Understanding the degradation phenomenon of proton exchange membrane fuel cells under electrochemical cycling requires an analysis of the porous carbon support structure.Key factors contributing to this phenomenon inc...Understanding the degradation phenomenon of proton exchange membrane fuel cells under electrochemical cycling requires an analysis of the porous carbon support structure.Key factors contributing to this phenomenon include changes in the total porosity and viable surface area for electrochemical reactions.Electron tomography-based serial section imaging using focused ion beam-scanning electron microscopy(FIB-SEM)can elucidate this phenomenon at a nanoscale resolution.However,this highresolution tomographic analysis requires a huge image dataset and manual inputs in rule-based workflows;these requirements are time-consuming and often cause experimental difficulties and unreliable interpretations.We propose a deep learning-empowered approach comprising a two-step automated process for image interpolation and semantic segmentation to address the practical issues encountered in FIB-SEM electron tomography.An optimally trained interpolation model can reduce the image data requirement by more than 95%to analyze the structural degradation of carbon supports after electrochemical cycling while maintaining the reliability obtained in conventional tomographic analysis with several hundred images.Because the subsequent image segmentation model excludes a complicated manual filtering process,the relevant structural parameters can be reliably measured without human bias.Our sparse-section imaging-based deep learning process can allow cost-efficient analysis and reliable measurement of the degree of cycling-induced carbon corrosion.展开更多
With the rapid evolution of artificial intelligence(AI)technologies,the medical industry is undergoing a profound transformation driven by data intelligence.As the foundational element for intelligent diagnosis,precis...With the rapid evolution of artificial intelligence(AI)technologies,the medical industry is undergoing a profound transformation driven by data intelligence.As the foundational element for intelligent diagnosis,precision prevention,and public health governance,medical data is characterized by massive volume,complex structure,diverse sources,high dimensionality,strong privacy,and high timeliness.Traditional data analysis methods are no longer sufficient to meet the comprehensive requirements of data security,intelligent processing,and decision support.Through techniques such as machine learning,deep learning,natural language processing,and multimodal fusion,AI provides robust technical support for medical data cleaning,governance,mining,and application.At the data level,intelligent algorithms enable the standardization,structuring,and interoperability of medical data,promoting information sharing across medical systems.At the model level,AI supports auxiliary diagnosis and precision treatment through image recognition,medical record analysis,and knowledge graph construction.At the system level,intelligent decision-support platforms continuously enhance the efficiency and accuracy of healthcare services.However,the widespread adoption of AI in medicine still faces challenges such as privacy protection,data security,model interpretability,and the lack of unified industry standards.Based on a systematic review of AI’s key supporting technologies in medical data processing and application,this paper focuses on the compliance challenges and adaptation strategies during industry integration and proposes an adaptation framework centered on“technological trustworthiness,data security,and industry collaboration.”The study provides theoretical and practical insights for promoting the standardized and sustainable development of AI in the healthcare industry.展开更多
Fixed supports(rigid structures)and flexible supports(tensioned cable systems)are two main methods used in constructing photovoltaic power plants,and their construction technology has significant differences.This comp...Fixed supports(rigid structures)and flexible supports(tensioned cable systems)are two main methods used in constructing photovoltaic power plants,and their construction technology has significant differences.This comparative study assessed their environmental impacts on near-surface characteristics during constructing photovoltaic power plants in karst mountainous regions.Our findings revealed significant but different surface disturbances between these installation approaches.While both systems caused terrain modifications through foundation works and access road construction,the fixed support completely disturbed 100%of the construction area compared to<30%disturbance from flexible supports.Compared with the original ground,fixed support caused approximately 22%increase in bedrock exposure rate,while decreased 5%for the flexible support.Additionally,only 17%of the original vegetation coverage remained for the fixed support after construction,compared to 53%for the flexible support.The lower bedrock exposure rate and higher vegetation coverage of flexible support indicated that it had less surface disturbance area than fixed support.These results suggested that in ecologically sensitive karst terrains characterized by severe rocky desertification,challenging revegetation conditions,and low land productivity,flexible support photovoltaic technology represented a significantly less disruptive technology for minimizing surface disturbance and preserving fragile mountain ecosystems.展开更多
To study the use of a shaft support for the auxiliary shaft of the Xi’anshan Iron Mine,in high-stress strata at a depth between 900 and 1000 m,a new type of mold was developed using the physical similarity model test...To study the use of a shaft support for the auxiliary shaft of the Xi’anshan Iron Mine,in high-stress strata at a depth between 900 and 1000 m,a new type of mold was developed using the physical similarity model test method,based on the similarity theory,and an experimental model of the shaft lining and surrounding rock was poured.Two sets of large-scale destructive tests were conducted on the shaft lining and surrounding rock.The deformation and failure laws of the shaft lining and surrounding rock under high ground stress and their ultimate horizontal bearing capacity characteristics were studied,and the safety support characteristics of the shaft lining under the interaction of the shaft lining and surrounding rock were obtained.An experimental study demonstrated that the axial pressure on the shaft wall directly affected its ultimate horizontal bearing capacity of the shaft wall.In designing the shaft wall,the influence of the axial pressure on the stress state of the concrete should be considered,and the vertical pressure should be modified to optimize the utilization of the three-dimensional compressive strength of the concrete.The reliability of the 400-mm C30 concrete shaft wall at a depth of 1000 m in the actual project was verified,and the ultimate horizontal bearing capacity of the shaft wall was obtained for a depth of 1000 m.展开更多
We investigated the effects of supports (CMK-3, SiO2ZrO2, MgO, Al2O3) and promoters (Cu, Ce, Fe) on textual properties of Ni based catalysts. o-Cresol was used as a probe to test the activity of these catalysts un...We investigated the effects of supports (CMK-3, SiO2ZrO2, MgO, Al2O3) and promoters (Cu, Ce, Fe) on textual properties of Ni based catalysts. o-Cresol was used as a probe to test the activity of these catalysts under the condition of 230 ℃ and nitrogen pres-sure of 0.1 MPa. The catalysts were characterized by X-ray diffraction, H2 temperature programmed reduction ammonium programmed desorption, and N2 adsorption-desorption isotherms. The results showed that the catalytic performance of Ni/CMK-3 (the conversion of o-cresol reached 45.4%) was significantly better than the other three kinds of supports. The modification of Ni/CMK-3 was also investigated and over 60% conversion of o-cresol was obtained after the addition of Ce (64.6%)and Cu (66.8%) in Ni/CMK-3, whereas the addition of Fe led to a decrease of conversion. In the meantime, Cu changed the products dis-tribution. The appearance of toluene indicated that another pathway existed in the reaction.Accompanied by the ascension of conversion in both sides, side effects also occurred and got more serious. The apparent order of activity for all the tested catalysts was NiCe/CMK-3〉NiCu/CMK-3〉Ni/CMK-3〉NiFe/CMK-3〉Ni/Al2O3Ni/SiO2ZrO2〉Ni/MgO. The reac-tion pathway, involving three routes, was also mentioned in this study.展开更多
Efficient conversion of lignin to aromatic hydrocarbons via depolymerization and subsequent hydrodeoxygenation is important.Previously,we found that NbOx species played a key role in the activation and cleavage of C-O...Efficient conversion of lignin to aromatic hydrocarbons via depolymerization and subsequent hydrodeoxygenation is important.Previously,we found that NbOx species played a key role in the activation and cleavage of C-O bonds in lignin and its model compounds.In this study,commercial niobic acid(HY-340),niobium phosphate(NbPO-CBMM)and lab-made layered niobium oxide(Nb2O5-Layer)were chosen as supports to study the effect of Brosted and Lewis acids on the activation of C-O bonds in lignin conversion.A variety of Ru-loaded,Nb-based catalysts with different Ru particle sizes were prepared and applied to the conversion of p-cresol.The results show that all the Ru/Nb-based catalysts produce high mole yields of C7-C9 hydrocarbons(82.3%-9.1%).What's more,Ru/Nb2O5-Layer affords the best mole yield of C7-C9 hydrocarbons and selectivity for C7-C9 aromatic hydrocarbons,of up to 99.1% and 88.0%,respectively.Moreover,it was found that Lewis acid sites play important roles in the depolymerization of enzymatic lignin into phenolic monomers and the cleavage of the C-O bond of phenols.Additionally,the electronic state and particle size of Ru are significant factors which influence the selectivity for aromatic hydrocarbons.A partial positive charge on the metallic Ru surface and a smaller Ru particle size are beneficial in improving the selectivity for aromatic hydrocarbons.展开更多
Calvarial bones are connected by fibrous sutures. These sutures provide a niche environment that includes mesenchymal stem cells(MSCs), osteoblasts, and osteoclasts, which help maintain calvarial bone homeostasis and ...Calvarial bones are connected by fibrous sutures. These sutures provide a niche environment that includes mesenchymal stem cells(MSCs), osteoblasts, and osteoclasts, which help maintain calvarial bone homeostasis and repair. Abnormal function of osteogenic cells or diminished MSCs within the cranial suture can lead to skull defects, such as craniosynostosis. Despite the important function of each of these cell types within the cranial suture, we have limited knowledge about the role that crosstalk between them may play in regulating calvarial bone homeostasis and injury repair. Here we show that suture MSCs give rise to osteoprogenitors that show active bone morphogenetic protein(BMP) signalling and depend on BMP-mediated Indian hedgehog(IHH) signalling to balance osteogenesis and osteoclastogenesis activity. IHH signalling and receptor activator of nuclear factor kappa-Β ligand(RANKL) may function synergistically to promote the differentiation and resorption activity of osteoclasts. Loss of Bmpr1a in MSCs leads to downregulation of hedgehog(Hh) signalling and diminished cranial sutures. Significantly, activation of Hh signalling partially restores suture morphology in Bmpr1a mutant mice, suggesting the functional importance of BMP-mediated Hh signalling in regulating suture tissue homeostasis. Furthermore, there is an increased number of CD200+ cells in Bmpr1a mutant mice, which may also contribute to the inhibited osteoclast activity in the sutures of mutant mice. Finally, suture MSCs require BMPmediated Hh signalling during the repair of calvarial bone defects after injury. Collectively, our studies reveal the molecular and cellular mechanisms governing cell–cell interactions within the cranial suture that regulate calvarial bone homeostasis and repair.展开更多
The synthesis and properties of carbon xerogels are briefly described in this mini-review, emphasizing the methods used for tuning their surface chemistry and textural properties in order to design efficient electroca...The synthesis and properties of carbon xerogels are briefly described in this mini-review, emphasizing the methods used for tuning their surface chemistry and textural properties in order to design efficient electrocatalysts for fuel cells. In particular, the role played by the surface functional groups in determining the loading, dispersion, oxidation state and stability of the metal phases is addressed.展开更多
Although the water splitting-based generation of hydrogen as an energy carrier can help to mitigate the global problems of energy shortage and climate change,the practical implementation of this strategy is hindered b...Although the water splitting-based generation of hydrogen as an energy carrier can help to mitigate the global problems of energy shortage and climate change,the practical implementation of this strategy is hindered by the absence of inexpensive high-performance electrocatalysts for the hydrogen evolution reaction (HER).Re-based HER electrocatalysts exhibit predictable high performance within the entire pH range but suffer from arduous formation (i.e.,vulnerability to oxidation) and uncontrollable aggregation,which strongly discourages the maximisation of active site exposure required for activity enhancement.To overcome these limitations,we herein hydrothermally synthesise Re nanoclusters uniformly distributed on nanosheet supports,such as reduced graphene oxide nanosheets (Re NCs@rGO),revealing that this hybrid features abundant exposed active sites and high oxidation resistance.The obtained electrocatalysts were elaborately characterized by microscopic and spectroscopic analyses.Also,density functional theory calculations confirm the optimised synthesis of Re NCs@rGO and indicate the crucial role of Re–O–C junction formation in securing durability.The effective suppression of Re nanocluster detachment/dissolution under HER conditions endows Re NCs@rGO with high electron conductivity and electrochemical stability,resulting in a durability superior to that of commercial Pt/C and an activity similar to that of this reference.As a result,Re NCs@rGO exhibited remarkably small HER overpotentials of 110,130,and 93 m V to deliver a current density of 10 mA cm^(-2) in 0.5 M H_(2)SO_(4),1 M PBS,and 1 M KOH,respectively.Thus,Re NCs@rGO is a promising alternative to conventional Pt-group-metal catalysts and should find applications in next-generation high-performance water splitting systems.展开更多
The Vacuum Vessel (VV) system is an essential component of Keda Torus for eX- periment (KTX), and various scenarios might take place on it. The VV's supports should be adequately strong to stand against various l...The Vacuum Vessel (VV) system is an essential component of Keda Torus for eX- periment (KTX), and various scenarios might take place on it. The VV's supports should be adequately strong to stand against various loads on VV, which might happen in extreme scenarios. Therefore, the design of VV supports is verified in a single extreme scenario and is subsequently optimized in this report. The numerical simulation based on Finite Element theory is performed as the major method for analysis and optimization. The electromagnetic force in previous analyses serves as the load for the mechanical analyses of supports. During the optimization, the stresses of the VV supports decrease remarkably after introducing cotters. Finally, the optimum design has been worked out. It satisfies the requirements regarding the strength and convenience in assembly.展开更多
Based on the γ-Al2O3 support with large-size pores, impregnation-deposition method was adopted to prepare the nano CeO_2/γ-Al2O3 composite supports. The results of XRD showed that there was no CeO_2-Al2O3 mixture or...Based on the γ-Al2O3 support with large-size pores, impregnation-deposition method was adopted to prepare the nano CeO_2/γ-Al2O3 composite supports. The results of XRD showed that there was no CeO_2-Al2O3 mixture or solid solution, indicating that CeO_2 was only loaded on the surface of Al2O3. The CeO_2/γ-Al2O3 composite support had larger specific surface area (170 m2·g-1), while for the non-loaded nanosized CeO_2, the specific surface area was small(~50 m2·g-1). The influence of impregnation and drying methods on the surface properties, thermal stability and crystal structure of composite supports was characterized by XRD, DTA and BET. The CeO_2/γ-Al2O3 composite support prepared by vacuum impregnation and microwave drying was better than that prepared by conventional impregnation and drying.展开更多
Gas phase carbonylation of methane is studied in the presence of molecular oxygen over pure carbon carriers and carbon supported rhodium chalcogen halides. Activated carbons and fullerene blacks have been used as carb...Gas phase carbonylation of methane is studied in the presence of molecular oxygen over pure carbon carriers and carbon supported rhodium chalcogen halides. Activated carbons and fullerene blacks have been used as carbon supports. XPS and IR-spectroscopy data show the formation of rhodium chalcogen halides in solids prepared by different methods. We have found that the productivity of acetic acid by carbon supported rhodium chalcogen halides depends strongly on the carbon carrier and the method of the catalyst preparation. Namely, the catalyst with highest productivity for the acetic acid is prepared by synthesizing the rhodium chalcogen halide over the carbon support followed by thermal destruction. We have also found that rhodium chalcogen halides over activated carbons are more active compared with fullerene supported catalysts.展开更多
The element-free Galerkin method is proposed to solve free vibration of rectangular plates with finite interior elastic point supports and elastically restrained edges.Based on the extended Hamilton's principle for t...The element-free Galerkin method is proposed to solve free vibration of rectangular plates with finite interior elastic point supports and elastically restrained edges.Based on the extended Hamilton's principle for the elastic dynamics system,the dimensionless equations of motion of rectangular plates with finite interior elastic point supports and the edge elastically restrained are established using the element-free Galerkin method.Through numerical calculation,curves of the natural frequency of thin plates with three edges simply supported and one edge elastically restrained,and three edges clamped and the other edge elastically restrained versus the spring constant,locations of elastic point support and the elastic stiffness of edge elastically restrained are obtained.Effects of elastic point supports and edge elastically restrained on the free vibration characteristics of the thin plates are analyzed.展开更多
The agricultural industry development in China has been very successful, but there exist some problems, such as weak financial support strength. With the help of DEA-Malmquist index method, this paper evaluated the ef...The agricultural industry development in China has been very successful, but there exist some problems, such as weak financial support strength. With the help of DEA-Malmquist index method, this paper evaluated the efficiency of the agricultural industrialization's financial supports, made a deep study of its influencing factors, which have an extremely important influence on the perfect agricultural industrialization's development.展开更多
The tangent stiffness matrix of Timoshenko beam element is applied in the buckling of multi-step beams under several concentrated axial forces with elastic supports. From the governing differential equation of lateral...The tangent stiffness matrix of Timoshenko beam element is applied in the buckling of multi-step beams under several concentrated axial forces with elastic supports. From the governing differential equation of lateral deflection including second-order effects,the relationship of force versus displacement is established. In the formulation of finite element method (FEM),the stiffness matrix developed has the same accuracy with the solution of exact differential equations. The proposed tangent stiffness matrix will degenerate into the Bernoulli-Euler beam without the effects of shear deformation. The critical buckling force can be determined from the determinant element assemblage by FEM. The equivalent stiffness matrix constructed by the topmost deflection and slope is established by static condensation method,and then a recurrence formula is proposed. The validity and efficiency of the proposed method are shown by solving various numerical examples found in the literature.展开更多
To efficiently utilize the kaolin, an economical way of preparing cordierite ceramic with high performance for electric heater supports was put forward. In this study, sintering process, phase transformation, microstr...To efficiently utilize the kaolin, an economical way of preparing cordierite ceramic with high performance for electric heater supports was put forward. In this study, sintering process, phase transformation, microstructure evolutions were systematically studied by heating microscope, X-ray diffraction, scanning electronic microscope and thermal analysis. Properties(physical properties, electrical properties and coefficient of thermal expansion(CTE)) were tested for comprehensive performance evaluation. The results showed that the utilization of poor quality kaolin broadened the firing range of cordierite ceramic which was from 1 200 to 1 380 ℃. Microstructure becomes loose with increasing of the pore size, which had significant influence on bending strength and electrical properties. High content of K2 O in poor quality kaolin was the reason for liquid phase generation in sintering process, which further leads to microstructural changes. The cordierite ceramic sintered at 1 320 ℃ had the properties as follows: CTE of 1.98×10^(-6) ℃^(-1)(500 ℃), bending strength of 90 MPa, apparent porosity of 15.1%, dielectric constant of 7.5(100 Hz), and volume resistivity of 1.05×109 Ω·cm(100 Hz). The comprehensive properties are very suitable for use as electric heater supports.展开更多
In this study, integral operational methods are used to investigate the thermally induced transverse vibration of a thin elliptic annulus plate with elastic supports at both radial boundaries.The axisymmetric temperat...In this study, integral operational methods are used to investigate the thermally induced transverse vibration of a thin elliptic annulus plate with elastic supports at both radial boundaries.The axisymmetric temperature distribution is determined by the heat conduction differential equation and its corresponding boundary conditions by employing a unified integral transform technique by use of Mathieu functions and modified Mathieu functions. The solution of thermally induced vibration of the plate with both ends encased with elastic supports is obtained by employing an integral transform for double Laplace differential equation. The thermal moment is derived on the basis of temperature distribution, and its stresses are obtained based on resultant bending moments per unit width. The numerical calculations of the distributions of the transient temperature and its associated stress distributions are shown in the figures.展开更多
Chemical looping combustion(CLC)is a clean and efficient flame-free combustion technology,which combust the fuels by lattice oxygen from a solid oxygen carrier with inherent CO_(2)capture.The development of oxygen car...Chemical looping combustion(CLC)is a clean and efficient flame-free combustion technology,which combust the fuels by lattice oxygen from a solid oxygen carrier with inherent CO_(2)capture.The development of oxygen carriers with low cost and high redox performance is crucial to the whole efficiency of CLC process.As the solid by-product from the sulfuric acid production,pyrite cinder presented excellent redox performance as an oxygen carrier in CLC process.The main components in pyrite cinder are Fe_(2)O_(3),CaSO_(4),Al_(2)O_(3)and SiO_(2)in which Fe_(2)O_(3)is the active component to provide lattice oxygen.In order to systematic investigate the functions of supports(CaSO_4,Al_(2)O_(3)and SiO_(2))in pyrite cinder,three oxygen carriers(Fe_(2)O_(3)-CaSO_(4),Fe_(2)O_(3)-Al_(2)O_(3)and Fe_(2)O_(3)-SiO_(2))were prepared and evaluated in this study.The results showed that Fe_(2)O_(3)-CaSO_(4) displayed high redox activity and cycling stability in the multiple redox cycles.However,both Fe_(2)O_(3)-Al_(2)O_(3)and Fe_(2)O_(3)-SiO_(2)experienced serious deactivation during redox reactions.It indicated that the inert Fe-Si solid solution(Fe_(2)SiO_(4))was formed in the spent Fe_(2)O_(3)-SiO_(2)sample,which decreased the oxygen carrying capacity of this sample.The XPS results showed that the oxygen species on the surface of Fe_(2)O_(3)-CaSO_(4) could be fully recovered after the 20 redox cycles.It can be concluded that CaSO_(4) is the key to the high redox activity and cycling stability of pyrite cinder.展开更多
Glucoamylase was immobilized onto novel porous polymer supports containing cyclic carbonate. The relationship between activity of immobilized glucoamylase and the properties of porous polymer supports was investigated...Glucoamylase was immobilized onto novel porous polymer supports containing cyclic carbonate. The relationship between activity of immobilized glucoamylase and the properties of porous polymer supports was investigated. The operation stability and storage stability of immobilized glucoamylase were studied.展开更多
The load-bearing performance(LBP)of pumpable supports(PPS)is crucial for the stability of longwall pre-driven recovery room(PRR)surrounding rock.However,the unbalanced bearing coefficient(UBC)of the PPS(undertaking un...The load-bearing performance(LBP)of pumpable supports(PPS)is crucial for the stability of longwall pre-driven recovery room(PRR)surrounding rock.However,the unbalanced bearing coefficient(UBC)of the PPS(undertaking unequal load along the mining direction)has not been investigated.A mechanical model of the PRR was established,considering the main roof cantilever beam structure,to derive an assessment formula for the load,the failure criteria,and the UBC of the PPS.Subsequently,the generation mechanisms,and influencing factors of the UBC were revealed.Global sensitivity analysis shows that the main roof hanging length(l_(2))and the spacing between the PPS(r)significantly impact the UBC.A novel design of the PPS and the coupling control technology were proposed and applied to reduce the UBC of the PPS in the adjacent longwall PRR.Monitor results showed no failure of the PPS at the test site,with the UBC(ζ)reduced to 1.1 consistent with the design value(1.15)basically,fully utilizing the collaborative LBP of the PPS.Finally,the maximum roof-to-floor convergence of the PRR was 234 mm,effectively controlling the stability of the surrounding rock of the PRR and ensuring the mining equipment recovery.展开更多
基金supported by the Technology Innovation Program(No.20011712)funded by the Ministry of Trade,Industry,and Energy(MOTIE,Korea)a National Research Foundation of Korea(NRF)grant funded by the Ministry of Science and ICT(MSIT)(No.2022M3J1A108538),Korea+2 种基金the support of the Nano&Material Technology Development Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Science and ICT(RS-2024-00444986,50%)the Institute for Basic Science(IBS-R036-D1)。
文摘Understanding the degradation phenomenon of proton exchange membrane fuel cells under electrochemical cycling requires an analysis of the porous carbon support structure.Key factors contributing to this phenomenon include changes in the total porosity and viable surface area for electrochemical reactions.Electron tomography-based serial section imaging using focused ion beam-scanning electron microscopy(FIB-SEM)can elucidate this phenomenon at a nanoscale resolution.However,this highresolution tomographic analysis requires a huge image dataset and manual inputs in rule-based workflows;these requirements are time-consuming and often cause experimental difficulties and unreliable interpretations.We propose a deep learning-empowered approach comprising a two-step automated process for image interpolation and semantic segmentation to address the practical issues encountered in FIB-SEM electron tomography.An optimally trained interpolation model can reduce the image data requirement by more than 95%to analyze the structural degradation of carbon supports after electrochemical cycling while maintaining the reliability obtained in conventional tomographic analysis with several hundred images.Because the subsequent image segmentation model excludes a complicated manual filtering process,the relevant structural parameters can be reliably measured without human bias.Our sparse-section imaging-based deep learning process can allow cost-efficient analysis and reliable measurement of the degree of cycling-induced carbon corrosion.
文摘With the rapid evolution of artificial intelligence(AI)technologies,the medical industry is undergoing a profound transformation driven by data intelligence.As the foundational element for intelligent diagnosis,precision prevention,and public health governance,medical data is characterized by massive volume,complex structure,diverse sources,high dimensionality,strong privacy,and high timeliness.Traditional data analysis methods are no longer sufficient to meet the comprehensive requirements of data security,intelligent processing,and decision support.Through techniques such as machine learning,deep learning,natural language processing,and multimodal fusion,AI provides robust technical support for medical data cleaning,governance,mining,and application.At the data level,intelligent algorithms enable the standardization,structuring,and interoperability of medical data,promoting information sharing across medical systems.At the model level,AI supports auxiliary diagnosis and precision treatment through image recognition,medical record analysis,and knowledge graph construction.At the system level,intelligent decision-support platforms continuously enhance the efficiency and accuracy of healthcare services.However,the widespread adoption of AI in medicine still faces challenges such as privacy protection,data security,model interpretability,and the lack of unified industry standards.Based on a systematic review of AI’s key supporting technologies in medical data processing and application,this paper focuses on the compliance challenges and adaptation strategies during industry integration and proposes an adaptation framework centered on“technological trustworthiness,data security,and industry collaboration.”The study provides theoretical and practical insights for promoting the standardized and sustainable development of AI in the healthcare industry.
基金supported by Technology Project of Power Construction Corporation of China(DJ-ZDXM-2023-07)。
文摘Fixed supports(rigid structures)and flexible supports(tensioned cable systems)are two main methods used in constructing photovoltaic power plants,and their construction technology has significant differences.This comparative study assessed their environmental impacts on near-surface characteristics during constructing photovoltaic power plants in karst mountainous regions.Our findings revealed significant but different surface disturbances between these installation approaches.While both systems caused terrain modifications through foundation works and access road construction,the fixed support completely disturbed 100%of the construction area compared to<30%disturbance from flexible supports.Compared with the original ground,fixed support caused approximately 22%increase in bedrock exposure rate,while decreased 5%for the flexible support.Additionally,only 17%of the original vegetation coverage remained for the fixed support after construction,compared to 53%for the flexible support.The lower bedrock exposure rate and higher vegetation coverage of flexible support indicated that it had less surface disturbance area than fixed support.These results suggested that in ecologically sensitive karst terrains characterized by severe rocky desertification,challenging revegetation conditions,and low land productivity,flexible support photovoltaic technology represented a significantly less disruptive technology for minimizing surface disturbance and preserving fragile mountain ecosystems.
基金supported by the National Key Research and Development Program of China(No.2021YFB 3401500).
文摘To study the use of a shaft support for the auxiliary shaft of the Xi’anshan Iron Mine,in high-stress strata at a depth between 900 and 1000 m,a new type of mold was developed using the physical similarity model test method,based on the similarity theory,and an experimental model of the shaft lining and surrounding rock was poured.Two sets of large-scale destructive tests were conducted on the shaft lining and surrounding rock.The deformation and failure laws of the shaft lining and surrounding rock under high ground stress and their ultimate horizontal bearing capacity characteristics were studied,and the safety support characteristics of the shaft lining under the interaction of the shaft lining and surrounding rock were obtained.An experimental study demonstrated that the axial pressure on the shaft wall directly affected its ultimate horizontal bearing capacity of the shaft wall.In designing the shaft wall,the influence of the axial pressure on the stress state of the concrete should be considered,and the vertical pressure should be modified to optimize the utilization of the three-dimensional compressive strength of the concrete.The reliability of the 400-mm C30 concrete shaft wall at a depth of 1000 m in the actual project was verified,and the ultimate horizontal bearing capacity of the shaft wall was obtained for a depth of 1000 m.
基金This work was supported by the National Natural Science Foundation of China (No.51036006 and No.51106108) and the Key Program of the Chinese Academy of Sciences (No.KGZD-EW-304-3).
文摘We investigated the effects of supports (CMK-3, SiO2ZrO2, MgO, Al2O3) and promoters (Cu, Ce, Fe) on textual properties of Ni based catalysts. o-Cresol was used as a probe to test the activity of these catalysts under the condition of 230 ℃ and nitrogen pres-sure of 0.1 MPa. The catalysts were characterized by X-ray diffraction, H2 temperature programmed reduction ammonium programmed desorption, and N2 adsorption-desorption isotherms. The results showed that the catalytic performance of Ni/CMK-3 (the conversion of o-cresol reached 45.4%) was significantly better than the other three kinds of supports. The modification of Ni/CMK-3 was also investigated and over 60% conversion of o-cresol was obtained after the addition of Ce (64.6%)and Cu (66.8%) in Ni/CMK-3, whereas the addition of Fe led to a decrease of conversion. In the meantime, Cu changed the products dis-tribution. The appearance of toluene indicated that another pathway existed in the reaction.Accompanied by the ascension of conversion in both sides, side effects also occurred and got more serious. The apparent order of activity for all the tested catalysts was NiCe/CMK-3〉NiCu/CMK-3〉Ni/CMK-3〉NiFe/CMK-3〉Ni/Al2O3Ni/SiO2ZrO2〉Ni/MgO. The reac-tion pathway, involving three routes, was also mentioned in this study.
基金supported by the National Natural Science Foundation of China(21832002,21872050,21808063)the Natural Science Foundation of Shanghai(18ZR1408500)~~
文摘Efficient conversion of lignin to aromatic hydrocarbons via depolymerization and subsequent hydrodeoxygenation is important.Previously,we found that NbOx species played a key role in the activation and cleavage of C-O bonds in lignin and its model compounds.In this study,commercial niobic acid(HY-340),niobium phosphate(NbPO-CBMM)and lab-made layered niobium oxide(Nb2O5-Layer)were chosen as supports to study the effect of Brosted and Lewis acids on the activation of C-O bonds in lignin conversion.A variety of Ru-loaded,Nb-based catalysts with different Ru particle sizes were prepared and applied to the conversion of p-cresol.The results show that all the Ru/Nb-based catalysts produce high mole yields of C7-C9 hydrocarbons(82.3%-9.1%).What's more,Ru/Nb2O5-Layer affords the best mole yield of C7-C9 hydrocarbons and selectivity for C7-C9 aromatic hydrocarbons,of up to 99.1% and 88.0%,respectively.Moreover,it was found that Lewis acid sites play important roles in the depolymerization of enzymatic lignin into phenolic monomers and the cleavage of the C-O bond of phenols.Additionally,the electronic state and particle size of Ru are significant factors which influence the selectivity for aromatic hydrocarbons.A partial positive charge on the metallic Ru surface and a smaller Ru particle size are beneficial in improving the selectivity for aromatic hydrocarbons.
基金supported by grants from the National Institute of Dental and Craniofacial Research, NIH (supported by R01 DE026339)
文摘Calvarial bones are connected by fibrous sutures. These sutures provide a niche environment that includes mesenchymal stem cells(MSCs), osteoblasts, and osteoclasts, which help maintain calvarial bone homeostasis and repair. Abnormal function of osteogenic cells or diminished MSCs within the cranial suture can lead to skull defects, such as craniosynostosis. Despite the important function of each of these cell types within the cranial suture, we have limited knowledge about the role that crosstalk between them may play in regulating calvarial bone homeostasis and injury repair. Here we show that suture MSCs give rise to osteoprogenitors that show active bone morphogenetic protein(BMP) signalling and depend on BMP-mediated Indian hedgehog(IHH) signalling to balance osteogenesis and osteoclastogenesis activity. IHH signalling and receptor activator of nuclear factor kappa-Β ligand(RANKL) may function synergistically to promote the differentiation and resorption activity of osteoclasts. Loss of Bmpr1a in MSCs leads to downregulation of hedgehog(Hh) signalling and diminished cranial sutures. Significantly, activation of Hh signalling partially restores suture morphology in Bmpr1a mutant mice, suggesting the functional importance of BMP-mediated Hh signalling in regulating suture tissue homeostasis. Furthermore, there is an increased number of CD200+ cells in Bmpr1a mutant mice, which may also contribute to the inhibited osteoclast activity in the sutures of mutant mice. Finally, suture MSCs require BMPmediated Hh signalling during the repair of calvarial bone defects after injury. Collectively, our studies reveal the molecular and cellular mechanisms governing cell–cell interactions within the cranial suture that regulate calvarial bone homeostasis and repair.
基金supported by project PEstC/EQB/LA0020/2011 financed by FEDER through COMPETE-Programa Operacional Factores de CompetitividadeFCT-Fundao para a Ciência e a Tecnologia
文摘The synthesis and properties of carbon xerogels are briefly described in this mini-review, emphasizing the methods used for tuning their surface chemistry and textural properties in order to design efficient electrocatalysts for fuel cells. In particular, the role played by the surface functional groups in determining the loading, dispersion, oxidation state and stability of the metal phases is addressed.
基金supported by research grants of the NRF (2019K1A3A1A21032033 and 2021R1A4A1024129) funded by the National Research Foundation under the Ministry of Science, ICT & Future, Koreasupported by the Korea Institute for Advancement of Technology (KIAT) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (P0017363)。
文摘Although the water splitting-based generation of hydrogen as an energy carrier can help to mitigate the global problems of energy shortage and climate change,the practical implementation of this strategy is hindered by the absence of inexpensive high-performance electrocatalysts for the hydrogen evolution reaction (HER).Re-based HER electrocatalysts exhibit predictable high performance within the entire pH range but suffer from arduous formation (i.e.,vulnerability to oxidation) and uncontrollable aggregation,which strongly discourages the maximisation of active site exposure required for activity enhancement.To overcome these limitations,we herein hydrothermally synthesise Re nanoclusters uniformly distributed on nanosheet supports,such as reduced graphene oxide nanosheets (Re NCs@rGO),revealing that this hybrid features abundant exposed active sites and high oxidation resistance.The obtained electrocatalysts were elaborately characterized by microscopic and spectroscopic analyses.Also,density functional theory calculations confirm the optimised synthesis of Re NCs@rGO and indicate the crucial role of Re–O–C junction formation in securing durability.The effective suppression of Re nanocluster detachment/dissolution under HER conditions endows Re NCs@rGO with high electron conductivity and electrochemical stability,resulting in a durability superior to that of commercial Pt/C and an activity similar to that of this reference.As a result,Re NCs@rGO exhibited remarkably small HER overpotentials of 110,130,and 93 m V to deliver a current density of 10 mA cm^(-2) in 0.5 M H_(2)SO_(4),1 M PBS,and 1 M KOH,respectively.Thus,Re NCs@rGO is a promising alternative to conventional Pt-group-metal catalysts and should find applications in next-generation high-performance water splitting systems.
文摘The Vacuum Vessel (VV) system is an essential component of Keda Torus for eX- periment (KTX), and various scenarios might take place on it. The VV's supports should be adequately strong to stand against various loads on VV, which might happen in extreme scenarios. Therefore, the design of VV supports is verified in a single extreme scenario and is subsequently optimized in this report. The numerical simulation based on Finite Element theory is performed as the major method for analysis and optimization. The electromagnetic force in previous analyses serves as the load for the mechanical analyses of supports. During the optimization, the stresses of the VV supports decrease remarkably after introducing cotters. Finally, the optimum design has been worked out. It satisfies the requirements regarding the strength and convenience in assembly.
文摘Based on the γ-Al2O3 support with large-size pores, impregnation-deposition method was adopted to prepare the nano CeO_2/γ-Al2O3 composite supports. The results of XRD showed that there was no CeO_2-Al2O3 mixture or solid solution, indicating that CeO_2 was only loaded on the surface of Al2O3. The CeO_2/γ-Al2O3 composite support had larger specific surface area (170 m2·g-1), while for the non-loaded nanosized CeO_2, the specific surface area was small(~50 m2·g-1). The influence of impregnation and drying methods on the surface properties, thermal stability and crystal structure of composite supports was characterized by XRD, DTA and BET. The CeO_2/γ-Al2O3 composite support prepared by vacuum impregnation and microwave drying was better than that prepared by conventional impregnation and drying.
文摘Gas phase carbonylation of methane is studied in the presence of molecular oxygen over pure carbon carriers and carbon supported rhodium chalcogen halides. Activated carbons and fullerene blacks have been used as carbon supports. XPS and IR-spectroscopy data show the formation of rhodium chalcogen halides in solids prepared by different methods. We have found that the productivity of acetic acid by carbon supported rhodium chalcogen halides depends strongly on the carbon carrier and the method of the catalyst preparation. Namely, the catalyst with highest productivity for the acetic acid is prepared by synthesizing the rhodium chalcogen halide over the carbon support followed by thermal destruction. We have also found that rhodium chalcogen halides over activated carbons are more active compared with fullerene supported catalysts.
基金Project supported by the National Natural Science Foundation of China (Grant No.10872163)the Natural Science Foundation of Education Department of Shaanxi Province (Grant No.08JK394)
文摘The element-free Galerkin method is proposed to solve free vibration of rectangular plates with finite interior elastic point supports and elastically restrained edges.Based on the extended Hamilton's principle for the elastic dynamics system,the dimensionless equations of motion of rectangular plates with finite interior elastic point supports and the edge elastically restrained are established using the element-free Galerkin method.Through numerical calculation,curves of the natural frequency of thin plates with three edges simply supported and one edge elastically restrained,and three edges clamped and the other edge elastically restrained versus the spring constant,locations of elastic point support and the elastic stiffness of edge elastically restrained are obtained.Effects of elastic point supports and edge elastically restrained on the free vibration characteristics of the thin plates are analyzed.
基金Supported by the Sociology Scientific Fund of Heilongjiang Province(12C033)
文摘The agricultural industry development in China has been very successful, but there exist some problems, such as weak financial support strength. With the help of DEA-Malmquist index method, this paper evaluated the efficiency of the agricultural industrialization's financial supports, made a deep study of its influencing factors, which have an extremely important influence on the perfect agricultural industrialization's development.
基金Sponsored by the National Key Technology Research and Development Program (Grant No.2006BAJ12B03-2)
文摘The tangent stiffness matrix of Timoshenko beam element is applied in the buckling of multi-step beams under several concentrated axial forces with elastic supports. From the governing differential equation of lateral deflection including second-order effects,the relationship of force versus displacement is established. In the formulation of finite element method (FEM),the stiffness matrix developed has the same accuracy with the solution of exact differential equations. The proposed tangent stiffness matrix will degenerate into the Bernoulli-Euler beam without the effects of shear deformation. The critical buckling force can be determined from the determinant element assemblage by FEM. The equivalent stiffness matrix constructed by the topmost deflection and slope is established by static condensation method,and then a recurrence formula is proposed. The validity and efficiency of the proposed method are shown by solving various numerical examples found in the literature.
基金Funded by the Major State Basic Research Development Program of China(973 Program)(No.2010CB227105)
文摘To efficiently utilize the kaolin, an economical way of preparing cordierite ceramic with high performance for electric heater supports was put forward. In this study, sintering process, phase transformation, microstructure evolutions were systematically studied by heating microscope, X-ray diffraction, scanning electronic microscope and thermal analysis. Properties(physical properties, electrical properties and coefficient of thermal expansion(CTE)) were tested for comprehensive performance evaluation. The results showed that the utilization of poor quality kaolin broadened the firing range of cordierite ceramic which was from 1 200 to 1 380 ℃. Microstructure becomes loose with increasing of the pore size, which had significant influence on bending strength and electrical properties. High content of K2 O in poor quality kaolin was the reason for liquid phase generation in sintering process, which further leads to microstructural changes. The cordierite ceramic sintered at 1 320 ℃ had the properties as follows: CTE of 1.98×10^(-6) ℃^(-1)(500 ℃), bending strength of 90 MPa, apparent porosity of 15.1%, dielectric constant of 7.5(100 Hz), and volume resistivity of 1.05×109 Ω·cm(100 Hz). The comprehensive properties are very suitable for use as electric heater supports.
文摘In this study, integral operational methods are used to investigate the thermally induced transverse vibration of a thin elliptic annulus plate with elastic supports at both radial boundaries.The axisymmetric temperature distribution is determined by the heat conduction differential equation and its corresponding boundary conditions by employing a unified integral transform technique by use of Mathieu functions and modified Mathieu functions. The solution of thermally induced vibration of the plate with both ends encased with elastic supports is obtained by employing an integral transform for double Laplace differential equation. The thermal moment is derived on the basis of temperature distribution, and its stresses are obtained based on resultant bending moments per unit width. The numerical calculations of the distributions of the transient temperature and its associated stress distributions are shown in the figures.
基金supported by the Program for High-Level Entrepreneurial and Innovative Talents Introduction of Jiangsu ProvinceFoundation of State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering(2021-K56)+1 种基金Foundation of Key Laboratory of Energy Thermal Conversion and Control of Ministry of EducationSenior Talent Foundation of Jiangsu University(20JDG40)。
文摘Chemical looping combustion(CLC)is a clean and efficient flame-free combustion technology,which combust the fuels by lattice oxygen from a solid oxygen carrier with inherent CO_(2)capture.The development of oxygen carriers with low cost and high redox performance is crucial to the whole efficiency of CLC process.As the solid by-product from the sulfuric acid production,pyrite cinder presented excellent redox performance as an oxygen carrier in CLC process.The main components in pyrite cinder are Fe_(2)O_(3),CaSO_(4),Al_(2)O_(3)and SiO_(2)in which Fe_(2)O_(3)is the active component to provide lattice oxygen.In order to systematic investigate the functions of supports(CaSO_4,Al_(2)O_(3)and SiO_(2))in pyrite cinder,three oxygen carriers(Fe_(2)O_(3)-CaSO_(4),Fe_(2)O_(3)-Al_(2)O_(3)and Fe_(2)O_(3)-SiO_(2))were prepared and evaluated in this study.The results showed that Fe_(2)O_(3)-CaSO_(4) displayed high redox activity and cycling stability in the multiple redox cycles.However,both Fe_(2)O_(3)-Al_(2)O_(3)and Fe_(2)O_(3)-SiO_(2)experienced serious deactivation during redox reactions.It indicated that the inert Fe-Si solid solution(Fe_(2)SiO_(4))was formed in the spent Fe_(2)O_(3)-SiO_(2)sample,which decreased the oxygen carrying capacity of this sample.The XPS results showed that the oxygen species on the surface of Fe_(2)O_(3)-CaSO_(4) could be fully recovered after the 20 redox cycles.It can be concluded that CaSO_(4) is the key to the high redox activity and cycling stability of pyrite cinder.
文摘Glucoamylase was immobilized onto novel porous polymer supports containing cyclic carbonate. The relationship between activity of immobilized glucoamylase and the properties of porous polymer supports was investigated. The operation stability and storage stability of immobilized glucoamylase were studied.
基金financial support provided by the Xinjiang Uygur Autonomous Region Key R&D Project Task Special-Department and Department Linkage Project(No.2022B01051)Major Project of Regional Joint Foundation of China(No.U21A20107)+1 种基金Hunan Provincial Natural Science Foundation of China(No.2024JJ4021)the Xinjiang Uygur Autonomous Region Tianchi Introduction Plan(No.2024XGYTCYC03)。
文摘The load-bearing performance(LBP)of pumpable supports(PPS)is crucial for the stability of longwall pre-driven recovery room(PRR)surrounding rock.However,the unbalanced bearing coefficient(UBC)of the PPS(undertaking unequal load along the mining direction)has not been investigated.A mechanical model of the PRR was established,considering the main roof cantilever beam structure,to derive an assessment formula for the load,the failure criteria,and the UBC of the PPS.Subsequently,the generation mechanisms,and influencing factors of the UBC were revealed.Global sensitivity analysis shows that the main roof hanging length(l_(2))and the spacing between the PPS(r)significantly impact the UBC.A novel design of the PPS and the coupling control technology were proposed and applied to reduce the UBC of the PPS in the adjacent longwall PRR.Monitor results showed no failure of the PPS at the test site,with the UBC(ζ)reduced to 1.1 consistent with the design value(1.15)basically,fully utilizing the collaborative LBP of the PPS.Finally,the maximum roof-to-floor convergence of the PRR was 234 mm,effectively controlling the stability of the surrounding rock of the PRR and ensuring the mining equipment recovery.