In Wuhu,urban renewal has not only transformed the development process,but improved people’s lives.DURING the 14th Five-Year Plan period(2021-2025),urban renewal has served as a crucial measure to promote high-qualit...In Wuhu,urban renewal has not only transformed the development process,but improved people’s lives.DURING the 14th Five-Year Plan period(2021-2025),urban renewal has served as a crucial measure to promote high-quality urban development and continuously meet people’s growing aspirations for a better life.Wuhu,in central China’s Anhui Province,has consistently enhanced its urban functions and services to build a modern,people-oriented city that is innovative,livable,beautiful,resilient,and smart.展开更多
Crushing waste coral concrete into recycled aggregates to create recycled coral aggregate concrete(RCAC)contributes to sustainable construction development on offshore islands and reefs.To investigate the impact of re...Crushing waste coral concrete into recycled aggregates to create recycled coral aggregate concrete(RCAC)contributes to sustainable construction development on offshore islands and reefs.To investigate the impact of recycled coral aggregate on concrete properties,this study performed a comprehensive analysis of the physical properties of recycled coral aggregate and the basic mechanical properties and microstructure of RCAC.The test results indicate that,compared to coral debris,the crushing index of recycled coral aggregate was reduced by 9.4%,while porosity decreased by 33.5%.Furthermore,RCAC retained the early strength characteristics of coral concrete,with compressive strength and flexural strength exhibiting a notable increase as the water-cement ratio decreased.Under identical conditions,the compressive strength and flexural strength of RCAC were 12.7% and 2.5% higher than coral concrete's,respectively,with porosity correspondingly reduced from 3.13% to 5.11%.This enhancement could be attributed to the new mortar filling the recycled coral aggregate.Scanning electron microscopy(SEM)analysis revealed three distinct interface transition zones within RCAC,with the‘new mortar-old mortar’interface identified as the weakest.The above findings provided a reference for the sustainable use of coral concrete in constructing offshore islands.展开更多
China is carving out a distinctive development path which features urban-rural integration.This approach has not only yielded tangible results domestically but also drawn the attention of other countries.
Black soils represent only one-sixth of the global arable land area but play an important role in maintaining world food security due to their high fertility and gigantic potential for food production.With the ongoing...Black soils represent only one-sixth of the global arable land area but play an important role in maintaining world food security due to their high fertility and gigantic potential for food production.With the ongoing intensification of agricultural practices and negative natural factors,black soils are confronting enhanced degradation.The holistic overview of black soil degradation and the underlying mechanisms for soil health improvement will be key for agricultural sustainability and food security.In this review,the current status and driving factors of soil degradation in the four major black soil regions of the world are summarized,and effective measures for black soil conservation are proposed.The Northeast Plain of China is the research hotspot with 41.5%of the published studies related to black soil degradation,despite its relatively short history of agricultural reclamation,followed by the East European Plain(28.3%),the Great Plains of North America(20.7%),and the Pampas of South American(7.9%).Among the main types of soil degradation,soil erosion and soil fertility decline(especially organic matter loss)have been reported as the most common problems,with 27.6%and 39.4%of the published studies,respectively.In addition to the natural influences of climate and topography,human activities have been reported to have great influences on the degradation of black soils globally.Unsustainable farming practices and excess in agrochemical applications are common factors reported to accelerate the degradation process and threaten the sustainable use of black soils.Global efforts for black soil conservation and utilization should focus on standardizing evaluation criteria including real-time monitoring and the measures of prevention and restoration for sustainable management.International cooperation in technology and policy is crucial for overcoming the challenges and thus achieving the protection,sustainable use,and management of global black soil resources.展开更多
The automotive industry is under increasingscrutiny to improve sustainability,and one of thekey approaches to addressing this is sustainablematerial choice.As an industry,the automotivesector uses over l4 million tonn...The automotive industry is under increasingscrutiny to improve sustainability,and one of thekey approaches to addressing this is sustainablematerial choice.As an industry,the automotivesector uses over l4 million tonnes of plastics inpassenger automotive vehicles each year.展开更多
Wheat(Triticum aestivum L.)is a cornerstone of global food security,feeding over a third of the world’s population and functioning as a critical economic crop across diverse agroecological zones(FAO 2022).However,whe...Wheat(Triticum aestivum L.)is a cornerstone of global food security,feeding over a third of the world’s population and functioning as a critical economic crop across diverse agroecological zones(FAO 2022).However,wheat production faces mounting challenges from climate volatility,resource depletion,and the pressing demand for sustainable intensification.展开更多
The study offers a conceptual framework illuminating sustainable rural development by a continuous cycling interplay among five interdependent systems,physical,social,economic,knowledge,and creative.The framework is a...The study offers a conceptual framework illuminating sustainable rural development by a continuous cycling interplay among five interdependent systems,physical,social,economic,knowledge,and creative.The framework is applied to analyze the livelihood transition in the economic system and conversion of traditional knowledge in the creative system for farm households engaged in large cardamom cultivation in Northern mountainous region in Vietnam.This study used a probit model to examine a data set comprising 300 households and confirmed that factors within the social and physical systems(such as labor,access to information,social networks,land use,and transportation infrastructure)determined livelihood transition to tourism employment within the economic system.In addition,the conversion of traditional knowledge in the creative system was found to be contingent upon non-farm employment and credit capital in the economic system,as well as traditional knowledge and knowledge exchange in the knowledge system.This study demonstrates how the sustainable development of rural agriculture can be achieved by converting traditional knowledge and transferring livelihood,contributing to attain Sustainable Development Goals 2(Zero Hunger)and SDG 12(Responsible Consumption and Production).展开更多
Sustainable urbanization is essential for developing cities.To ensure the success of planned construction projects,designers must prioritize sustainability by lowering emissions and reducing costs.Tunnel projects are ...Sustainable urbanization is essential for developing cities.To ensure the success of planned construction projects,designers must prioritize sustainability by lowering emissions and reducing costs.Tunnel projects are common worldwide,but disposing of the excavated material presents a significant challenge due to unsuitable geographic conditions.While coastal cities with mountainous terrains have historically used spoil for sea filling,this study offers alternative landside options to promote sustainability.By using a conventional analytical hierarchy process(AHP)method for multi-criteria decision-making(MCDM),the study evaluates land use,sustainability,slope,and drainage lines as constraints for the AHP method.The transportation-related greenhouse gas(GHG)emissions are also considered to reduce environmental damage.Particle swarm optimization is used to determine the minimum transportation distance from the excavation zone to the dumpsite.As a sub-criteria of land use,the seaside is also considered a dumpsite compared with other options on the land side.The spatial analysis results of the case study show that suitable landside sites are available for the Trabzon tunneling project.Although coastal areas in Trabzon have been used for spoil dumping for filling purposes in the past,landside deposition is a viable alternative.The suitability ranks of land and coastal filling options are relatively similar,and selecting the seaside as the dumpsite for the Trabzon tunneling project reduces CO_(2)emissions.By adopting sustainable practices,we can realize a better future for our cities and the environment.展开更多
The rapid urbanization and increasing challenges are faced by cities globally,including climate change,population growth,and resource constraints.Sustainable smart city(also referred to as“smart sustainable city”)ca...The rapid urbanization and increasing challenges are faced by cities globally,including climate change,population growth,and resource constraints.Sustainable smart city(also referred to as“smart sustainable city”)can offer innovative solutions by integrating advanced technologies to build smarter,greener,and more livable urban environments with significant benefits.Using the Web of Science(WoS)database,this study examined:(i)the mainstream approaches and current research trends in the literature of sustainable smart city;(ii)the extent to which the research of sustainable smart city aligns with Sustainable Development Goals(SDGs);(iii)the current topics and collaboration patterns in sustainable smart city research;and(iv)the potential opportunities for future research on the sustainable smart city field.The findings indicated that research on sustainable smart city began in 2010 and gained significant momentum in 2013,with China leading,followed by Italy and Spain.Moreover,59.00%of the selected publications on the research of sustainable smart city focus on SDG 11(Sustainable Cities and Communities).Bibliometric analysis outcome revealed that artificial intelligence(AI),big data,machine learning,and deep learning are emerging research fields.The terms smart city,smart cities,and sustainability emerged as the top three co-occurring keywords with the highest link strength,followed by frequently co-occurring keywords such as AI,innovation,big data,urban governance,resilience,machine learning,and Internet of Things(IoT).The clustering results indicated that current studies explored the theoretical foundation,challenges,and future prospects of sustainable smart city,with an emphasis on sustainability.To further support urban sustainability and the attainment of SDGs,the future research of sustainable smart city should explore the application and implications of AI and big data on urban development including cybersecurity and governance challenges.展开更多
Within the framework of the 2030 Agenda and to achieve the Sustainable Development Goals(SDGs),science,technology and innovation play an even more central role.Building on this foundation,the primary objective of this...Within the framework of the 2030 Agenda and to achieve the Sustainable Development Goals(SDGs),science,technology and innovation play an even more central role.Building on this foundation,the primary objective of this paper is to explore the potential applications of blockchain in supporting the achievement of these sustainability goals.Starting from a review of the relevant literature on this topic,the main fields in which blockchain can contribute to sustainable development will be identified.The main blockchain applications will then be analyzed and categorized according to these SDGs.This research will then critically present the main blockchain-based projects that emerged in the first stage of the study and were implemented by the United Nations.The main objectives and benefits of each project will be analyzed.This is where the originality of this paper lies.To the best of the author’s knowledge,this is one of the first attempts to present a comprehensive overview of the United Nations’projects related to SDGs 1,2,5,7,9,13,and 16.This paper,which bridges the gap between innovation management and the sustainability field,will contribute to the increasingly current debate on sustainability issues and be beneficial to scholars,practitioners,and policymakers alike.展开更多
Composites made from biopolymers and natural fibers are gaining popularity as alternative sustainable structural materials.Biopolyesters including polylactic acid(PLA),polybutylene succinate(PBS),and polyhydroxyalkano...Composites made from biopolymers and natural fibers are gaining popularity as alternative sustainable structural materials.Biopolyesters including polylactic acid(PLA),polybutylene succinate(PBS),and polyhydroxyalkanoate(PHA),when mixed with natural fibers such as kenaf,hemp,and jute,provide an environmentally acceptable alternative to traditional fossil-based materials.This article examines current research on developments in the integration of biopolymers with natural fibers,with a focus on enhancing mechanical,thermal,and sustainability.Innovative approaches to surface treatment of natural fibers,such as biological and chemical treatments,have demonstrated enhanced adhesion with biopolymer matrices,increasing attributes such as tensile strength and rigidity.Furthermore,nano filling technologies such as nanocellulose and nanoparticles have improved the attributes of multifunctional composites,including heat conductivity and moisture resistance.According to performance analysis,biopolymernatural fiber-based composites may compete with synthetic composites in construction applications,particularly in lightweight buildings and automobiles.However,significant issues such as degradation in humid settings and longtermendurancemust be solved.To support a circular economy,solutions involve the development ofmoisture-resistant polymers and composite recycling technology.This article examines current advancements and identifies problems and opportunities to provide insight into the future direction of more inventive and sustainable biocomposites,and also the dangers they pose to green technology and industrial materials.These findings are significant in terms of the development of building materials which are not only competitive but also contribute to global sustainability.展开更多
Electrical energy can be harvested from the rotational kinetic energy of moving bodies,consisting of both mechanical and kinetic energy as a potential power source through electromagnetic induction,similar to wind ene...Electrical energy can be harvested from the rotational kinetic energy of moving bodies,consisting of both mechanical and kinetic energy as a potential power source through electromagnetic induction,similar to wind energy applications.In industries,rotational bodies are commonly present in operations,yet this kinetic energy remains untapped.This research explores the energy generation characteristics of two rotational body types,disk-shaped and cylinder-shaped under specific experimental setups.The hardware setup included a direct current(DC)motor driver,power supply,DC generator,mechanical support,and load resistance,while the software setup involved automation testing tools and data logging.Electromagnetic induction was used to harvest energy,and experiments were conducted at room temperature(25℃)with controlled variables like speed and friction.Results showed the disk-shaped body exhibited higher energy efficiency than the cylinder-shaped body,largely due to lower mechanical losses.The disk required only two bearings,while the cylinder required four,resulting in lower bearing losses for the disk.Additionally,the disk experienced only air friction,whereas the cylinder encountered friction from a soft,uneven rubber material,increasing surface contact losses.Under a 40 W resistive load,the disk demonstrated a 17.1%energy loss due to mechanical friction,achieving up to 15.55 J of recycled energy.Conversely,the cylinder body experienced a 48.05%energy loss,delivering only 51.95%of energy to the load.These insights suggest significant potential for designing efficient energy recycling systems in industrial settings,particularly in manufacturing and processing industries where rotational machinery is prevalent.Despite its lower energy density,this system could be beneficially integrated with energy storage solutions,enhancing sustainability in industrial practices.展开更多
China Oil&Gas,as a prominent academic journal in the energy industry,has been dedicated to advancing academic research and industrial development in the oil and gas energy field.As one of the authoritative media o...China Oil&Gas,as a prominent academic journal in the energy industry,has been dedicated to advancing academic research and industrial development in the oil and gas energy field.As one of the authoritative media outlets in the international energy sector,the magazine has long focused on the evolution of the global energy landscape and has organized and participated in several influential academic activities and research projects.展开更多
Background:People working outdoors in the Map Ta Phut pollution control area of Thailand require comprehen-sive health monitoring.In the past,studies have been done on the health effects of pollutants.However,there ar...Background:People working outdoors in the Map Ta Phut pollution control area of Thailand require comprehen-sive health monitoring.In the past,studies have been done on the health effects of pollutants.However,there are few studies on musculoskeletal disorders(MSDs),and Thailand is struggling to meet the Sustainable Development Goals.Methods:This cross-sectional study examines access to health services and factors affecting MSDs among outdoor pollution workers(OPWs).The sample group includes OPWs,including local fisherman,street vendors,public car drivers,and traffic police.We studied 50 people from each of these groups,for a total of 200 people.Data were analyzed with inferential statistics using Chi-square test,McNemar test,and Univariate logistic regression.Results:The OPWs reported experiencing significantly more total MSDs pain than they did in the past(P<0.05).Factors affecting current MSDs pain,including occupation and working days per week,were significant(P<0.05).The street vendor group and public car driver group had(odds ratio[OR]=2.253,95%confidence interval[CI]:1.101 to 5.019)and(OR=2.681,95%CI:1.191 to 6.032)times higher risks of MSDs pain,respectively.OPWs who work>5 days per week had a(OR=1.464,95%CI:1.093 to 2.704)times higher risk of MSDs pain.52.7%of OPWs with MSDs,pain(n=110)had received an annual health check-up.In the past year,50.9%had minor illnesses and 21.8%had severe illnesses.OPWs receiving free treatment and visiting health service stations for no cost comprised 77.3%and 51.8%,respectively.60.9%used their right to receive treatment with universal health insurance cards.Conclusions:The study indicates that occupational groups with MSDs pain problems should exercise this right,according to the worker protection law.Local health agencies should organize activities or create accessible media to promote preventive medicine services,as many OPWs believe that health services can only be accessed when illness occurs.展开更多
Humans have always engaged with their surroundings and the ecology in which they live.However,during the industrial age,this contact has been more intense and has had a substantial impact on environment and ecosystems...Humans have always engaged with their surroundings and the ecology in which they live.However,during the industrial age,this contact has been more intense and has had a substantial impact on environment and ecosystems.For example,overexploitation of natural resources,mining,pollution,and deforestation are all elements that negatively affect biodiversity and natural resources.Few studies have been conducted to evaluate the damage caused,despite the significant uncontrolled pressure from human activity.However,maintaining its environment is essential to the survival of coastal fishing.Goal:This study’s goal was to evaluate how human activity affected Tabounsou’s coastal ecology in order to suggest remedial actions for sustainable management.The following was the methodological approach used:executive consultation and archival analysis;stakeholder survey(locals,farmers,salt producers,fishers,and loggers);inventory of species;anthropogenic activity inventory;evaluation of how human activity affects aquatic life in the research region;suggestion and action for sustainable management;Outcome:Executive consultation indicated that the main issues are:construction projects that reduce the estuary’s surface area;agricultural practices such as woodcutting and salt farming;the rise in resource exploitation;noncompliance with fisheries laws;and the catching of young fish.Eighty-three percent of fisherman ditch their nets on the coast after using them,but only seventeen percent burn them.With a 75%frequency rate,the same survey indicates that most fisherman fish around the coast.In the Tabounsou area,according to loggers’survey,68%of the wood cut is Rhizophora,24%is Avicennia,and 8%is Laguncularia.Three fish stocks,representing nine families and nine species,were identified by the species inventory.At 18%and 15%,respectively,the actors most frequently capture the species Pseudotolithus elongatus and Arius parkii.According to a poll of 30 farmers,90%of them apply fertilizer to their soil,while only 10%do not.During the dry season,salt is grown.According to two actors,Bougna Toro Toro produces 100 kg of salt per day,followed by Khoumawadé,which produces 80 kg,and Toumbibougni,which produces 70 kg.展开更多
Rapid urbanization has been happening around the world,leading to many challenges and difficulties in infrastructure,communication network,transportation,environmental and organizational problems.Proper and responsibl...Rapid urbanization has been happening around the world,leading to many challenges and difficulties in infrastructure,communication network,transportation,environmental and organizational problems.Proper and responsible management of urban resources plays a significant role in sustainable development.Smart sustainable cities use ICTs(Information and Communication Technologies)to improve quality of life,efficiency of urban operation and services.The latest advancement in communication,technology,data management,and IoT(Internet of Things)provide a tremendous role for practical implementations and adoption of devices and entities.Smart sustainable cities can be intellectualized as an innovative approach of controlling urban resources and valuable components based on the latest advancement in ICT.Our study focuses on reviewing and discussing the literature that states the vital components of IoT associated with smart sustainable cities in general and specifically with green energy.展开更多
Toray Industries,Inc.announced that from this April,it will im-plement the mass balance approach in manufacturing its TORAY-LON TMacrylic staple fiber.This method attributes properties fromboth biomass and plastic was...Toray Industries,Inc.announced that from this April,it will im-plement the mass balance approach in manufacturing its TORAY-LON TMacrylic staple fiber.This method attributes properties fromboth biomass and plastic waste,contributing to sustainabillty.Thecompany has already secured ISCC(nternational Sustainability&Carbon Certification)PLUScertification for this initiative.展开更多
The Dhofar region of Oman,renowned for its unique monsoon-influenced climate and substantial agricultural potential,faces significant challenges in achieving sustainable agricultural practices that balance productivit...The Dhofar region of Oman,renowned for its unique monsoon-influenced climate and substantial agricultural potential,faces significant challenges in achieving sustainable agricultural practices that balance productivity with environmental conservation.This review critically explores a range of sustainable agricultural methods currently im-plemented in the region,including organic farming,water conservation techniques such as drip irrigation and rainwater harvesting,agroforestry systems,crop rotation,and soil conservation measures like terracing and composting.These strategies aim to mitigate pressing environmental concerns such as water scarcity,soil erosion,and land degradation while enhancing crop yield and farm profitability.The review further examines the economic implications of these practices, evaluating their cost-effectiveness, potential for long-term returns, and influence on the growing market demandfor organic and eco-friendly products. Despite their benefits, the broader adoption of these sustainable approaches ishindered by several challenges, including limited access to advanced technologies, inadequate financial resources, lackof technical knowledge, and minimal awareness among local farmers. The article also assesses the role of governmentalpolicies, subsidies, and extension services in promoting the adoption of sustainable agriculture in Dhofar. Finally, it offersstrategic recommendations for future research, policy development, and capacity-building initiatives. This reviewemphasizes the urgent need for continued investment in sustainable solutions to ensure long-term agricultural resilienceand environmental sustainability in the region.展开更多
The high necessity to develop novel and optimized technologies for crop production is very high due to the exponential growth in term of world population of the last years.In this field a novel use of fertilizers and ...The high necessity to develop novel and optimized technologies for crop production is very high due to the exponential growth in term of world population of the last years.In this field a novel use of fertilizers and pesticides can ameliorate the life conditions around the world due to the higher productivity with lower losses and consequent less environmental problems related to pollution.To address these challenges a very promising solution is constituted by devices able to control and sustain the release of fertilizers and pesticide optimizing their efficacy preserving the environment.In the last decade a lot of efforts,in terms of research,were dedicated to the development of smart devices that can address those issues maintaining also low costs and easy production processes.In this review we will point the attention on devices that can be used as slow release systems for fertilizers and/or pesticides.In details strong consideration will be devoted to their formulation to increase the knowledge on the high number of possibilities behind these novel and smart devices.展开更多
This study focused on realizing Sustainable Development Goal(SDG)6 for inclusive clean water and sanitation;in particular Target 6.3,which aims to reduce untreated wastewater by 2030 while promoting circular wastewate...This study focused on realizing Sustainable Development Goal(SDG)6 for inclusive clean water and sanitation;in particular Target 6.3,which aims to reduce untreated wastewater by 2030 while promoting circular wastewater reuse and recycling globally.The main objective was to assess the adequacy and efficiency of communal septic tank systems in informal settlements while helping local planners and authorities in their decision-making regarding Target 6.3.Quantitative and qualitative approaches were employed with secondary data from previous researchers,and primary data were collected from field surveys,observations,and interviews with members of the local community.The research was delimited to two village administrative divisions known as Rukun Warga(Village Administrative Division,RW):RW 7 and RW 8 of Lebak Siliwangi Kampung in Coblong District,Bandung,West Java,Indonesia.The findings were also compared with situations in other informal settlements in Brazil,Bangladesh,and Nairobi.The results indicated the inadequacy of communal septic tanks in informal settlements due to factors such as substandard system design,limited support and communication between authorities and residents,and the gap between septic tank availability and capacity vis-a-vis demand.Other limiting factors included limited land availability and irregular geomorphology,the latter of which affected the siting and operation of septic tanks due a lack of room for upgrades or expansion in response to continuous population growth.These findings illustrate the need to complement communal septic systems with flexible centralized or decentralized systems to achieve Target 6.3 of SDG 6.展开更多
文摘In Wuhu,urban renewal has not only transformed the development process,but improved people’s lives.DURING the 14th Five-Year Plan period(2021-2025),urban renewal has served as a crucial measure to promote high-quality urban development and continuously meet people’s growing aspirations for a better life.Wuhu,in central China’s Anhui Province,has consistently enhanced its urban functions and services to build a modern,people-oriented city that is innovative,livable,beautiful,resilient,and smart.
基金Funded by Natural Science Foundation of Guangxi(No.2025GXNSFBA069565)Guangxi Science and Technology Program(No.AD25069101)Guangxi Bagui Scholars Fund。
文摘Crushing waste coral concrete into recycled aggregates to create recycled coral aggregate concrete(RCAC)contributes to sustainable construction development on offshore islands and reefs.To investigate the impact of recycled coral aggregate on concrete properties,this study performed a comprehensive analysis of the physical properties of recycled coral aggregate and the basic mechanical properties and microstructure of RCAC.The test results indicate that,compared to coral debris,the crushing index of recycled coral aggregate was reduced by 9.4%,while porosity decreased by 33.5%.Furthermore,RCAC retained the early strength characteristics of coral concrete,with compressive strength and flexural strength exhibiting a notable increase as the water-cement ratio decreased.Under identical conditions,the compressive strength and flexural strength of RCAC were 12.7% and 2.5% higher than coral concrete's,respectively,with porosity correspondingly reduced from 3.13% to 5.11%.This enhancement could be attributed to the new mortar filling the recycled coral aggregate.Scanning electron microscopy(SEM)analysis revealed three distinct interface transition zones within RCAC,with the‘new mortar-old mortar’interface identified as the weakest.The above findings provided a reference for the sustainable use of coral concrete in constructing offshore islands.
文摘China is carving out a distinctive development path which features urban-rural integration.This approach has not only yielded tangible results domestically but also drawn the attention of other countries.
基金funded by the Science and Technology Plan for the Belt and Road Innovation Cooperation Project of Jiangsu Province,China(No.BZ2023003)the National Key Research and Development Program of China(No.2021YFD1500202)+2 种基金the Strategic Priority Research Program of Chinese Academy of Sciences(No.XDA28010100)the“14th Five-Year Plan”Self-Deployment Project of the Institute of Soil Science,Chinese Academy of Sciences(No.ISSAS2418)the National Natural Science Foundation of China(No.42107334)。
文摘Black soils represent only one-sixth of the global arable land area but play an important role in maintaining world food security due to their high fertility and gigantic potential for food production.With the ongoing intensification of agricultural practices and negative natural factors,black soils are confronting enhanced degradation.The holistic overview of black soil degradation and the underlying mechanisms for soil health improvement will be key for agricultural sustainability and food security.In this review,the current status and driving factors of soil degradation in the four major black soil regions of the world are summarized,and effective measures for black soil conservation are proposed.The Northeast Plain of China is the research hotspot with 41.5%of the published studies related to black soil degradation,despite its relatively short history of agricultural reclamation,followed by the East European Plain(28.3%),the Great Plains of North America(20.7%),and the Pampas of South American(7.9%).Among the main types of soil degradation,soil erosion and soil fertility decline(especially organic matter loss)have been reported as the most common problems,with 27.6%and 39.4%of the published studies,respectively.In addition to the natural influences of climate and topography,human activities have been reported to have great influences on the degradation of black soils globally.Unsustainable farming practices and excess in agrochemical applications are common factors reported to accelerate the degradation process and threaten the sustainable use of black soils.Global efforts for black soil conservation and utilization should focus on standardizing evaluation criteria including real-time monitoring and the measures of prevention and restoration for sustainable management.International cooperation in technology and policy is crucial for overcoming the challenges and thus achieving the protection,sustainable use,and management of global black soil resources.
文摘The automotive industry is under increasingscrutiny to improve sustainability,and one of thekey approaches to addressing this is sustainablematerial choice.As an industry,the automotivesector uses over l4 million tonnes of plastics inpassenger automotive vehicles each year.
文摘Wheat(Triticum aestivum L.)is a cornerstone of global food security,feeding over a third of the world’s population and functioning as a critical economic crop across diverse agroecological zones(FAO 2022).However,wheat production faces mounting challenges from climate volatility,resource depletion,and the pressing demand for sustainable intensification.
文摘The study offers a conceptual framework illuminating sustainable rural development by a continuous cycling interplay among five interdependent systems,physical,social,economic,knowledge,and creative.The framework is applied to analyze the livelihood transition in the economic system and conversion of traditional knowledge in the creative system for farm households engaged in large cardamom cultivation in Northern mountainous region in Vietnam.This study used a probit model to examine a data set comprising 300 households and confirmed that factors within the social and physical systems(such as labor,access to information,social networks,land use,and transportation infrastructure)determined livelihood transition to tourism employment within the economic system.In addition,the conversion of traditional knowledge in the creative system was found to be contingent upon non-farm employment and credit capital in the economic system,as well as traditional knowledge and knowledge exchange in the knowledge system.This study demonstrates how the sustainable development of rural agriculture can be achieved by converting traditional knowledge and transferring livelihood,contributing to attain Sustainable Development Goals 2(Zero Hunger)and SDG 12(Responsible Consumption and Production).
文摘Sustainable urbanization is essential for developing cities.To ensure the success of planned construction projects,designers must prioritize sustainability by lowering emissions and reducing costs.Tunnel projects are common worldwide,but disposing of the excavated material presents a significant challenge due to unsuitable geographic conditions.While coastal cities with mountainous terrains have historically used spoil for sea filling,this study offers alternative landside options to promote sustainability.By using a conventional analytical hierarchy process(AHP)method for multi-criteria decision-making(MCDM),the study evaluates land use,sustainability,slope,and drainage lines as constraints for the AHP method.The transportation-related greenhouse gas(GHG)emissions are also considered to reduce environmental damage.Particle swarm optimization is used to determine the minimum transportation distance from the excavation zone to the dumpsite.As a sub-criteria of land use,the seaside is also considered a dumpsite compared with other options on the land side.The spatial analysis results of the case study show that suitable landside sites are available for the Trabzon tunneling project.Although coastal areas in Trabzon have been used for spoil dumping for filling purposes in the past,landside deposition is a viable alternative.The suitability ranks of land and coastal filling options are relatively similar,and selecting the seaside as the dumpsite for the Trabzon tunneling project reduces CO_(2)emissions.By adopting sustainable practices,we can realize a better future for our cities and the environment.
文摘The rapid urbanization and increasing challenges are faced by cities globally,including climate change,population growth,and resource constraints.Sustainable smart city(also referred to as“smart sustainable city”)can offer innovative solutions by integrating advanced technologies to build smarter,greener,and more livable urban environments with significant benefits.Using the Web of Science(WoS)database,this study examined:(i)the mainstream approaches and current research trends in the literature of sustainable smart city;(ii)the extent to which the research of sustainable smart city aligns with Sustainable Development Goals(SDGs);(iii)the current topics and collaboration patterns in sustainable smart city research;and(iv)the potential opportunities for future research on the sustainable smart city field.The findings indicated that research on sustainable smart city began in 2010 and gained significant momentum in 2013,with China leading,followed by Italy and Spain.Moreover,59.00%of the selected publications on the research of sustainable smart city focus on SDG 11(Sustainable Cities and Communities).Bibliometric analysis outcome revealed that artificial intelligence(AI),big data,machine learning,and deep learning are emerging research fields.The terms smart city,smart cities,and sustainability emerged as the top three co-occurring keywords with the highest link strength,followed by frequently co-occurring keywords such as AI,innovation,big data,urban governance,resilience,machine learning,and Internet of Things(IoT).The clustering results indicated that current studies explored the theoretical foundation,challenges,and future prospects of sustainable smart city,with an emphasis on sustainability.To further support urban sustainability and the attainment of SDGs,the future research of sustainable smart city should explore the application and implications of AI and big data on urban development including cybersecurity and governance challenges.
文摘Within the framework of the 2030 Agenda and to achieve the Sustainable Development Goals(SDGs),science,technology and innovation play an even more central role.Building on this foundation,the primary objective of this paper is to explore the potential applications of blockchain in supporting the achievement of these sustainability goals.Starting from a review of the relevant literature on this topic,the main fields in which blockchain can contribute to sustainable development will be identified.The main blockchain applications will then be analyzed and categorized according to these SDGs.This research will then critically present the main blockchain-based projects that emerged in the first stage of the study and were implemented by the United Nations.The main objectives and benefits of each project will be analyzed.This is where the originality of this paper lies.To the best of the author’s knowledge,this is one of the first attempts to present a comprehensive overview of the United Nations’projects related to SDGs 1,2,5,7,9,13,and 16.This paper,which bridges the gap between innovation management and the sustainability field,will contribute to the increasingly current debate on sustainability issues and be beneficial to scholars,practitioners,and policymakers alike.
文摘Composites made from biopolymers and natural fibers are gaining popularity as alternative sustainable structural materials.Biopolyesters including polylactic acid(PLA),polybutylene succinate(PBS),and polyhydroxyalkanoate(PHA),when mixed with natural fibers such as kenaf,hemp,and jute,provide an environmentally acceptable alternative to traditional fossil-based materials.This article examines current research on developments in the integration of biopolymers with natural fibers,with a focus on enhancing mechanical,thermal,and sustainability.Innovative approaches to surface treatment of natural fibers,such as biological and chemical treatments,have demonstrated enhanced adhesion with biopolymer matrices,increasing attributes such as tensile strength and rigidity.Furthermore,nano filling technologies such as nanocellulose and nanoparticles have improved the attributes of multifunctional composites,including heat conductivity and moisture resistance.According to performance analysis,biopolymernatural fiber-based composites may compete with synthetic composites in construction applications,particularly in lightweight buildings and automobiles.However,significant issues such as degradation in humid settings and longtermendurancemust be solved.To support a circular economy,solutions involve the development ofmoisture-resistant polymers and composite recycling technology.This article examines current advancements and identifies problems and opportunities to provide insight into the future direction of more inventive and sustainable biocomposites,and also the dangers they pose to green technology and industrial materials.These findings are significant in terms of the development of building materials which are not only competitive but also contribute to global sustainability.
基金The APC was funded by Research Management Center, Multimedia University, Malaysia.
文摘Electrical energy can be harvested from the rotational kinetic energy of moving bodies,consisting of both mechanical and kinetic energy as a potential power source through electromagnetic induction,similar to wind energy applications.In industries,rotational bodies are commonly present in operations,yet this kinetic energy remains untapped.This research explores the energy generation characteristics of two rotational body types,disk-shaped and cylinder-shaped under specific experimental setups.The hardware setup included a direct current(DC)motor driver,power supply,DC generator,mechanical support,and load resistance,while the software setup involved automation testing tools and data logging.Electromagnetic induction was used to harvest energy,and experiments were conducted at room temperature(25℃)with controlled variables like speed and friction.Results showed the disk-shaped body exhibited higher energy efficiency than the cylinder-shaped body,largely due to lower mechanical losses.The disk required only two bearings,while the cylinder required four,resulting in lower bearing losses for the disk.Additionally,the disk experienced only air friction,whereas the cylinder encountered friction from a soft,uneven rubber material,increasing surface contact losses.Under a 40 W resistive load,the disk demonstrated a 17.1%energy loss due to mechanical friction,achieving up to 15.55 J of recycled energy.Conversely,the cylinder body experienced a 48.05%energy loss,delivering only 51.95%of energy to the load.These insights suggest significant potential for designing efficient energy recycling systems in industrial settings,particularly in manufacturing and processing industries where rotational machinery is prevalent.Despite its lower energy density,this system could be beneficially integrated with energy storage solutions,enhancing sustainability in industrial practices.
文摘China Oil&Gas,as a prominent academic journal in the energy industry,has been dedicated to advancing academic research and industrial development in the oil and gas energy field.As one of the authoritative media outlets in the international energy sector,the magazine has long focused on the evolution of the global energy landscape and has organized and participated in several influential academic activities and research projects.
基金grant Fundamental Fund of National Science Research and Innovation Fund(NSRF)via Burapha University of Thailand(Grant number 52/2024).
文摘Background:People working outdoors in the Map Ta Phut pollution control area of Thailand require comprehen-sive health monitoring.In the past,studies have been done on the health effects of pollutants.However,there are few studies on musculoskeletal disorders(MSDs),and Thailand is struggling to meet the Sustainable Development Goals.Methods:This cross-sectional study examines access to health services and factors affecting MSDs among outdoor pollution workers(OPWs).The sample group includes OPWs,including local fisherman,street vendors,public car drivers,and traffic police.We studied 50 people from each of these groups,for a total of 200 people.Data were analyzed with inferential statistics using Chi-square test,McNemar test,and Univariate logistic regression.Results:The OPWs reported experiencing significantly more total MSDs pain than they did in the past(P<0.05).Factors affecting current MSDs pain,including occupation and working days per week,were significant(P<0.05).The street vendor group and public car driver group had(odds ratio[OR]=2.253,95%confidence interval[CI]:1.101 to 5.019)and(OR=2.681,95%CI:1.191 to 6.032)times higher risks of MSDs pain,respectively.OPWs who work>5 days per week had a(OR=1.464,95%CI:1.093 to 2.704)times higher risk of MSDs pain.52.7%of OPWs with MSDs,pain(n=110)had received an annual health check-up.In the past year,50.9%had minor illnesses and 21.8%had severe illnesses.OPWs receiving free treatment and visiting health service stations for no cost comprised 77.3%and 51.8%,respectively.60.9%used their right to receive treatment with universal health insurance cards.Conclusions:The study indicates that occupational groups with MSDs pain problems should exercise this right,according to the worker protection law.Local health agencies should organize activities or create accessible media to promote preventive medicine services,as many OPWs believe that health services can only be accessed when illness occurs.
文摘Humans have always engaged with their surroundings and the ecology in which they live.However,during the industrial age,this contact has been more intense and has had a substantial impact on environment and ecosystems.For example,overexploitation of natural resources,mining,pollution,and deforestation are all elements that negatively affect biodiversity and natural resources.Few studies have been conducted to evaluate the damage caused,despite the significant uncontrolled pressure from human activity.However,maintaining its environment is essential to the survival of coastal fishing.Goal:This study’s goal was to evaluate how human activity affected Tabounsou’s coastal ecology in order to suggest remedial actions for sustainable management.The following was the methodological approach used:executive consultation and archival analysis;stakeholder survey(locals,farmers,salt producers,fishers,and loggers);inventory of species;anthropogenic activity inventory;evaluation of how human activity affects aquatic life in the research region;suggestion and action for sustainable management;Outcome:Executive consultation indicated that the main issues are:construction projects that reduce the estuary’s surface area;agricultural practices such as woodcutting and salt farming;the rise in resource exploitation;noncompliance with fisheries laws;and the catching of young fish.Eighty-three percent of fisherman ditch their nets on the coast after using them,but only seventeen percent burn them.With a 75%frequency rate,the same survey indicates that most fisherman fish around the coast.In the Tabounsou area,according to loggers’survey,68%of the wood cut is Rhizophora,24%is Avicennia,and 8%is Laguncularia.Three fish stocks,representing nine families and nine species,were identified by the species inventory.At 18%and 15%,respectively,the actors most frequently capture the species Pseudotolithus elongatus and Arius parkii.According to a poll of 30 farmers,90%of them apply fertilizer to their soil,while only 10%do not.During the dry season,salt is grown.According to two actors,Bougna Toro Toro produces 100 kg of salt per day,followed by Khoumawadé,which produces 80 kg,and Toumbibougni,which produces 70 kg.
文摘Rapid urbanization has been happening around the world,leading to many challenges and difficulties in infrastructure,communication network,transportation,environmental and organizational problems.Proper and responsible management of urban resources plays a significant role in sustainable development.Smart sustainable cities use ICTs(Information and Communication Technologies)to improve quality of life,efficiency of urban operation and services.The latest advancement in communication,technology,data management,and IoT(Internet of Things)provide a tremendous role for practical implementations and adoption of devices and entities.Smart sustainable cities can be intellectualized as an innovative approach of controlling urban resources and valuable components based on the latest advancement in ICT.Our study focuses on reviewing and discussing the literature that states the vital components of IoT associated with smart sustainable cities in general and specifically with green energy.
文摘Toray Industries,Inc.announced that from this April,it will im-plement the mass balance approach in manufacturing its TORAY-LON TMacrylic staple fiber.This method attributes properties fromboth biomass and plastic waste,contributing to sustainabillty.Thecompany has already secured ISCC(nternational Sustainability&Carbon Certification)PLUScertification for this initiative.
文摘The Dhofar region of Oman,renowned for its unique monsoon-influenced climate and substantial agricultural potential,faces significant challenges in achieving sustainable agricultural practices that balance productivity with environmental conservation.This review critically explores a range of sustainable agricultural methods currently im-plemented in the region,including organic farming,water conservation techniques such as drip irrigation and rainwater harvesting,agroforestry systems,crop rotation,and soil conservation measures like terracing and composting.These strategies aim to mitigate pressing environmental concerns such as water scarcity,soil erosion,and land degradation while enhancing crop yield and farm profitability.The review further examines the economic implications of these practices, evaluating their cost-effectiveness, potential for long-term returns, and influence on the growing market demandfor organic and eco-friendly products. Despite their benefits, the broader adoption of these sustainable approaches ishindered by several challenges, including limited access to advanced technologies, inadequate financial resources, lackof technical knowledge, and minimal awareness among local farmers. The article also assesses the role of governmentalpolicies, subsidies, and extension services in promoting the adoption of sustainable agriculture in Dhofar. Finally, it offersstrategic recommendations for future research, policy development, and capacity-building initiatives. This reviewemphasizes the urgent need for continued investment in sustainable solutions to ensure long-term agricultural resilienceand environmental sustainability in the region.
文摘The high necessity to develop novel and optimized technologies for crop production is very high due to the exponential growth in term of world population of the last years.In this field a novel use of fertilizers and pesticides can ameliorate the life conditions around the world due to the higher productivity with lower losses and consequent less environmental problems related to pollution.To address these challenges a very promising solution is constituted by devices able to control and sustain the release of fertilizers and pesticide optimizing their efficacy preserving the environment.In the last decade a lot of efforts,in terms of research,were dedicated to the development of smart devices that can address those issues maintaining also low costs and easy production processes.In this review we will point the attention on devices that can be used as slow release systems for fertilizers and/or pesticides.In details strong consideration will be devoted to their formulation to increase the knowledge on the high number of possibilities behind these novel and smart devices.
文摘This study focused on realizing Sustainable Development Goal(SDG)6 for inclusive clean water and sanitation;in particular Target 6.3,which aims to reduce untreated wastewater by 2030 while promoting circular wastewater reuse and recycling globally.The main objective was to assess the adequacy and efficiency of communal septic tank systems in informal settlements while helping local planners and authorities in their decision-making regarding Target 6.3.Quantitative and qualitative approaches were employed with secondary data from previous researchers,and primary data were collected from field surveys,observations,and interviews with members of the local community.The research was delimited to two village administrative divisions known as Rukun Warga(Village Administrative Division,RW):RW 7 and RW 8 of Lebak Siliwangi Kampung in Coblong District,Bandung,West Java,Indonesia.The findings were also compared with situations in other informal settlements in Brazil,Bangladesh,and Nairobi.The results indicated the inadequacy of communal septic tanks in informal settlements due to factors such as substandard system design,limited support and communication between authorities and residents,and the gap between septic tank availability and capacity vis-a-vis demand.Other limiting factors included limited land availability and irregular geomorphology,the latter of which affected the siting and operation of septic tanks due a lack of room for upgrades or expansion in response to continuous population growth.These findings illustrate the need to complement communal septic systems with flexible centralized or decentralized systems to achieve Target 6.3 of SDG 6.