Different lineages of birds show varying sensitivity to light in the ultraviolet(UV) wavelengths.In several avian brood parasite-host systems,UV-re ectance of the parasite eggs is important in discriminating own from ...Different lineages of birds show varying sensitivity to light in the ultraviolet(UV) wavelengths.In several avian brood parasite-host systems,UV-re ectance of the parasite eggs is important in discriminating own from foreign eggs by the hosts.In turn,for parasitic females it may be bene cial to lay eggs into host clutches where eggs more closely match the parasite's own eggs.While the visual sensitivities of numerous cuckoo-and cowbird-host species have been described,less is known about those of their respective parasites.Such sensory characterization is important for understanding the mechanisms underlying potential perceptual coevolutionary processes between hosts and parasites,as well as for better understanding each species' respective visual sensory ecology.We sequenced the short wavelength-sensitive type 1(SWS1) opsin gene to predict the degree of UVsensitivity in both of New Zealand's obligate parasitic cuckoo species,the Shining Cuckoo(Chalcites [Chrysococcyx] lucidus) and the Long-tailed Cuckoo(Urodynamis [Eudynamis] taitensis).We show that both species are predicted to possess SWS1 opsins with maximal sensitivity in the human-visible violet portion of the short-wavelength light spectrum,and not in the UV.Future studies should focus on the(mis)matching in host-parasite visual sensitivities with respect to host-parasite egg similarity as perceived by the avian visual system and the behavioral outcomes of foreign egg rejection.展开更多
Seed size is one of the vital traits determining seed appearance, quality, and yield. Untangling the genetic mechanisms regulating soybean 100-seed weight (100-SW), seed length and seed width across environments may p...Seed size is one of the vital traits determining seed appearance, quality, and yield. Untangling the genetic mechanisms regulating soybean 100-seed weight (100-SW), seed length and seed width across environments may provide a theoretical basis for improving seed yield. However, there are few reports related to QTL mapping of 100-SW across multiple ecological regions. In this study, 21 loci associated with seed size traits were identified using a genome-wide association of 5361 single nucleotide polymorphisms (SNPs) across three ecoregions in China, which could explain 8.12%–14.25% of the phenotypic variance respectively. A new locus, named as SW9-1 on chromosome 9 that explained 10.05%–10.93% of the seed weight variance was found significantly related to seed size traits, and was not previously reported. The selection effect analysis showed that SW9-1 locus has a relatively high phenotypic effect (13.67) on 100-SW, with a greater contribution by the accessions with bigger seeds (3.69) than the accessions with small seeds (1.66). Increases in seed weight were accompanied by increases in the frequency of SW9-1T allele, with >90% of the bred varieties with a 100-SW >30 g carrying SW9-1T. Analysis of SW9-1 allelic variation in additional soybean accessions showed that SW9-1T allele accounting for 13.83% of the wild accessions, while in 46.55% and 51.57% of the landraces and bred accessions, respectively, this results indicating that the SW9-1 locus has been subjected to artificial selection during the early stages of soybean breeding, especially the utilization of SW9-1T in edamame for big seed. These results suggest that SW9-1 is a novel and reliable locus associated with seed size traits, and might have an important implication for increasing soybean seed weight in molecular design breeding. Cloning this locus in future may provide new insights into the genetic mechanisms underlying soybean seed size traits.展开更多
基金funded by the US National Science Foundation and the Graduate Center of the City University of New York (to ZA and to MEH)a Foundation for Research,Science and Technology postdoctoral fellowship (to MGA)the National Geographic Society,the PSC-CUNY grant scheme and the Human Frontier Science Program (to MEH)
文摘Different lineages of birds show varying sensitivity to light in the ultraviolet(UV) wavelengths.In several avian brood parasite-host systems,UV-re ectance of the parasite eggs is important in discriminating own from foreign eggs by the hosts.In turn,for parasitic females it may be bene cial to lay eggs into host clutches where eggs more closely match the parasite's own eggs.While the visual sensitivities of numerous cuckoo-and cowbird-host species have been described,less is known about those of their respective parasites.Such sensory characterization is important for understanding the mechanisms underlying potential perceptual coevolutionary processes between hosts and parasites,as well as for better understanding each species' respective visual sensory ecology.We sequenced the short wavelength-sensitive type 1(SWS1) opsin gene to predict the degree of UVsensitivity in both of New Zealand's obligate parasitic cuckoo species,the Shining Cuckoo(Chalcites [Chrysococcyx] lucidus) and the Long-tailed Cuckoo(Urodynamis [Eudynamis] taitensis).We show that both species are predicted to possess SWS1 opsins with maximal sensitivity in the human-visible violet portion of the short-wavelength light spectrum,and not in the UV.Future studies should focus on the(mis)matching in host-parasite visual sensitivities with respect to host-parasite egg similarity as perceived by the avian visual system and the behavioral outcomes of foreign egg rejection.
基金supported by the National Key Research and Development Program of China (2016YFD0100201)the National Natural Science Foundation of China (31771819)+2 种基金the China Postdoctoral Science Foundation (2017M621990)the Introduced Leading Talent Research Team for Universities in Anhui Provincethe Natural Science Foundation of Anhui Province, China (1608085QC66)
文摘Seed size is one of the vital traits determining seed appearance, quality, and yield. Untangling the genetic mechanisms regulating soybean 100-seed weight (100-SW), seed length and seed width across environments may provide a theoretical basis for improving seed yield. However, there are few reports related to QTL mapping of 100-SW across multiple ecological regions. In this study, 21 loci associated with seed size traits were identified using a genome-wide association of 5361 single nucleotide polymorphisms (SNPs) across three ecoregions in China, which could explain 8.12%–14.25% of the phenotypic variance respectively. A new locus, named as SW9-1 on chromosome 9 that explained 10.05%–10.93% of the seed weight variance was found significantly related to seed size traits, and was not previously reported. The selection effect analysis showed that SW9-1 locus has a relatively high phenotypic effect (13.67) on 100-SW, with a greater contribution by the accessions with bigger seeds (3.69) than the accessions with small seeds (1.66). Increases in seed weight were accompanied by increases in the frequency of SW9-1T allele, with >90% of the bred varieties with a 100-SW >30 g carrying SW9-1T. Analysis of SW9-1 allelic variation in additional soybean accessions showed that SW9-1T allele accounting for 13.83% of the wild accessions, while in 46.55% and 51.57% of the landraces and bred accessions, respectively, this results indicating that the SW9-1 locus has been subjected to artificial selection during the early stages of soybean breeding, especially the utilization of SW9-1T in edamame for big seed. These results suggest that SW9-1 is a novel and reliable locus associated with seed size traits, and might have an important implication for increasing soybean seed weight in molecular design breeding. Cloning this locus in future may provide new insights into the genetic mechanisms underlying soybean seed size traits.