随着新能源汽车行业的迅猛发展,车载控制器局域网络(Controller Area Network,CAN)安全防护研究的重要性日益递增。为检测CAN总线异常攻击,保障车辆安全,提出一种基于支持向量数据描述(Support Vector Data Description,SVDD)的车载CAN...随着新能源汽车行业的迅猛发展,车载控制器局域网络(Controller Area Network,CAN)安全防护研究的重要性日益递增。为检测CAN总线异常攻击,保障车辆安全,提出一种基于支持向量数据描述(Support Vector Data Description,SVDD)的车载CAN总线入侵检测方法。提取CAN报文标识符和数据域的数据作为特征信息,经过数据预处理和PCA降维后,输入SVDD模型进行入侵检测。在模型训练中,选用高斯核函数以提高SVDD入侵检测模型的拟合能力,减少模型的冗余面积。实验表明,该文方法在保证了较高召回率和F1分数的同时,比传统SVDD模型的准确率提升了9.66%,与其他四种模型对比,其综合性能更好。展开更多
针对复杂电子对抗场景中的非理想信道环境,该文提出了一种基于深度学习的异常检测(anomaly detection,AD)方法。首先,分析了利用时频同相/正交(in-phase/quadrature,I/Q)采样数据进行AD的可行性;然后,设计了深度学习网络架构,并提出基...针对复杂电子对抗场景中的非理想信道环境,该文提出了一种基于深度学习的异常检测(anomaly detection,AD)方法。首先,分析了利用时频同相/正交(in-phase/quadrature,I/Q)采样数据进行AD的可行性;然后,设计了深度学习网络架构,并提出基于深度支持向量描述(deep support vector data description,Deep SVDD)和调制识别的AD方法。仿真及实验结果表明:相比于经典的单分类检测算法,该方法检测性能和实时性明显提升,且在非理想信道环境下表现鲁棒。该方法已在某型号项目原理样机上得到验证,具有很高应用价值。展开更多
分析了多类支持向量数据描述(support vector data description,SVDD)算法存在的问题,提出一种新的不平衡数据v-NSVDD多分类算法.该方法借鉴了v-SVM方法以及带有负类的SVDD的思想,并基于不同类别样本间隔最大原理,较好地克服噪声和在野...分析了多类支持向量数据描述(support vector data description,SVDD)算法存在的问题,提出一种新的不平衡数据v-NSVDD多分类算法.该方法借鉴了v-SVM方法以及带有负类的SVDD的思想,并基于不同类别样本间隔最大原理,较好地克服噪声和在野点的影响,提高了分类模型的泛化性能;通过样本加权的方法解决了不平衡类别样本预测精度低的问题,并在理论上给出了根据类别样本数量设置样本加权系数的方法.针对实际应用存在大量复杂、非线性分类数据,通过核方法把上述线性分类算法推广到非线性数据分类情形.由于现有的多分类器无法实现拒判,而且每个分类器的核函数参数不同,导致数据点与各个超球中心距离的计算结果与实际距离不相符,影响了数据判决结果的准确性和可靠性.针对上述问题,给出基于相对距离和K-NN规则相结合的多分类方法,提高了分类结果的准确性和可靠性.使用Benchmark数据集进行仿真实验,结果表明本算法能够获得较低的分类误差,能够有效处理样本不平衡问题.展开更多
文摘随着新能源汽车行业的迅猛发展,车载控制器局域网络(Controller Area Network,CAN)安全防护研究的重要性日益递增。为检测CAN总线异常攻击,保障车辆安全,提出一种基于支持向量数据描述(Support Vector Data Description,SVDD)的车载CAN总线入侵检测方法。提取CAN报文标识符和数据域的数据作为特征信息,经过数据预处理和PCA降维后,输入SVDD模型进行入侵检测。在模型训练中,选用高斯核函数以提高SVDD入侵检测模型的拟合能力,减少模型的冗余面积。实验表明,该文方法在保证了较高召回率和F1分数的同时,比传统SVDD模型的准确率提升了9.66%,与其他四种模型对比,其综合性能更好。
文摘针对复杂电子对抗场景中的非理想信道环境,该文提出了一种基于深度学习的异常检测(anomaly detection,AD)方法。首先,分析了利用时频同相/正交(in-phase/quadrature,I/Q)采样数据进行AD的可行性;然后,设计了深度学习网络架构,并提出基于深度支持向量描述(deep support vector data description,Deep SVDD)和调制识别的AD方法。仿真及实验结果表明:相比于经典的单分类检测算法,该方法检测性能和实时性明显提升,且在非理想信道环境下表现鲁棒。该方法已在某型号项目原理样机上得到验证,具有很高应用价值。
文摘分析了多类支持向量数据描述(support vector data description,SVDD)算法存在的问题,提出一种新的不平衡数据v-NSVDD多分类算法.该方法借鉴了v-SVM方法以及带有负类的SVDD的思想,并基于不同类别样本间隔最大原理,较好地克服噪声和在野点的影响,提高了分类模型的泛化性能;通过样本加权的方法解决了不平衡类别样本预测精度低的问题,并在理论上给出了根据类别样本数量设置样本加权系数的方法.针对实际应用存在大量复杂、非线性分类数据,通过核方法把上述线性分类算法推广到非线性数据分类情形.由于现有的多分类器无法实现拒判,而且每个分类器的核函数参数不同,导致数据点与各个超球中心距离的计算结果与实际距离不相符,影响了数据判决结果的准确性和可靠性.针对上述问题,给出基于相对距离和K-NN规则相结合的多分类方法,提高了分类结果的准确性和可靠性.使用Benchmark数据集进行仿真实验,结果表明本算法能够获得较低的分类误差,能够有效处理样本不平衡问题.