期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
基于Tau域奇异值分解的航空电磁数据解卷积计算
1
作者 王亚冉 王凌群 +1 位作者 尹大伟 朱凯光 《测控技术》 CSCD 北大核心 2014年第1期47-50,共4页
目前很多国际先进公司的AEM系统都具有不同的发射波形,给后续数据处理带来不便。为去除不同发射电流波形对电磁数据响应的影响,利用SVD分解法,以e指数为基函数,将时域航空电磁响应数据展开成Tau域参数T_i及其系数A_i形式,通过选取有效... 目前很多国际先进公司的AEM系统都具有不同的发射波形,给后续数据处理带来不便。为去除不同发射电流波形对电磁数据响应的影响,利用SVD分解法,以e指数为基函数,将时域航空电磁响应数据展开成Tau域参数T_i及其系数A_i形式,通过选取有效个数的Tau值,将基函数与发射电流进行卷积,形成新基底函数。通过对相应发射电流的响应以新基底展开,将新基底系数B_i与原基底结合,实现解卷积计算,得到阶跃波形发射电流情况下的电磁响应。仿真实例计算结果表明,经奇异值分解的Tau域分解方法保证了计算的精度和稳定性,基于奇异值分解的解卷积计算方法能够获得原阶跃电流响应,相对误差为1.61%。 展开更多
关键词 Tau域分解 svd奇异值分解法 解卷积
在线阅读 下载PDF
勒让德多项式拟合IGS精密星历的算法改进 被引量:1
2
作者 申少飞 雷伟伟 李振南 《全球定位系统》 CSCD 2022年第4期17-22,共6页
国际GNSS服务(IGS)精密星历每隔15 min提供一次卫星坐标,为了提高定位精度,往往需要获取任意时刻的卫星位置.对IGS精密星历进行插值和拟合是获得连续历元卫星坐标常用的方法.运用改进的勒让德多项式算法拟合卫星轨道坐标,并与常规算法... 国际GNSS服务(IGS)精密星历每隔15 min提供一次卫星坐标,为了提高定位精度,往往需要获取任意时刻的卫星位置.对IGS精密星历进行插值和拟合是获得连续历元卫星坐标常用的方法.运用改进的勒让德多项式算法拟合卫星轨道坐标,并与常规算法进行比较,结果表明:常规算法仅在拟合阶数较低时能保持较高的精度.在拟合时段为6 h时,LU分解(LU Decomposition)法与奇异值分解(SVD)法对奇异矩阵求解时均能保持较高的精度,而在拟合时段为12 h时,SVD分解法是对条件数较低的矩阵B进行分解求得多项式系数矩阵C,从而避免了病态矩阵产生的误差,因此仍能保持较高的精度.在高阶拟合时,SVD分解法无论是在精度还是稳定性方面均优于LU分解法和常规算法,优势明显. 展开更多
关键词 勒让德多项式拟合 卫星轨道坐标拟合 LU分解(LU Decomposition) 奇异分解(svd) 病态矩阵
在线阅读 下载PDF
Random seismic noise attenuation by learning-type overcomplete dictionary based on K-singular value decomposition algorithm 被引量:2
3
作者 XU Dexin HAN Liguo +1 位作者 LIU Dongyu WEI Yajie 《Global Geology》 2016年第1期55-60,共6页
The transformation of basic functions is one of the most commonly used techniques for seismic denoising,which employs sparse representation of seismic data in the transform domain. The choice of transform base functio... The transformation of basic functions is one of the most commonly used techniques for seismic denoising,which employs sparse representation of seismic data in the transform domain. The choice of transform base functions has an influence on denoising results. We propose a learning-type overcomplete dictionary based on the K-singular value decomposition( K-SVD) algorithm. To construct the dictionary and use it for random seismic noise attenuation,we replace fixed transform base functions with an overcomplete redundancy function library. Owing to the adaptability to data characteristics,the learning-type dictionary describes essential data characteristics much better than conventional denoising methods. The sparsest representation of signals is obtained by the learning and training of seismic data. By comparing the same seismic data obtained using the learning-type overcomplete dictionary based on K-SVD and the data obtained using other denoising methods,we find that the learning-type overcomplete dictionary based on the K-SVD algorithm represents the seismic data more sparsely,effectively suppressing the random noise and improving the signal-to-noise ratio. 展开更多
关键词 sparse representation seismic denoising signal-to-noise ratio K-singular value decomposition learning-type overcomplete dictionary.
在线阅读 下载PDF
An algorithm for multi-exponential inversion of T_2 spectrum in nuclear magnetic resonance
4
作者 HAN Chunjiang REN Li WANG Zhuwen 《Global Geology》 2014年第2期105-109,共5页
NMR logging can provide the permeability parameter and abundant stratigraphical information such as total porosity,oil,gas and water saturation,oil viscosity,etc. And these physical parameters can be obtained by T2 sp... NMR logging can provide the permeability parameter and abundant stratigraphical information such as total porosity,oil,gas and water saturation,oil viscosity,etc. And these physical parameters can be obtained by T2 spectrum inversion. NMR inversion is an important part in logging interpretation. The authors describe a multi-exponential inversion algorithm,solid iteration redress technique( SIRT),and apply the algorithm in real data and compare the results with those based on singular value decomposition( SVD). It shows that SIRT algorithm is easier to be understood and implemented,and the time spent in SIRT is much shorter than that of SVD algorithm. And the non-negative property of T2 spectrum is much easier to be implemented. It can match the results based on SVD very well. SIRT algorithm can be used in T2 spectrum inversion for NMR analysis. 展开更多
关键词 NMR logging T2spectrum SIRT algorithm INVERSION
在线阅读 下载PDF
Accelerating large partial EVD/SVD calculations by filtered block Davidson methods
5
作者 ZHOU Yunkai WANG Zheng ZHOU Aihui 《Science China Mathematics》 SCIE CSCD 2016年第8期1635-1662,共28页
Partial eigenvalue decomposition(PEVD) and partial singular value decomposition(PSVD) of large sparse matrices are of fundamental importance in a wide range of applications, including latent semantic indexing, spectra... Partial eigenvalue decomposition(PEVD) and partial singular value decomposition(PSVD) of large sparse matrices are of fundamental importance in a wide range of applications, including latent semantic indexing, spectral clustering, and kernel methods for machine learning. The more challenging problems are when a large number of eigenpairs or singular triplets need to be computed. We develop practical and efficient algorithms for these challenging problems. Our algorithms are based on a filter-accelerated block Davidson method.Two types of filters are utilized, one is Chebyshev polynomial filtering, the other is rational-function filtering by solving linear equations. The former utilizes the fastest growth of the Chebyshev polynomial among same degree polynomials; the latter employs the traditional idea of shift-invert, for which we address the important issue of automatic choice of shifts and propose a practical method for solving the shifted linear equations inside the block Davidson method. Our two filters can efficiently generate high-quality basis vectors to augment the projection subspace at each Davidson iteration step, which allows a restart scheme using an active projection subspace of small dimension. This makes our algorithms memory-economical, thus practical for large PEVD/PSVD calculations. We compare our algorithms with representative methods, including ARPACK, PROPACK, the randomized SVD method, and the limited memory SVD method. Extensive numerical tests on representative datasets demonstrate that, in general, our methods have similar or faster convergence speed in terms of CPU time, while requiring much lower memory comparing with other methods. The much lower memory requirement makes our methods more practical for large-scale PEVD/PSVD computations. 展开更多
关键词 partial EVD/svd polynomial filter rational filter kernel graph
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部