possibly corresponding regulatory miRNA (s), which covered most of the important genetic loci required for the synaptic structure and function. Moreover, only 22 genes among the analyzed 38 genetic loci encoding synaptic proteins have more possibility to under the control of non-coding RNA genes. In addition, the distribution of miRNAs along the 3' untranslated region (UTR) of these 22 genes exhibits different patterns. Condusion Here we provide the computational screen and analysis results for the genetic loci required for synaptic structure and function and their possible corresponding miRNAs. These data will be useful for the further attempt to systematically determine the roles of miRNAs in synaptic assembly and function regulation in worms. 展开更多
关键词 MIRNA synapse genetic loci C. elegans computational analysis
在线阅读 下载PDF
Microglia and astrocytes mediate synapse engulfment in a MER tyrosine kinase-dependent manner after traumatic brain injury 被引量:7
11
作者 Hui Shen Xiao-Jing Shi +6 位作者 Lin Qi Cheng Wang Muyassar Mamtilahun Zhi-Jun Zhang Won-Suk Chung Guo-Yuan Yang Yao-Hui Tang 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第8期1770-1776,共7页
Recent studies have shown that microglia/macrophages and astrocytes can mediate synaptic phagocytosis through the MER proto-oncokinase in developmental or stroke models,but it is unclear whether the same mechanism is ... Recent studies have shown that microglia/macrophages and astrocytes can mediate synaptic phagocytosis through the MER proto-oncokinase in developmental or stroke models,but it is unclear whether the same mechanism is also active in traumatic brain injury.In this study,we established a mouse model of traumatic brain injury and found that both microglia/macrophages and astrocytes phagocytosed synapses and expression of the MER proto-oncokinase increased 14 days after injury.Specific knockout of MER in microglia/macrophages or astrocytes markedly reduced injury volume and greatly improved neurobehavioral function.In addition,in both microglia/macrophages-specific and astrocytes-specific MER knock-out mice,the number of microglia/macrophage and astrocyte phagocytosing synapses was markedly decreased,and the total number of dendritic spines was increased.Our study suggested that MER proto-oncokinase expression in microglia/macrophages and astrocytes may play an important role in synaptic phagocytosis,and inhibiting this process could be a new strategy for treating traumatic brain injury. 展开更多
关键词 animal model astrocyte dendritic spines LYSOSOME macrophage MER proto-oncokinase MICROGLIA neurologic function phagocytosis synapse engulfment traumatic brain injury
暂未订购
Two-Terminal Lithium-Mediated Artificial Synapses with Enhanced Weight Modulation for Feasible Hardware Neural Networks 被引量:7
12
作者 Ji Hyun Baek Kyung Ju Kwak +6 位作者 Seung Ju Kim Jaehyun Kim Jae Young Kim In Hyuk Im Sunyoung Lee Kisuk Kang Ho Won Jang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第5期236-253,共18页
Recently,artificial synapses involving an electrochemical reaction of Li-ion have been attributed to have remarkable synaptic properties.Three-terminal synaptic transistors utilizing Li-ion intercalation exhibits reli... Recently,artificial synapses involving an electrochemical reaction of Li-ion have been attributed to have remarkable synaptic properties.Three-terminal synaptic transistors utilizing Li-ion intercalation exhibits reliable synaptic characteristics by exploiting the advantage of nondistributed weight updates owing to stable ion migrations.However,the three-terminal configurations with large and complex structures impede the crossbar array implementation required for hardware neuromorphic systems.Meanwhile,achieving adequate synaptic performances through effective Li-ion intercalation in vertical two-terminal synaptic devices for array integration remains challenging.Here,two-terminal Au/LixCoO_(2)/Pt artificial synapses are proposed with the potential for practical implementation of hardware neural networks.The Au/LixCoO_(2)/Pt devices demonstrated extraordinary neuromorphic behaviors based on a progressive dearth of Li in LixCoO_(2)films.The intercalation and deintercalation of Li-ion inside the films are precisely controlled over the weight control spike,resulting in improved weight control functionality.Various types of synaptic plasticity were imitated and assessed in terms of key factors such as nonlinearity,symmetricity,and dynamic range.Notably,the LixCoO_(2)-based neuromorphic system outperformed three-terminal synaptic transistors in simulations of convolutional neural networks and multilayer perceptrons due to the high linearity and low programming error.These impressive performances suggest the vertical two-terminal Au/LixCoO_(2)/Pt artificial synapses as promising candidates for hardware neural networks. 展开更多
关键词 Artificial synapse Neuromorphic Li-based Two-terminal Synaptic plasticity
在线阅读 下载PDF
Biophysical neurons,energy,and synapse controllability:a review 被引量:6
13
作者 Jun MA 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2023年第2期109-129,共21页
Diffusive intracellular and extracellular ions induce a gradient electromagnetic field that regulates membrane potential,and energy injection from external stimuli breaks the energy balance between the magnetic and el... Diffusive intracellular and extracellular ions induce a gradient electromagnetic field that regulates membrane potential,and energy injection from external stimuli breaks the energy balance between the magnetic and electric fields in a cell.Indeed,any activation of biophysical function and self-adaption of biological neurons may be dependent on energy flow,and synapse connection is controlled to reach energy balance between neurons.When more neurons are clustered and gathered closely,field energy is exchanged and shape formation is induced to achieve local energy balance.As a result,the coexistence of multiple firing modes in neural activities is fostered to prevent the occurrence of bursting synchronization and seizure.In this review,a variety of biophysical neuron models are presented and explained in terms of their physical aspects,and the controllability of functional synapses,formation of heterogeneity,and defects are clarified for knowing the synchronization stability and cooperation between functional regions.These models and findings are summarized to provide new insights into nonlinear physics and computational neuroscience. 展开更多
关键词 Energy balance Creation of synapse Functional neuron HETEROGENEITY Defects
原文传递
Organic Optoelectronic Synapses for Sound Perception 被引量:4
14
作者 Yanan Wei Youxing Liu +7 位作者 Qijie Lin Tianhua Liu Song Wang Hao Chen Congqi Li Xiaobin Gu Xin Zhang Hui Huang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第9期31-40,共10页
The neuromorphic systems for sound perception is under highly demanding for the future bioinspired electronics and humanoid robots.However,the sound perception based on volume,tone and timbre remains unknown.Herein,or... The neuromorphic systems for sound perception is under highly demanding for the future bioinspired electronics and humanoid robots.However,the sound perception based on volume,tone and timbre remains unknown.Herein,organic optoelectronic synapses(OOSs)are constructed for unprecedented sound recognition.The volume,tone and timbre of sound can be regulated appropriately by the input signal of voltages,frequencies and light intensities of OOSs,according to the amplitude,frequency,and waveform of the sound.The quantitative relation between recognition factor(ζ)and postsynaptic current(I=I_(light)−I_(dark))is established to achieve sound perception.Interestingly,the bell sound for University of Chinese Academy of Sciences is recognized with an accuracy of 99.8%.The mechanism studies reveal that the impedance of the interfacial layers play a critical role in the synaptic performances.This contribution presents unprecedented artificial synapses for sound perception at hardware levels. 展开更多
关键词 Organic optoelectronic synapse Sound perception Recognition factor Impedance spectroscopy Interfacial layer
在线阅读 下载PDF
Aligned Organization of Synapses and Mitochondria in Auditory Hair Cells 被引量:4
15
作者 Jing Liu Shengxiong Wang +6 位作者 Yan Lu Haoyu Wang Fangfang Wang Miaoxin Qiu Qiwei Xie Hua Han Yunfeng Hua 《Neuroscience Bulletin》 SCIE CAS CSCD 2022年第3期235-248,共14页
Recent studies have revealed great functional and structural heterogeneity in the ribbon-type synapses at the basolateral pole of the isopotential inner hair cell(IHC).This feature is believed to be critical for audit... Recent studies have revealed great functional and structural heterogeneity in the ribbon-type synapses at the basolateral pole of the isopotential inner hair cell(IHC).This feature is believed to be critical for audition over a wide dynamic range,but whether the spatial gradient of ribbon morphology is fine-tuned in each IHC and how the mitochondrial network is organized to meet local energy demands of synaptic transmission remain unclear.By means of three-dimensional electron microscopy and artificial intelligence-based algorithms,we demonstrated the cell-wide structural quantification of ribbons and mitochondria in mature mid-cochlear IHCs of mice.We found that adjacent IHCs in staggered pairs differ substantially in cell body shape and ribbon morphology gradient as well as mitochondrial organization.Moreover,our analysis argues for a location-specific arrangement of correlated ribbon and mitochondrial function at the basolateral IHC pole. 展开更多
关键词 Inner hair cell Ribbon synapse Mitochondrial network Volume electron microscopy AI-based image processing
原文传递
MicroRNA-502-3p regulates GABAergic synapse function in hippocampal neurons 被引量:6
16
作者 Bhupender Sharma Melissa MTorres +2 位作者 Sheryl Rodriguez Laxman Gangwani Subodh Kumar 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第12期2698-2707,共10页
Gamma-aminobutyric acid(GABA)ergic neurons,the most abundant inhibitory neurons in the human brain,have been found to be reduced in many neurological disorders,including Alzheimer's disease and Alzheimer's dis... Gamma-aminobutyric acid(GABA)ergic neurons,the most abundant inhibitory neurons in the human brain,have been found to be reduced in many neurological disorders,including Alzheimer's disease and Alzheimer's disease-related dementia.Our previous study identified the upregulation of microRNA-502-3p(miR-502-3p)and downregulation of GABA type A receptor subunitα-1 in Alzheimer's disease synapses.This study investigated a new molecular relationship between miR-502-3p and GABAergic synapse function.In vitro studies were perfo rmed using the mouse hippocampal neuronal cell line HT22 and miR-502-3p agomiRs and antagomiRs.In silico analysis identified multiple binding sites of miR-502-3p at GABA type A receptor subunitα-1 mRNA.Luciferase assay confirmed that miR-502-3p targets the GABA type A receptor subunitα-1 gene and suppresses the luciferase activity.Furthermore,quantitative reve rse transcription-polymerase chain reaction,miRNA in situ hybridization,immunoblotting,and immunostaining analysis confirmed that overexpression of miR-502-3p reduced the GABA type A receptor subunitα-1 level,while suppression of miR-502-3p increased the level of GABA type A receptor subunitα-1 protein.Notably,as a result of the overexpression of miR-502-3p,cell viability was found to be reduced,and the population of necrotic cells was found to be increased.The whole cell patch-clamp analysis of human-GABA receptor A-α1/β3/γ2L human embryonic kidney(HEK)recombinant cell line also showed that overexpression of miR-502-3p reduced the GABA current and overall GABA function,suggesting a negative correlation between miR-502-3p levels and GABAergic synapse function.Additionally,the levels of proteins associated with Alzheimer s disease were high with miR-502-3p overexpression and reduced with miR-502-3p suppression.The present study provides insight into the molecular mechanism of regulation of GABAergic synapses by miR-502-3p.We propose that micro-RNA,in particular miR-502-3p,could be a potential therapeutic to rget to modulate GABAergic synapse function in neurological disorders,including Alzheimer's disease and Alzheimer's diseaserelated dementia. 展开更多
关键词 Alzheimer's disease GABAergic synapse gamma-aminobutyric acid type A receptor subunitα-1(GABRα1) microRNA-502-3p(miR-502-3p) miRNA in situ hybridization PATCH-CLAMP
暂未订购
Therapies for Tau-associated neurodegenerative disorders:targeting molecules,synapses,and cells 被引量:4
17
作者 Miranda Robbins 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第12期2633-2637,共5页
Advances in experimental and computational technologies continue to grow rapidly to provide novel avenues for the treatment of neurodegenerative disorders. Despite this, there remain only a handful of drugs that have ... Advances in experimental and computational technologies continue to grow rapidly to provide novel avenues for the treatment of neurodegenerative disorders. Despite this, there remain only a handful of drugs that have shown success in late-stage clinical trials for Tau-associated neurodegenerative disorders. The most commonly prescribed treatments are symptomatic treatments such as cholinesterase inhibitors and N-methyl-D-aspartate receptor blockers that were approved for use in Alzheimer's disease. As diagnostic screening can detect disorders at earlier time points, the field needs pre-symptomatic treatments that can prevent, or significantly delay the progression of these disorders(Koychev et al., 2019). These approaches may be different from late-stage treatments that may help to ameliorate symptoms and slow progression once symptoms have become more advanced should early diagnostic screening fail. This mini-review will highlight five key avenues of academic and industrial research for identifying therapeutic strategies to treat Tau-associated neurodegenerative disorders. These avenues include investigating(1) the broad class of chemicals termed “small molecules”;(2) adaptive immunity through both passive and active antibody treatments;(3) innate immunity with an emphasis on microglial modulation;(4) synaptic compartments with the view that Tau-associated neurodegenerative disorders are synaptopathies. Although this mini-review will focus on Alzheimer's disease due to its prevalence, it will also argue the need to target other tauopathies, as through understanding Alzheimer's disease as a Tau-associated neurodegenerative disorder, we may be able to generalize treatment options. For this reason, added detail linking back specifically to Tau protein as a direct therapeutic target will be added to each topic. 展开更多
关键词 Alzheimer's disease ANTIBODY frontotemporal dementia IMMUNOTHERAPY small molecules synapses TAU THERAPEUTICS
暂未订购
Changes in Synapses and Axons Demonstrated by Synaptophysin Immunohistochemistry Following Spinal Cord Compression Trauma in the Rat and Mouse 被引量:3
18
作者 GUI-LINLI MOHAMMADFAROOQUE +1 位作者 JONASISAKSSON YNGVEOLSSON 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2004年第3期281-290,共10页
Objective and methods To evaluate synaptic changes using synaptophysin immunohistochemstry in rat and mouse, which spinal cords were subjected to graded compression trauma at the level of Th8-9. Result... Objective and methods To evaluate synaptic changes using synaptophysin immunohistochemstry in rat and mouse, which spinal cords were subjected to graded compression trauma at the level of Th8-9. Results Normal animals showed numerous fine dots of synaptophysin immunoreactivity in the gray matter. An increase in synaptophysin immunoreactivity was observed in the neuropil and synapses at the surface of motor neurons of the anterior horns in the ThS-9 segments lost immunoreactivity at 4-hour point after trauma. The immunoreactive synapses reappeared around motor neurons at 9-day point. Unexpected accumulation of synaptophysin immunoreactivity occurred in injured axons of the white matter of the compressed spinal cord. Conclusion Synaptic changes were important components of secondary injuries in spinal cord trauma. Loss of synapses on motor neurons may be one of the factors causing motor dysfunction of hind limbs and formation of new synapses may play an import,ant role in recovery of motor function. Synaptophysin immunohistochemistry is also a good tool for studies of axonal swellings in spinal cord injuries. 展开更多
关键词 SYNAPTOPHYSIN synapses AXONS RAT Spinal cord TRAUMA
暂未订购
Optoelectronic Synapses Based on MXene/Violet Phosphorus van der Waals Heterojunctions for Visual‑Olfactory Crossmodal Perception 被引量:4
19
作者 Hailong Ma Huajing Fang +3 位作者 Xinxing Xie Yanming Liu He Tian Yang Chai 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第6期38-52,共15页
The crossmodal interaction of different senses,which is an important basis for learning and memory in the human brain,is highly desired to be mimicked at the device level for developing neuromorphic crossmodal percept... The crossmodal interaction of different senses,which is an important basis for learning and memory in the human brain,is highly desired to be mimicked at the device level for developing neuromorphic crossmodal perception,but related researches are scarce.Here,we demonstrate an optoelectronic synapse for vision-olfactory crossmodal perception based on MXene/violet phosphorus(VP)van der Waals heterojunctions.Benefiting from the efficient separation and transport of photogenerated carriers facilitated by conductive MXene,the photoelectric responsivity of VP is dramatically enhanced by 7 orders of magnitude,reaching up to 7.7 A W^(−1).Excited by ultraviolet light,multiple synaptic functions,including excitatory postsynaptic currents,pairedpulse facilitation,short/long-term plasticity and“learning-experience”behavior,were demonstrated with a low power consumption.Furthermore,the proposed optoelectronic synapse exhibits distinct synaptic behaviors in different gas environments,enabling it to simulate the interaction of visual and olfactory information for crossmodal perception.This work demonstrates the great potential of VP in optoelectronics and provides a promising platform for applications such as virtual reality and neurorobotics. 展开更多
关键词 Violet phosphorus MXene Van der Waals heterojunctions Optoelectronic synapses Crossmodal perception
在线阅读 下载PDF
Structural changes in pyramidal cell dendrites and synapses in the unaffected side of the sensorimotor cortex following transcranial magnetic stimulation and rehabilitation training in a rat model of focal cerebral infarct 被引量:2
20
作者 Chuanyu Liu Surong Zhou +3 位作者 Xuwen Sun Zhuli Liu Hongliang Wu Yuanwu Mei 《Neural Regeneration Research》 SCIE CAS CSCD 2011年第9期676-680,共5页
Very little is known about the effects of transcranial magnetic stimulation and rehabilitation training on pyramidal cell dendrites and synapses of the contralateral, unaffected sensorimotor cortex in a rat model of f... Very little is known about the effects of transcranial magnetic stimulation and rehabilitation training on pyramidal cell dendrites and synapses of the contralateral, unaffected sensorimotor cortex in a rat model of focal cerebral infarct. The present study was designed to explore the mechanisms underlying improved motor function via transcranial magnetic stimulation and rehabilitation training following cerebral infarction. Results showed that rehabilitation training or transcranial magnetic stimulation alone reduced neurological impairment in rats following cerebral infarction, as well as significantly increased synaptic curvatures and post-synaptic density in the non-injured cerebral hemisphere sensorimotor cortex and narrowed the synapse cleft width. In addition, the percentage of perforated synapses increased. The combination of transcranial magnetic stimulation and rehabilitation resulted in significantly increased total dendritic length, dendritic branching points, and dendritic density in layer V pyramidal cells of the non-injured cerebral hemisphere motor cortex. These results demonstrated that transcranial magnetic stimulation and rehabilitation training altered structural parameters of pyramidal cell dendrites and synapses in the non-injured cerebral hemisphere sensorimotor cortex, thereby improving the ability to compensate for neurological functions in rats following cerebral infarction. 展开更多
关键词 cerebral infarction transcranial magnetic stimulation rehabilitation training sensorimotor cortex pyramidal cell dendrites synapse neural regeneration
在线阅读 下载PDF
上一页 1 2 18 下一页 到第
使用帮助 返回顶部