期刊文献+
共找到417篇文章
< 1 2 21 >
每页显示 20 50 100
Experimental study of pulsed injection on combustion mode transition in a dual-mode supersonic combustor
1
作者 Guangming DU Changchun YAN +3 位作者 Ye TIAN Fuyu ZHONG Wei RAN Jialing LE 《Chinese Journal of Aeronautics》 2025年第9期26-42,共17页
This paper describes an experimental study investigating the effects of sinusoidal pulsed injection on the combustion mode transition in a dual-mode supersonic combustor.The results are obtained under inflow condition... This paper describes an experimental study investigating the effects of sinusoidal pulsed injection on the combustion mode transition in a dual-mode supersonic combustor.The results are obtained under inflow conditions of 2.9 MPa stagnation pressure,1900 K stagnation temperature,and Mach number of 3.0.It has been observed that,at the same equivalence ratio,the combustion mode and flow field structure undergo irreversible changes from a weak combustion state to a strong combustion state at a specific pulsed jet frequency compared to steady jet.For steady jet,the combustion mode is dual-mode.As the frequency of the unsteady jet changes,the combustion mode also changes:it becomes a transition mode at frequencies of 171 Hz and 260 Hz,and a ramjet mode at 216 Hz.Combustion instability under steady jet manifests as a transition in flame stabilization mode.In contrast,under pulsed jet,combustion instability appears either as a transition in flame stabilization mode or as flame blow-off and flashback.The flow field oscillation frequency in the non-reacting flow is 171 Hz,which may resonate with the 171 Hz pulsed jet frequency,making the combustion oscillations most pronounced at this frequency.When the jet frequency is increased to 216 Hz,the combustion intensity significantly increases,and the combustion mode transfers to the ramjet mode.However,further increasing the frequency to 260 Hz results in a decrease in combustion intensity,returning to the transition mode.The frequency of the flow field oscillations varies with the coupling of the pulsed injection frequency,shock wave,and flame,and if the system reaches an unstable state,that is,pre-combustion shock train moves far upstream of the isolator during the pulsed jet period,strong combustion state can be achieved,and this process is irreversible. 展开更多
关键词 Combustion instability Combustion mode transition Dual-mode supersonic combustor Flame stabilization Fuel pulsed injection supersonic aircraft
原文传递
Experimental study on particle dispersion between particle-laden jet and supersonic crossflow in cavity-structured channel
2
作者 Likun MA Pengnian YANG +5 位作者 Zhixun XIA Yifan DUAN Yunchao FENG Libei ZHAO Kangchun ZHAO Luxi XU 《Chinese Journal of Aeronautics》 2025年第6期260-271,共12页
Dispersion of Particle-laden Jet in Supersonic Crossflow(PJSC)is an essential process in many applications,experimental study on which,however,has rarely been reported.In order to gain physical insights into PJSC,a sp... Dispersion of Particle-laden Jet in Supersonic Crossflow(PJSC)is an essential process in many applications,experimental study on which,however,has rarely been reported.In order to gain physical insights into PJSC,a specialized experimental setup capable of producing a supersonic crossflow at Mach 2.6 and a particle-laden jet with particle mass loading up to 60%is developed.Visualization of the particles motion is achieved with the help of high-speed planar laser scattering technology.The dispersion characteristics of PJSC within a supersonic channel structured by cavity are systematically analyzed through six experimental cases.The results indicate that the vortices have a significant influence on particle dispersion,leading to preferential concentration of particles.i.e.particle clusters.The particle dispersion is summarized as the"scale dispersion"pattern.The primary pathways for particles entering the cavity are identified as the shear layer above the cavity and collisions at the cavity rear edge.Among the studied factors,the momentum flux ratio exerts the most substantial influence on the dispersion process.Importantly,a reduction in the injection distance is correlated with less particles entering the cavity.The insights gained from this research provide essential references for furthering understanding particle dispersion mechanisms in supersonic flows and developing highly accurate numerical models. 展开更多
关键词 supersonic crossflow Particle-laden jet Particledispersion Scaledispersion CAVITY
原文传递
Laser ablation ignition modes in a cavity-based supersonic combustor
3
作者 Jianheng JI Zun CAI +4 位作者 Taiyu WANG Yifu TIAN Mingbo SUN Jiajian ZHU Zhenguo WANG 《Chinese Journal of Aeronautics》 2025年第4期112-126,共15页
A numerical and experimental study was conducted to investigate the Laser Ablation(LA)ignition mode in an ethylene-fueled supersonic combustor with a cavity flameholder.Theexperiments were operated under a Mach number... A numerical and experimental study was conducted to investigate the Laser Ablation(LA)ignition mode in an ethylene-fueled supersonic combustor with a cavity flameholder.Theexperiments were operated under a Mach number 2.92 supersonic inflow,with stagnation pressureof 2.4 MPa and stagnation temperature of 1600 K.Reynolds-averaged Navier-Stokes simulationswere conducted to characterize the mixing process and flow field structure.This study identifiedfour distinct LA ignition modes.Under the specified condition,laser ablation in zero and negativedefocusing states manifested two distinct ignition modes termed Laser Ablation Direct Ignition(LADI)mode and Laser Ablation Re-Ignition(LARI)mode,correspondingly.LA ignition in alocal small cavity,created by depressing the flow field regulator,could facilitate the ignition modetransforming from LARI mode to Laser Ablation Transition Ignition(LATI)mode.On the otherhand,the elevation of the flow field regulator effectively inhibited the forward propagation of theinitial flame kernel and reduced the dissipation of LA plasma,further enhancing the LADI mode.Based on these characteristics,the LADI mode was subdivided into strong(LADI-S)and weak(LADI-W)modes.Facilitating the transition of ignition modes through alterations in the local flowfield could contribute to attaining a more effective and stable LA ignition. 展开更多
关键词 Laser ablation Ignition mode supersonic combustor Flame propagation CAVITY
原文传递
Numerical simulation of 3D supersonic asymmetric truncated nozzle based on k-kL algebraic stress model
4
作者 Gang WANG Shuai ZHANG +1 位作者 Jifa ZHANG Yao ZHENG 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 2025年第3期238-251,共14页
The nozzle is a critical component responsible for generating most of the net thrust in a scramjet engine.The quality of its design directly affects the performance of the entire propulsion system.However,most turbule... The nozzle is a critical component responsible for generating most of the net thrust in a scramjet engine.The quality of its design directly affects the performance of the entire propulsion system.However,most turbulence models struggle to make accurate predictions for subsonic and supersonic flows in nozzles.In this study,we explored a novel model,the algebraic stress model k-kL-ARSM+J,to enhance the accuracy of turbulence numerical simulations.This new model was used to conduct numerical simulations of the design and off-design performance of a 3D supersonic asymmetric truncated nozzle designed in our laboratory,with the aim of providing a realistic pattern of changes.The research indicates that,compared to linear eddy viscosity turbulence models such as k-kL and shear stress transport(SST),the k-kL-ARSM+J algebraic stress model shows better accuracy in predicting the performance of supersonic nozzles.Its predictions were identical to the experimental values,enabling precise calculations of the nozzle.The performance trends of the nozzle are as follows:as the inlet Mach number increases,both thrust and pitching moment increase,but the rate of increase slows down.Lift peaks near the design Mach number and then rapidly decreases.With increasing inlet pressure,the nozzle thrust,lift,and pitching moment all show linear growth.As the flight altitude rises,the internal flow field within the nozzle remains relatively consistent due to the same supersonic nozzle inlet flow conditions.However,external to the nozzle,the change in external flow pressure results in the nozzle exit transitioning from over-expanded to under-expanded,leading to a shear layer behind the nozzle that initially converges towards the nozzle center and then diverges. 展开更多
关键词 supersonic nozzle Turbulence model Numerical simulation Performance analysis
原文传递
Collision-Induced Relaxation of CH(X^(2)Π,υ=0)Radical by He,Ar,and N_(2)under Low-Temperature Supersonic Flow Condition
5
作者 Shuze Ma Feiyue Zhou +4 位作者 Ge Sun Chunlei Xiao Wenrui Dong Hongwei Li Xueming Yang 《Chinese Journal of Chemical Physics》 2025年第3期249-258,I0108,共11页
Collision-induced re-laxation process of CH(X^(2)Π,v=0)radical in various bath gases He,Ar,and N_(2)has been investigated ex-perimentally under low-temperature(26-52 K)supersonic flow conditions.The CH radicals were ... Collision-induced re-laxation process of CH(X^(2)Π,v=0)radical in various bath gases He,Ar,and N_(2)has been investigated ex-perimentally under low-temperature(26-52 K)supersonic flow conditions.The CH radicals were generat-ed with internal excitation by multiphoton photolysis of CHBr_(3)at 248 nm,and its rotational temperature was found to relax to the flow temperature in a few microseconds by colliding with bath gas.The relaxation rate coefficients for CH(X^(2)Π,v=0)radical in He,Ar,and N_(2)flow were obtained by time-resolved laser-induced fluorescence measurements,ranging from 10^(-12)cm^(3)·molecule^(-1)·s^(-1)to 10^(-11)cm^(3)·molecule^(-1)·s^(-1).The N_(2)flow exhibits the highest relax-ation rate for CH(X^(2)Π)radical due to its additional rovibrational levels,which allow for more efficient energy dissipation during collisions compared to monoatomic gases.The Ar flow shows a larger relaxation rate than He flow due to its greater polarizability and stronger long-range interaction with the CH(X^(2)Π)radical. 展开更多
关键词 Collision-induced relaxation CH radical Relaxation rate coefficient Low tem-perature supersonic flow conditon
在线阅读 下载PDF
Effect of gradient nanostructures induced by supersonic fine particle bombardment on microstructure and properties of Ni-W-Co-Ta medium-heavy alloy
6
作者 Yi XIONG Miao-miao YANG +5 位作者 Nan DU Yong LI Jin-jin TANG Kang-hao SHU Shu-bo WANG Feng-zhang REN 《Transactions of Nonferrous Metals Society of China》 2025年第6期1875-1889,共15页
The effects of gradient nanostructures induced by supersonic fine particle bombardment(SFPB)on the surface integrity,microstructural evolution,and mechanical properties of a Ni-W-Co-Ta medium-heavy alloy(MHA)were syst... The effects of gradient nanostructures induced by supersonic fine particle bombardment(SFPB)on the surface integrity,microstructural evolution,and mechanical properties of a Ni-W-Co-Ta medium-heavy alloy(MHA)were systematically investigated.The results show that gradient nanostructures are formed on the surface of Ni-W-Co-Ta MHA after SFPB treatment.At a gas pressure of 1.0 MPa and an impact time of 60 s,the ultimate tensile strength and yield strength of the alloy reached the maximum values of 1236 MPa and 758 MPa,respectively,which are 22.5%and 38.8%higher than those of the solid solution treated alloy,and the elongation(46.3%)is close to that of the solid solution treated alloy,achieving the optimal strength–ductility synergy.However,microcracks appear on the surface with excessive gas pressure and impact time,generating the relaxed residual stress and decreased strength.With the increase of the impact time and gas pressure,the depth of the deformation layer and the surface microhardness gradually increase,reaching the maximum values(29μm and HV 451)at 1.0 MPa and 120 s.The surface grain size is refined to a minimum of 11.67 nm.Notably,SFPB treatment has no obvious effect on elongation,and the fracture mode changes from the ductile fracture before treatment to ductile–brittle mixed fracture after treatment. 展开更多
关键词 supersonic fine particle bombardment gradient nanostructure Ni−W−Co−Ta medium-heavy alloy microstructure mechanical properties
在线阅读 下载PDF
MODAL FREQUENCY CHARACTERISTICS OF AXIALLY MOVING BEAM WITH SUPERSONIC/HYPERSONIC SPEED 被引量:4
7
作者 王亮 陈怀海 贺旭东 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2011年第2期163-168,共6页
The vibration characteristics of transverse oscillation of an axially moving beam with high velocity is in- vestigated. The vibration equation and boundary conditions of the free-free axially moving beam are derived u... The vibration characteristics of transverse oscillation of an axially moving beam with high velocity is in- vestigated. The vibration equation and boundary conditions of the free-free axially moving beam are derived using Hamilton's principle. Furthermore, the linearized equations are set up based on Galerkinl s method for the ap- proximation solution. Finally, three influencing factors on the vibration frequency of the beam are considered: (1) The axially moving speed. The first order natural frequency decreases as the axial velocity increases, so there is a critical velocity of the axially moving beam. (2) The mass loss. The changing of the mass density of some part of the beam increases the beam natural frequencies. (3) The thermal effect.' The temperature increase will decrease the beam elastic modulus and induce the vibration frequencies descending. 展开更多
关键词 axially moving beam VIBRATION thermal effect supersonic/hypersonic
在线阅读 下载PDF
Effects of supersonic fine particles bombarding on thermal barrier coatings after isothermal oxidation 被引量:1
8
作者 韩玉君 叶福兴 +2 位作者 丁坤英 王志平 陆冠雄 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第7期1629-1637,共9页
This work was attempted to modify the current technology for thermal barrier coatings(TBCs) by adding an additional step of surface modification,namely,supersonic fine particles bombarding(SFPB) process,on bond co... This work was attempted to modify the current technology for thermal barrier coatings(TBCs) by adding an additional step of surface modification,namely,supersonic fine particles bombarding(SFPB) process,on bond coat before applying the topcoat.After isothermal oxidation at 1000 °C for different time,the surface state of the bond coat and its phase transformation were investigated using X-ray diffraction(XRD),scanning electron microscopy(SEM) equipped with energy-dispersive X-ray spectrometry(EDS),transmission electron microscopy(TEM) and Cr3+ luminescence spectroscopy.The dislocation density significantly increases after SFPB process,which can generate a large number of diffusion channels in the area of the surface of the bond coat.At the initial stage of isothermal oxidation,the diffusion velocity of Al in the bond coat significantly increases,leading to the formation of a layer of stable α-Al2O3 phase.A great number of Cr3+ positive ions can diffuse via diffusion channels during the transient state of isothermal oxidation,which can lead to the presence of(Al0.9Cr0.1)2O3 phase and accelerate the γ→θ→α phase transformation.Cr3+ luminescence spectroscopy measurement shows that the residual stress increases at the initial stage of isothermal oxidation and then decreases.The residual stress after isothermal oxidation for 310 h reduces to 0.63 GPa compared with 0.93 GPa after isothermal oxidation for 26 h.In order to prolong the lifespan of TBCs,a layer of continuous,dense and pure α-Al2O3 with high oxidation resistance at the interface between topcoat and bond coat can be obtained due to additional SFPB process. 展开更多
关键词 thermal barrier coatings(TBCs) supersonic fine particles bombarding(SFPB) isothermal oxidation Cr3+ luminescence spectroscopy dislocation density diffusion channel
在线阅读 下载PDF
NUMERICAL SIMULATION OF SUPERSONIC AXISYMMETRIC FLOW OVER MISSILE AFTERBODY WITH JET EXHAUST USING POSITIVE SCHEMES 被引量:1
9
作者 朱孙科 马大为 +1 位作者 陈二云 乐贵高 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2011年第3期255-261,共7页
Supersonic axisymmetric jet flow over a missile afterbody containing exhaust jet is simulated using the second order accurate positive schemes method developed for solving the axisymmetric Euler equations based on the... Supersonic axisymmetric jet flow over a missile afterbody containing exhaust jet is simulated using the second order accurate positive schemes method developed for solving the axisymmetric Euler equations based on the 2-D conservation laws.Comparisons between the numerical results and the experimental measurements show excellent agreements.The computed results are in good agreement with the numerical solutions obtained by using third order accurate RKDG finite element method.The results show larger gradient at discontinuous points compared with those obtained by second order accurate TVD schemes.It indicates that the presented method is efficient and reliable for solving the axisymmetric jet with external freestream flows,and shows that the method captures shocks well without numerical noise. 展开更多
关键词 computational fluid dynamics supersonic flow positive schemes numerical simulation
在线阅读 下载PDF
Supersonic Two-Dimensional Minimum Length Nozzle Design at High Temperature. Application for Air 被引量:5
10
作者 Toufik Zebbiche ZineEddine Youbi 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2007年第1期29-39,共11页
When the stagnation temperature of a perfect gas increases, the specific heat ratio does not remain constant any more, and start to vary with this temperature. The gas remains perfect, its state equation remains alway... When the stagnation temperature of a perfect gas increases, the specific heat ratio does not remain constant any more, and start to vary with this temperature. The gas remains perfect, its state equation remains always valid, except it will name in more calorically imperfect gas or gas at High Temperature. The goal of this work is to trace the profiles of the supersonic Minimum Length Nozzle with centered expansion when the stagnation temperature is taken into account, lower than the threshold of dissociation of the molecules and to have for each exit Mach number several nozzles shapes by changing the value of the temperature. The method of characteristics is used with a new form of the Prandtl Meyer function at high temperature. The resolution of the obtained equations is done by the second order of fmite differences method by using the predictor corrector algorithm. A study on the error given by the perfect gas model compared to our model is presented. The comparison is made with a calorically perfect gas for goal to give a limit of application of this model. The application is for the air. 展开更多
关键词 supersonic flow minimum length nozzle calorically imperfect gas interpolation Prandtl Meyer function stretching function Simpson quadrature supersonic parameters conception method of characteristics
在线阅读 下载PDF
Integrated supersonic wind tunnel nozzle 被引量:3
11
作者 Junmou SHEN Jingang DONG +4 位作者 Ruiqu LI Jiang ZHANG Xing CHEN Yongming QIN Handong MA 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2019年第11期2422-2432,共11页
In supersonic wind tunnels, the airflow at the exit of a convergent-divergent nozzle is affected by the connection between the nozzle and test section, because the connection is a source of disturbance for supersonic ... In supersonic wind tunnels, the airflow at the exit of a convergent-divergent nozzle is affected by the connection between the nozzle and test section, because the connection is a source of disturbance for supersonic flow and the source of disturbance generated by this disturbance propagates downstream. In order to avoid the disturbance, the test can only be carried out in the rhombus area. However, for the supersonic nozzle, the rhombus region is small, limiting the size and attitude angle of the test model. An integrated supersonic nozzle is a nozzle and a test section as a whole, which is designed to weaken or eliminate the disturbance. The inviscid contour of the supersonic nozzle is based on the method of characteristics. A new curve is formed by the smooth connection between the inviscid contour and test section, and the boundary layer is corrected for the overall curve. Integrated supersonic nozzles with Mach number 1.5 and 2 are designed, which are based on this method. The flow field is validated by numerical and experimental results. The results of the study highlight the importance of the connection about the nozzle outlet and test section. They clearly show that the wave system does not exist at the exit of the supersonic nozzle, and the flow field is uniform throughout the test section. 展开更多
关键词 Boundary layer DISTURBANCE Flow field Integrated supersonic nozzle supersonic wind tunnels The rhombus region
原文传递
Instantaneous and time-averaged flow structures around a blunt double-cone with or without supersonic film cooling visualized via nano-tracer planar laser scattering 被引量:3
12
作者 朱杨柱 易仕和 +2 位作者 何霖 田立丰 周勇为 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第1期368-373,共6页
In a Mach 3.8 wind tunnel, both instantaneous and time-averaged flow structures of different scales around a blunt double-cone with or without supersonic film cooling were visualized via nano-tracer planar laser scatt... In a Mach 3.8 wind tunnel, both instantaneous and time-averaged flow structures of different scales around a blunt double-cone with or without supersonic film cooling were visualized via nano-tracer planar laser scattering (NPLS), which has a high spatiotemporal resolution. Three experimental cases with different injection mass flux rates were carried out. Many typical flow structures were clearly shown, such as shock waves, expansion fans, shear layers, mixing layers, and turbulent boundary layers. The analysis of two NPLS images with an interval of 5 us revealed the temporal evolution characteristics of flow structures. With matched pressures, the laminar length of the mixing layer was longer than that in the case with a larger mass flux rate, but the full covered region was shorter. Structures like K-H (Kelvin-Helmholtz) vortices were clearly seen in both flows. Without injection, the flow was similar to the supersonic flow over a backward- facing step, and the structures were relatively simpler, and there was a longer laminar region. Large scale structures such as hairpin vortices were visualized. In addition, the results were compared in part with the schlieren images captured by others under similar conditions. 展开更多
关键词 blunt cone supersonic flow structure flow visualization supersonic film cooling
原文传递
Effect of Stagnation Temperature on the Supersonic Two-Dimensional Plug Nozzle Conception. Application for Air 被引量:2
13
作者 Toufik Zebbiche ZineEddine Youbi 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2007年第1期15-28,共14页
When the stagnation temperature of a perfect gas increases, the specific heats and their ratio do not remain constant any more and start to vary with this temperature. The gas remains perfect, its state equation remai... When the stagnation temperature of a perfect gas increases, the specific heats and their ratio do not remain constant any more and start to vary with this temperature. The gas remains perfect, its state equation remains always valid, except it will name in more calorically imperfect gas or gas at High Temperature. The goal of this research is to trace the profiles of the supersonic plug nozzle when this stagnation temperature is taken into account, lower than the threshold of dissociation of the molecules, by using the new formula of the Prandtl Meyer function, and to have for each exit Mach number, several nozzles shapes by changing the value of this temperature. A study on the error given by the PG (perfect gas) model compared to our model at high temperature is presented. The comparison is made with the case of a calorically perfect gas aiming to give a limit of application of this model. The application is for the air. 展开更多
关键词 supersonic flow plug nozzle calorically imperfect gas interpolation Prandtl Meyer functiom stretching fimction Simpson quadrature supersonic parameters conception.
在线阅读 下载PDF
Numerical investigation on flow mechanism in a supersonic fluidic oscillator 被引量:2
14
作者 Yongjun SANG Yong SHAN +2 位作者 Jingzhou ZHANG Xiaoming TAN Yuanwei LYU 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2021年第5期214-223,共10页
A type of supersonic fluidic oscillator is proposed and its ability to generate pulsating supersonic jet is proved in this paper.Unsteady two-dimensional numerical simulations reveal that the fluid transforms from sub... A type of supersonic fluidic oscillator is proposed and its ability to generate pulsating supersonic jet is proved in this paper.Unsteady two-dimensional numerical simulations reveal that the fluid transforms from subsonic to supersonic condition in the mixing chamber of oscillator after the supplied flow pressure increases from 1.1×105 Pa to 5.0×105 Pa.When the supersonic flow is formed inside the oscillator,the wall-attached flow represents expansion wave and compression wave alternately.The oscillating frequency will saturate to a certain value with the increase of supplied pressure.Examination of the internal fluid dynamics indicates that the flow direction inside the FeedBack Channel(FBC)is related to the change of the local pressure at the inlet and the outlet of the feedback channel.The vortices produced in the mixing chamber present different distribution characteristics with the change of the fluid’s direction in the FBC.The sweeping jet is divided into two jets with varying flow rate over time by the splitter.In the end of two channels,two jets are accelerated above sound speed by convergent-divergent nozzle.Therefore,pulsating supersonic jets are produced at two outlets for this type of fluidic oscillator. 展开更多
关键词 Convergent-divergent nozzle Feedback channel Flow characteristics supersonic flow supersonic fluidic oscillator
原文传递
Attenuation of boundary-layer instabilities for natural laminar flow design on supersonic highly swept wings 被引量:1
15
作者 Han NIE Wenping SONG +1 位作者 Zhonghua HAN Kefeng ZHENG 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第11期118-137,共20页
To meet the challenge of drag reduction for next-generation supersonic transport aircraft,increasing attention has been focused on Natural Laminar Flow(NLF)technology.However,the highly swept wings and high-Reynolds-n... To meet the challenge of drag reduction for next-generation supersonic transport aircraft,increasing attention has been focused on Natural Laminar Flow(NLF)technology.However,the highly swept wings and high-Reynolds-number conditions of such aircraft dramatically amplify Crossflow(CF)instabilities inside boundary layers,making it difficult to maintain a large laminar flow region.To explore novel NLF designs on supersonic wings,this article investigates the mechanisms underlying the attenuation of Tollmien-Schlichting(TS)and CF instabilities by modifying pressure distributions.The evolution of TS and CF instabilities are evaluated under typical pressure distributions with different leading-edge flow acceleration region lengths,pressure coefficient slopes and pressure coefficient deviations.The results show that shortening the leading-edge flow acceleration region and using a flat pressure distribution are favorable for suppressing CF instabilities,and keeping a balance of disturbance growth between positive and negative wave angles is favorable for attenuating TS instabilities.Based on the uncovered mechanisms,a strategy of supersonic NLF design is proposed.Examination of the proposed strategy at a 60°sweep angle and Ma=2 presents potential to exceed the conventional NLF limit and achieve a transition Reynolds number of 17.6million,which can provide guidance for NLF design on supersonic highly swept wings. 展开更多
关键词 supersonic transport aircraft Natural laminar flow design supersonic flow Highly-swept wings Transition delay Linear stability theory
原文传递
NUMERICAL STUDIES ON THE MIXING OF CH_4 AND KEROSENE INJECTED INTO A SUPERSONIC FLOW WITH H_2 PILOT INJECTION 被引量:1
16
作者 徐胜利 岳朋涛 韩肇元 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2001年第4期468-477,共10页
Two-fluid model and divisional computation techniques were used. The multispecies gas fully N-S equations were solved by upwind TVD scheme. Liquid phase equations were solved by NND scheme. The phases-interaction ODE ... Two-fluid model and divisional computation techniques were used. The multispecies gas fully N-S equations were solved by upwind TVD scheme. Liquid phase equations were solved by NND scheme. The phases-interaction ODE equations were solved by 2nd Runge-Kutta approach. The favorable agreement is obtained between computational results and PLIF experimental results of iodized air injected into a supersonic flow. Then, the numerical studies,were carried out on the mixing of CH, and kerosene injected into a supersonic flow with H-2 pilot injection. The results indicate that the penetration of kerosene approaches maximum when it is injected from the second injector. But the kerosene is less diffused compared with the gas fuels. The free droplet region appears in the flow field. The mixing mechanism of CH4 with H-2 pilot injection is different from that of kerosene. In the staged duct, H-2 can be entrained into both recirculation zones produced by the step mid injectors. But CH, can only be carried into the recirculation between the injectors. Therefore, initiations of H, and CH4 carl occur in those regions. The staged duct is better in enhancing mixing and initiation with H-2 pilot flame. 展开更多
关键词 hydrocarbon fuels supersonic flow supersonic combustion numerical stimulation
在线阅读 下载PDF
PARALLELIZED UPWIND FLUX SPLITTING SCHEME FOR SUPERSONIC REACTING FLOWS ON UNSTRUCTURED HYBRID MESHES
17
作者 王江峰 伍贻兆 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2007年第3期218-224,共7页
A parallelized upwind flux splitting scheme for supersonic reacting flows on hybrid meshes is presented. The complexity of super/hyper-sonic combustion flows makes it necessary to establish solvers with higher resolut... A parallelized upwind flux splitting scheme for supersonic reacting flows on hybrid meshes is presented. The complexity of super/hyper-sonic combustion flows makes it necessary to establish solvers with higher resolution and efficiency for multi-component Euler/N-S equations. Hence, a spatial second-order van Leer type flux vector splitting scheme is established by introducing auxiliary points in interpolation, and a domain decomposition method used on unstructured hybrid meshes for obtaining high calculating efficiency. The numerical scheme with five-stage Runge-Kutta time step method is implemented to the simulation of combustion flows, including the supersonic hydrogen/air combustion and the normal injection of hydrogen into reacting flows. Satisfying results are obtained compared with limited references. 展开更多
关键词 supersonic combustion chemical reaction upwind scheme PARALLELIZATION
在线阅读 下载PDF
Modeling on impact zone volume generated by coherent supersonic jet and conventional supersonic jet
18
作者 Guang-sheng Wei Rong Zhu +2 位作者 Ling-zhi Yang Kai Dong Run-zao Liu 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2018年第7期681-691,共11页
The supersonic oxygen supply technology, including the coherent supersonic jet and the conventional supersonic jet, is now widely adopted in electric arc furnace steelmaking process to increase the bath stirring, reac... The supersonic oxygen supply technology, including the coherent supersonic jet and the conventional supersonic jet, is now widely adopted in electric arc furnace steelmaking process to increase the bath stirring, reaction rates and energy efficiency. However, there has been limited study on the impact characteristics of the coherent supersonic jet and the conventional supersonic jet. Thus, integrating theoretical models and numerical simulations, an optimized theoretical model was developed to calculate the volume of the impact zone generated by coherent and conventional supersonic jets. The optimized theoretical model was validated by water model experiments. The results show that the jet impact zone volume with coherent supersonic jet is much larger than that with conventional supersonic jet at the same lance height. The kd value, a newly defined variable that is the product of the dimensionless quantity of velocity and free distance, reflects the velocity attenuation and the potential core length of the main supersonic jet, which is a key parameter of the optimized theoretical model. The optimized theoretical model can well predict the jet impact zone volumes of coherent and conventional supersonic jets with the error no more than 3.62 and 9.37%, respectively. 展开更多
关键词 Coherent supersonic jet Conventional supersonic jet Impact zone volume Numerical simulation Optimized theoretical model
原文传递
Characteristics of a coherent jet enshrouded in a supersonic fuel gas
19
作者 Fei Zhao Rong Zhu Wen-rui Wang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2020年第2期173-180,共8页
Based on a current coherent jet,this study proposes a supersonic combustion(SC)coherent jet in which the main oxygen jet is surrounded by a supersonic fuel gas.The characteristics of the proposed coherent jet are anal... Based on a current coherent jet,this study proposes a supersonic combustion(SC)coherent jet in which the main oxygen jet is surrounded by a supersonic fuel gas.The characteristics of the proposed coherent jet are analyzed using experimental methods and numerical simulations in the high-temperature environment of electric arc furnace(EAF)steelmaking.The SC coherent jet achieved stable combustion in the EAF steelmaking environment.The simulated combustion temperature of the supersonic shrouding methane gas was 2930 K,slightly below the theoretical combustion temperature of methane–oxygen gas.The high speed and temperature of the supersonic flame effectively weakened the interaction between the main oxygen jet and the external ambient gas,inhibiting the radial expansion of the main oxygen jet and maintaining its high speed and low turbulence over a long distance.These features improved the impact capacity of the coherent jet and strengthened the stirring intensity in the EAF bath. 展开更多
关键词 EAF steelmaking coherent jet supersonic shrouding fuel gas supersonic combustion field characteristics
在线阅读 下载PDF
Surface destructive mechanism on high-temperature ablation, supersonic-erosion, dreg-adherence and corrosion
20
作者 XIAO Jun CHEN Jian-min ZHOU Hui-di LI Tie-hu ZHANG Qiu-yu 《中国有色金属学会会刊:英文版》 CSCD 2004年第z1期429-434,共6页
The exhaust and flame from a supersonic airborne missile high-energy smoke-born engine (SAMHSE) may lead to high-temperature ablation, supersonic-erosion, dreg-adherence (HTASED) and corrosion on the launcher slide tr... The exhaust and flame from a supersonic airborne missile high-energy smoke-born engine (SAMHSE) may lead to high-temperature ablation, supersonic-erosion, dreg-adherence (HTASED) and corrosion on the launcher slide track, causing serious problems to the operation and decreasing the lifetime of the launcher. Therefore, it is imperative to study the destructive mechanism so as to guarantee the smooth operation and increase the lifetime of military equipments. Accordingly, HTASED and corrosion were systematically observed and analyzed with the emphasis placed on the mechanism investigations making use of a series evaluation tests, typical missile engine simulation tests, national military standard methods, scanning electron microscopy and electrochemical corrosion tests. It is found that the thermal impact of high-temperature flame and supersonic erosion of corrosive melting particle jet of the SAMHSE lead to surface defects of micro-cracks, denudation and corrosive residue. Some defects reach to metal base becoming to "corrosive channels". Repetitive HTASED may cause ablation-adhesion fatigue stress, which enhances the surface corrosion and destruction. HTASED and corrosion are related to the type of a SAMHSE fuel and experience of the launcher. Surface destruction is related to synergistic effects of the HTASED. The ablated and failed Al or steel surface is liable to electrochemical corrosion characterized by pitting in humid and salt-spray environment. 展开更多
关键词 high-temperature ablation supersonic-erosion dreg-adherence SIMULATING test supersonic AIRBORNE MISSILE HIGH-ENERGY smoke-born engine CORROSION
在线阅读 下载PDF
上一页 1 2 21 下一页 到第
使用帮助 返回顶部