Bone-mimicking gradient porous NiTi shape memory alloys(SMAs)are promising for orthopedic im-plants due to their distinctive superelastic functional properties.However,premature plastic deformation in weak areas such ...Bone-mimicking gradient porous NiTi shape memory alloys(SMAs)are promising for orthopedic im-plants due to their distinctive superelastic functional properties.However,premature plastic deformation in weak areas such as thinner struts,nodes,and sharp corners severely deteriorates the superelasticity of gradient porous NiTi SMAs.In this work,we prepared gradient porous NiTi SMAs with a porosity of 50%by additive manufacturing(AM)and achieved a remarkable improvement of superelasticity by a simple solution treatment regime.After solution treatment,phase transformation temperatures dropped signif-icantly,the dislocation density decreased,and partial intergranular Ti-rich precipitates were transferred into the grain.Compared to as-built samples,the strain recovery rate of solution-treated samples was nearly doubled at a pre-strain of 6%(up to 90%),and all obtained a stable recoverable strain of more than 4%.The remarkable superelasticity improvement was attributed to lower phase transformation tem-peratures,fewer dislocations,and the synergistic strengthening effect of intragranular multi-scale Ti-Ni precipitates.Notably,the gradient porous structure played a non-negligible role in both superelasticity deterioration and improvement.The microstructure evolution of the solution-treated central strut after constant 10 cycles and the origin of the stable superelastic response of gradient porous NiTi SMAs were revealed.This work provides an accessible strategy for improving the superelastic performance of gra-dient porous NiTi SMAs and proposes a key strategy for achieving such high-performance architectured materials.展开更多
Solid-state cooling technologies have been considered as potential alternatives for vapor compression cooling systems.The search for refrigeration materials displaying a unique combination of pronounced caloric effect...Solid-state cooling technologies have been considered as potential alternatives for vapor compression cooling systems.The search for refrigeration materials displaying a unique combination of pronounced caloric effect,low hysteresis,and high reversibility on phase transformation was very active in recent years.Here,we achieved increase in the elastocaloric reversibility and decrease in the friction dissipation of martensite transformations in the superelastic nano-grained NiTi alloys obtained by cold rolling and annealing treatment,with very low stress hysteresis(6.3 MPa)under a large applied strain(5%).Large adiabatic temperature changes(△T_(max)=16.3 K atε=5%)and moderate COP_(mater)values(maximum COP_(mater)=11.8 atε=2%)were achieved.The present nano-grained NiTi alloys exhibited great potential for applications as a highly efficient elastocaloric material.展开更多
Gradient nanostructured(GNS)metallic materials are commonly achieved by gradient severe plastic de-formation with a gradient of nano-to micro-sized structural units from the surface/boundaries to the center.Certainly,...Gradient nanostructured(GNS)metallic materials are commonly achieved by gradient severe plastic de-formation with a gradient of nano-to micro-sized structural units from the surface/boundaries to the center.Certainly,such GNS can be inversely positioned,which however has not yet been reported.The present work reports a facile method in deformation gradient control to attain inverse gradient nanostructured(iGNS),i.e.,tailoring the cross-section shape,successfully demonstrated in Ti-50.3Ni shape memory alloy(SMA)wire through cold rolling.The microstructure of the rolled wire is characterized by a macroscopic inverse gradient from boundaries to the center—the average sizes of grain and martensite domain evolve from micrometer to nanometer scale.The iGNS leads to a gradient martensitic transforma-tion upon stress,which has been proved to be effectively reversible via in-situ bending scanning electron microscopy(SEM)observations.The iGNS Ti-50.3Ni SMA exhibits quasi-linear superelasticity(SE)in a wide temperature range from 173 to 423 K.Compared to uniform cold rolling,the gradient cold rolling with less overall plasticity further improves SE strain(up to 4.8%)and SE efficiency.In-situ tensiling synchrotron X-ray diffraction(SXRD)analysis reveals the underlying mechanisms of the unique SE in the iGNS SMAs.It provides a new design strategy to realize excellent SE in SMAs and sheds light on the advanced GNS metallic materials.展开更多
Improving the shape memory effect and superelasticity of Cu-based shape memory alloys(SMAs)has always been a research hotspot in many countries.This work systematically investigates the effects of Gyroid triply period...Improving the shape memory effect and superelasticity of Cu-based shape memory alloys(SMAs)has always been a research hotspot in many countries.This work systematically investigates the effects of Gyroid triply periodic minimal surface(TPMS)lattice structures with different unit sizes and volume fractions on the manufacturing viability,compressive mechanical response,superelasticity and heating recovery properties of CuAlMn SMAs.The results show that the increased specific surface area of the lattice structure leads to increased powder adhesion,making the manufacturability proportional to the unit size and volume fraction.The compressive response of the CuAlMn SMAs Gyroid TPMS lattice structure is negatively correlated with the unit size and positively correlated with the volume fraction.The superelastic recovery of all CuAlMn SMAs with Gyroid TPMS lattice structures is within 5%when the cyclic cumulative strain is set to be 10%.The lattice structure shows the maximum superelasticity when the unit size is 3.00 mm and the volume fraction is 12%,and after heating recovery,the total recovery strain increases as the volume fraction increases.This study introduces a new strategy to enhance the superelastic properties and expand the applications of CuAlMn SMAs in soft robotics,medical equipment,aerospace and other fields.展开更多
Martensitic transformations,mechanical properties,shape memory effect and superelasticity of Ti-xZr-(30-x)Nb-4Ta(x=15,16,17 and 18;at%) alloys were investigated.X-ray diffraction(XRD),optical microscopy(OM) and transm...Martensitic transformations,mechanical properties,shape memory effect and superelasticity of Ti-xZr-(30-x)Nb-4Ta(x=15,16,17 and 18;at%) alloys were investigated.X-ray diffraction(XRD),optical microscopy(OM) and transmission electron microscopy(TEM) results indicated that the Ti-16Zr-14Nb-4Ta,Ti-17Zr-13Nb-4Ta and Ti-18Zr-12Nb4Ta alloys were mainly composed of α″-martensite,while the Ti-15Zr-15Nb-4Ta alloy was characterized by predominant p phase.The reverse martensitic transformation temperatures increased when Nb was replaced by Zr,indicating stronger p-stabilizing effect for the former.The Ti-15Zr-15Nb-4Ta alloy displayed superelasticity during tensile deformation with a recovery strain of 3.51%.For the other three alloys with higher Zr content,the martensitic reorientation occurred during tensile deformation,resulting in shape memory recovery upon subsequent heating.The maximum shape memory effect was 3.46% in the Ti-18Zr-12Nb-4Ta alloy.展开更多
Functional stability of superelasticity is crucial for practical applications of shape memory alloys.It is degraded by a Lüders-like deformation with elevated local stress concentration under tensile load.By incr...Functional stability of superelasticity is crucial for practical applications of shape memory alloys.It is degraded by a Lüders-like deformation with elevated local stress concentration under tensile load.By increasing the degree of solute supersaturation and applying appropriate thermomechanical treatments,a Ti-Ni alloy with nanocrystallinity and dispersed nanoprecipitates is obtained.In contrast to conventional Ti-Ni alloys,the superelasticity in the target alloy is accompanied by homogeneous deformation due to the sluggish stress-induced martensitic transformation.The alloy thus shows a fully recoverable strain of 6%under tensile stress over 1 GPa and a large adiabatic temperature decrease of 13.1 K under tensile strain of 4.5%at room temperature.Moreover,both superelasticity and elastocaloric effect exhibit negligible degradation in response to applied strain of 4%during cycling.We attribute the improved functional stability to low dislocation activity resulting from the suppression of localized deformation and the combined strengthening effect of nanocrystalline structure and nanoprecipitates.Thus,the design of such a microstructure enabling homogeneous deformation provides a recipe for stable superelasticity and elastocaloric effect.展开更多
In the present study,the in-situ TiB whisker was introduced into the Ti-Ni-Hf shape memory alloy composite by the in-situ reaction of the Ti-Ni-Hf alloy powder and TiB2 powders.The(Ti,Hf)2 Ni phase also precipitated,a...In the present study,the in-situ TiB whisker was introduced into the Ti-Ni-Hf shape memory alloy composite by the in-situ reaction of the Ti-Ni-Hf alloy powder and TiB2 powders.The(Ti,Hf)2 Ni phase also precipitated,accompanied with the formation of TiB phase.Moreover,the residual TiB2 particles can be observed,as the TiB2 content was higher than 0.7 wt%.Thereinto,the larger scale reinforcements constituted the quasi-continuous network structure.The smaller scale reinforcements distributed in the interior of the network structure.The two-scale reinforcements showed the uniform distribution at macroscopic level and inhomogeneous distribution at microscopic level.The single stage B19?B2 martensitic transformation occurred in the Ti-Ni-Hf composites.In addition,the martensitic transformation temperatures continuously decreased with the increased TiB2 content owing to the compositional and mechanical effect.The moderate TiB2 addition not noly enhanced the matrix strength,but also significantly improved the superelasticity.The excellent superelaticity with the completely recoverable strain of 4%can be obtained in the Ti-Ni-Hf composite containing 0.7 wt%TiB2.展开更多
For the first time,this work comprehensively studied the effectiveness of precipitation hardening achieved by aging treatment in improving the tensile superelasticity of NiTi alloys fabricated by elec-tron beam wire-f...For the first time,this work comprehensively studied the effectiveness of precipitation hardening achieved by aging treatment in improving the tensile superelasticity of NiTi alloys fabricated by elec-tron beam wire-feed additive manufacturing(EBAM),which possesses inherent advantages in producing dense and oxidation-free structures.Aging treatments under three temperatures(450,350,and 250℃)and different durations were conducted,and the resultant performance of tensile superelasticity,together with the corresponding evolution of precipitation and phase transformation behavior were investigated for the EBAM-fabricated NiTi alloys.Results showed that by appropriate aging treatment,EBAM fabricated NiTi alloys could achieve excellent recovery rates of approximately 95%and 90%after the 1st and 10th load/unload cycle for a maximum tensile strain of 6%,which were almost the highest achieved so far by AM processed NiTi alloys and close to those of some conventional NiTi alloys.The improvement of tensile superelasticity benefited from the fine and dispersive Ni4Ti3 precipitates,which could be introduced by aging at 350℃ for 4 h or at 250℃ for 200 h.Moreover,the large amount of Ni4Ti3 precipitates would promote the intermediate R-phase transformation and bring a two-stage or three-stage transformation sequence,which depended on whether the distribution of the precipitation was homogeneous or not.This work could provide guidance for the production of NiTi alloys with good tensile superelasticity by EBAM or other additive manufacturing processes.展开更多
Materials that undergo a reversible change of crystal structure through martensitic transformation (MT) possess unusual functionalities including shape memory, superelasticity, and low/negative thermal ex- pansion. ...Materials that undergo a reversible change of crystal structure through martensitic transformation (MT) possess unusual functionalities including shape memory, superelasticity, and low/negative thermal ex- pansion. These properties have many advanced applications, such as actuators, sensors, and energy conversion, but are limited typically in a narrow temperature range of tens of Kelvin. Here we report that, by creating a nano-scale concentration modulation via phase separation, the MT can be rendered continuous by an in-situ elastic confinement mechanism. Through a model titanium alloy, we demon- strate that the elastically confined continuous MT has unprecedented properties, such as superelasticity from below 4.2 K to 500 K, fully tunable and stable thermal expansion, from positive, through zero, to negative, from below 4.2 K to 573 K, and high strength-to-modulus ratio across a wide temperature range. The elastic tuning on the MT, together with a significant extension of the crystal stability limit, provides new opportunities to explore advanced materials.展开更多
TiNi alloys with high content Ni(52-55 at.%)are perfectly suitable for preparing wear-and corrosionresistant parts that service on the space station,spacecraft,and submarine,because of their superior superelasticity,h...TiNi alloys with high content Ni(52-55 at.%)are perfectly suitable for preparing wear-and corrosionresistant parts that service on the space station,spacecraft,and submarine,because of their superior superelasticity,high strength,and hardwearing.However,the fabrication of complicated Ni-rich TiNi parts by the traditional machining method often faces problems of poor precision,low efficiency,and high cost.In this work,we succeed in preparing an excellent Ti_(47)Ni_(53) alloy by selective laser melting(SLM),and thus,open a new way for the efficient and precise formation of complicated Ni-rich TiNi parts with superelasticity and hardwearing.An optimized processing window for compact parts without defects is reported.The elaborately fabricated Ti_(47)Ni_(53) alloy exhibited a breaking strain of 11%,a breaking stress of 2.0 GPa,a superelastic strain of 9%,and a better hardwearing than that of casting and quenched Ti_(47)Ni_(53) alloy.Besides,the microstructure,phase transformation,and deformation,as well as their influence mechanisms are investigated by in situ transmission electron microscope(TEM)and high-energy X-ray diffraction(HE-XRD).The results obtained are of significance for both fundamental research and technological applications of SLM-fabricated high Ni content TiNi alloys.展开更多
The effects of annealing on the phase transformation behavior and superelasticity of cold-rolled Ti50Ni48Fe2 shape memory alloy were extensively investigated. Curves of temperature dependence of electrical resistivity...The effects of annealing on the phase transformation behavior and superelasticity of cold-rolled Ti50Ni48Fe2 shape memory alloy were extensively investigated. Curves of temperature dependence of electrical resistivity reveal that both the cold-rolled and annealed specimens exhibit a B2→R→B19’two-stage martensitic transformation upon cooling and a B19’→B2 one-stage transformation upon heating, although the austenitic transformation temperature decreases with the increase of the annealing temperature. Tensile stress–strain curves show the critical stress for stress-induced martensite(rSIM)of Ti50Ni48Fe2 alloys decreases with the increase of annealing temperature due to the decrement of dislocation density caused by the recrystallization. As a result, the rSIM decreases. Upon a cold-rolling and annealing at 623 K for30 min, the Ti50Ni48Fe2 alloy exhibits excellent superelasticity with the maximum recoverable strain of 5.8 % at a loading strain of 7 %. In such a case, a complete superelasticity of 5 % can be obtained in the Ti50Ni48Fe2 alloy after deformation increasing to 15 cycles.展开更多
Superelasticity has been widely used in various fields.High elastic limit simultaneously with large superelasticity is urgent in the critical applications.In this study,we have employed the high entropy alloy(HEA)conc...Superelasticity has been widely used in various fields.High elastic limit simultaneously with large superelasticity is urgent in the critical applications.In this study,we have employed the high entropy alloy(HEA)concept to develop a new TiHfNiFe-Nb eutectic HEA(EHEA)based on the TiNi-Nb eutectic alloy.The results show the directional catkin-like microstructure with the fiber eutectic in the center and the lamella eutectic in the outside form along the directional solidification direction when the growth rate is 60 mm/h.The corresponding specimens display the high strength of 1409 MPa and superelasticity of 3.1%in tension at room temperature,which is attributed to the synergetic effect of high entropy,preferred orientation,ordered body-centered cubic(B2)phase and disordered body-centered cubic phase in the eutectic structure.This work sheds light on designing the high-performance superelastic function materials with EHEAs.展开更多
TiNi shape memory alloy thin films were deposited by using a RF magnetron sputtering apparatus. The transformation and shape memory characteristics of the thin films have been investigated by using DSC and tensile tes...TiNi shape memory alloy thin films were deposited by using a RF magnetron sputtering apparatus. The transformation and shape memory characteristics of the thin films have been investigated by using DSC and tensile tests. After aging, perfect shape memory effect and superelasticity were achieved in TiNi thin films.展开更多
The Cu-based shape memory alloy(SMA)with highly oriented columnar crystals is an ideal candidate for the commercial application,especially the ones obtained through rapid cooling via additive manufacturing method.In t...The Cu-based shape memory alloy(SMA)with highly oriented columnar crystals is an ideal candidate for the commercial application,especially the ones obtained through rapid cooling via additive manufacturing method.In this work,Cu_(71)Al_(18)Mn_(11)(at%)shape memory alloy with strong<001>texture columnar grains was successfully prepared by selective laser melting(SLM).An L27(313)orthogonal array was designed to systematically investigate the effects of laser power,scanning speed,scanning spacing,layer thickness and their interactions on the forming quality of Cu_(71)Al_(18)Mn_(11)alloys.Cu_(71)Al_(18)Mn_(11)alloys with density of 7.3204 g·cm^(-3)and relative density of 99.18%were successfully prepared when the laser power,scanning speed,scanning distance and layer thickness were 240 W,1000 mm·s^(-1),0.11 mm and 25μm,the transformation onset temperature(Ms),martensite phase transformation termination temperature(Mf),austenite phase transformation onset temperature(AS)and austenite phase transformation termination temperature(Af)are-21.84,-26.04,-15.75 and-12.36℃,respectively.The compression strength and fracture strain along the building direction(BD)were significantly superior to the scanning direction(SD),while the superelasticity of compression along the SD reached 2.50%,which was better than that of2.32%along BD.The mechanical property and superelasticity anisotropy due to the formation of columnar grains and texture were discussed.This study shows that SLM is a proposed method for the preparation of Cu-Al-Mn SMAs with high superelasticity,which provides a new strategy for enhancing the shape memory alloy superelasticity.展开更多
The superelastic properties of NiTi thin films prepared with sputtering were studied. To characterize their superelasticity, tensile and bulging and indentation tests were performed. The measured mechanisms using thes...The superelastic properties of NiTi thin films prepared with sputtering were studied. To characterize their superelasticity, tensile and bulging and indentation tests were performed. The measured mechanisms using these three methods were compared, and the factors that influence superelasticity were described.展开更多
The effect of aging treatment on the superelasticity and martensitic transformation critical stress in columnar-grained Cu_(71)Al_(18)Mn_(11) shape memory alloy(SMA) at the temperature ranging from 250°C ...The effect of aging treatment on the superelasticity and martensitic transformation critical stress in columnar-grained Cu_(71)Al_(18)Mn_(11) shape memory alloy(SMA) at the temperature ranging from 250°C to 400°C was investigated. The microstructure evolution during the aging treatment was characterized by optical microscopy, scanning electron microscopy, transmission electron microscopy, and X-ray diffraction. The results show that the plate-like bainite precipitates distribute homogeneously within austenitic grains and at grain boundaries. The volume fraction of bainite increases with the increase in aging temperature and aging time, which substantially improves the martensitic transformation critical stress of the alloy, whereas the bainite only slightly affects the superelasticity. This behavior is attributed to a coherent relationship between the bainite and the austenite, as well as to the bainite and the martensite exhibiting the same crystal structure. The variations of the martensitic transformation critical stress and the superelasticity of columnar-grained Cu_(71)Al_(18)Mn_(11) SMA with aging-temperature and aging time are described by the Austin-Rickett equation, where the activation energy of bainite precipitation is 77.2 kJ ·mol1. Finally, a columnar-grained Cu_(71)Al_(18)Mn_(11) SMA with both excellent superelasticity(5%-9%) and high martensitic transformation critical stress(443-677 MPa) is obtained through the application of the appropriate aging treatments.展开更多
The study of the influence of the cobalt content on the cyclic stability of superelasticity(SE)was carried out in quenched Ni_(44)Fe_(19)Ga_(27)Co_(10)and Ni_(39)Fe_(19)Ga_(27)Co_(15)(at.%)single crystals under compre...The study of the influence of the cobalt content on the cyclic stability of superelasticity(SE)was carried out in quenched Ni_(44)Fe_(19)Ga_(27)Co_(10)and Ni_(39)Fe_(19)Ga_(27)Co_(15)(at.%)single crystals under compression.It is shown that an increase in the cobalt content leads to embrittlement of the material and a decrease in the cyclic stability of SE.In Ni_(44)Fe_(19)Ga_(27)Co_(10)single crystals,during the first 20 loading/unloading cycles,the elastic energy relaxation occurs along with the formation of dislocations and residual martensite,which leads to a decrease in critical stress of martensite formation and in stress hysteresis.During the next 80 cycles,SE becomes more stable.Stabilization is accompanied by a slight change in the parameters.On the contrary,Ni_(39)Fe_(19)Ga_(27)Co_(15)single crystals are characterized by high-strength characteristics,which lead to high SE stability during the first 20 loading/unloading cycles.However,after 20 cycles,a strong degradation of the SE is observed through the formation of microcracks,which ultimately leads to the destruction of the sample.The results of work are replicable for cycling at different temperatures from all temperature ranges of superelasticity.展开更多
The influence of a small amount of α phase in β′ matrix on shape memory effect and superelasticity of CuZnAl shape memory alloy has been studied systematically.It has been found that transformation temperature can ...The influence of a small amount of α phase in β′ matrix on shape memory effect and superelasticity of CuZnAl shape memory alloy has been studied systematically.It has been found that transformation temperature can be adjusted in a large scale by controlling the amount of α phase, meanwhile,shape memory effect and superelasticity do not decrease obviously when there exists a small amount of α phase.Based on the optical and trans- mission electron microscopy observation,the influ- ence of α phase on shape memory effect and superelasticity has been discussed.展开更多
Ni50Mn25Ga20Fe5 ferromagnetic shape memory alloy microwires with diameters of^30-50μm and grain sizes of^2-5μm were prepared by melt-extraction technique.A step-wise chemical ordering annealing was carried out to im...Ni50Mn25Ga20Fe5 ferromagnetic shape memory alloy microwires with diameters of^30-50μm and grain sizes of^2-5μm were prepared by melt-extraction technique.A step-wise chemical ordering annealing was carried out to improve the superelasticity strain and recovery ratio which were hampered by the internal stress,compositional inhomogeneity,and high-density defects in the as-extracted Ni50Mn25Ga20Fe5 microwires.The annealed microwires exhibited enhanced atomic ordering degree,narrow thermal hysteresis,and high saturation magnetization under a low magnetic field.As a result,the annealed microwire showed decreased superelastic critical stress,improved reversibility,and a high superelastic strain(1.9%)with a large recovery ratio(>96%).This kind of filamentous material with superior superelastic effects may be promising materials for minor-devices.展开更多
Ti50.6Pd30Ni19.4 and Ti51Pd28Ni21 (Ce) alloys have been prepared under various temperatures for long time annealing. Differential scanning calorimetery (DSC), X-ray diffraction (XRD) and tensile test were employed to ...Ti50.6Pd30Ni19.4 and Ti51Pd28Ni21 (Ce) alloys have been prepared under various temperatures for long time annealing. Differential scanning calorimetery (DSC), X-ray diffraction (XRD) and tensile test were employed to investigate the phase transformation behavior and superelasticity of the alloys. It has been found that the phase transformation temperature of Ti50.6Pd30Ni19.4 is about 40C higher than that of Ti51Pd28Ni21(Ce), and do not change much with different annealed temperature. Obvious superelasticity is retained in Ti50.6Pd30Ni19.4 alloy annealed at 400C for 18 h, and annealing at higher temperature shows a deterioration of this property. The Ce addition in TisiPd28Ni2i alloy significantly delays recrystallization, increases yied strength and elastic modulus, but the superelasticity is poor.展开更多
基金the financial support of the National Natural Science Foundation under Grant No.52274387project support by the Shanghai Science and Technology Com-mission(Grant No.20S31900100).
文摘Bone-mimicking gradient porous NiTi shape memory alloys(SMAs)are promising for orthopedic im-plants due to their distinctive superelastic functional properties.However,premature plastic deformation in weak areas such as thinner struts,nodes,and sharp corners severely deteriorates the superelasticity of gradient porous NiTi SMAs.In this work,we prepared gradient porous NiTi SMAs with a porosity of 50%by additive manufacturing(AM)and achieved a remarkable improvement of superelasticity by a simple solution treatment regime.After solution treatment,phase transformation temperatures dropped signif-icantly,the dislocation density decreased,and partial intergranular Ti-rich precipitates were transferred into the grain.Compared to as-built samples,the strain recovery rate of solution-treated samples was nearly doubled at a pre-strain of 6%(up to 90%),and all obtained a stable recoverable strain of more than 4%.The remarkable superelasticity improvement was attributed to lower phase transformation tem-peratures,fewer dislocations,and the synergistic strengthening effect of intragranular multi-scale Ti-Ni precipitates.Notably,the gradient porous structure played a non-negligible role in both superelasticity deterioration and improvement.The microstructure evolution of the solution-treated central strut after constant 10 cycles and the origin of the stable superelastic response of gradient porous NiTi SMAs were revealed.This work provides an accessible strategy for improving the superelastic performance of gra-dient porous NiTi SMAs and proposes a key strategy for achieving such high-performance architectured materials.
基金Project supported by the Science Fund of the Key Laboratory of Cryogenic Science and Technology(Grant Nos.CRYO20230203 and CRYO202106)the National Natural Science Foundation of China(Grant Nos.51872299 and 52071223)the National Key Research and Development Program of China(Grant No.2019YFA0704904)。
文摘Solid-state cooling technologies have been considered as potential alternatives for vapor compression cooling systems.The search for refrigeration materials displaying a unique combination of pronounced caloric effect,low hysteresis,and high reversibility on phase transformation was very active in recent years.Here,we achieved increase in the elastocaloric reversibility and decrease in the friction dissipation of martensite transformations in the superelastic nano-grained NiTi alloys obtained by cold rolling and annealing treatment,with very low stress hysteresis(6.3 MPa)under a large applied strain(5%).Large adiabatic temperature changes(△T_(max)=16.3 K atε=5%)and moderate COP_(mater)values(maximum COP_(mater)=11.8 atε=2%)were achieved.The present nano-grained NiTi alloys exhibited great potential for applications as a highly efficient elastocaloric material.
基金supported by the National Natural Science Foundation of China(Grant Nos.52171007,52101166,51931004)the 111 Projects 2.0(Grant No.BP0618008).
文摘Gradient nanostructured(GNS)metallic materials are commonly achieved by gradient severe plastic de-formation with a gradient of nano-to micro-sized structural units from the surface/boundaries to the center.Certainly,such GNS can be inversely positioned,which however has not yet been reported.The present work reports a facile method in deformation gradient control to attain inverse gradient nanostructured(iGNS),i.e.,tailoring the cross-section shape,successfully demonstrated in Ti-50.3Ni shape memory alloy(SMA)wire through cold rolling.The microstructure of the rolled wire is characterized by a macroscopic inverse gradient from boundaries to the center—the average sizes of grain and martensite domain evolve from micrometer to nanometer scale.The iGNS leads to a gradient martensitic transforma-tion upon stress,which has been proved to be effectively reversible via in-situ bending scanning electron microscopy(SEM)observations.The iGNS Ti-50.3Ni SMA exhibits quasi-linear superelasticity(SE)in a wide temperature range from 173 to 423 K.Compared to uniform cold rolling,the gradient cold rolling with less overall plasticity further improves SE strain(up to 4.8%)and SE efficiency.In-situ tensiling synchrotron X-ray diffraction(SXRD)analysis reveals the underlying mechanisms of the unique SE in the iGNS SMAs.It provides a new design strategy to realize excellent SE in SMAs and sheds light on the advanced GNS metallic materials.
基金supported by the National Natural Science Foundation of China(No.51974028)the Fundamental Research Funds for the Central Universities(No.2021JCCXJD01)the Key R&D and transformation projects in Qinghai Province(No.2023-HZ-801).
文摘Improving the shape memory effect and superelasticity of Cu-based shape memory alloys(SMAs)has always been a research hotspot in many countries.This work systematically investigates the effects of Gyroid triply periodic minimal surface(TPMS)lattice structures with different unit sizes and volume fractions on the manufacturing viability,compressive mechanical response,superelasticity and heating recovery properties of CuAlMn SMAs.The results show that the increased specific surface area of the lattice structure leads to increased powder adhesion,making the manufacturability proportional to the unit size and volume fraction.The compressive response of the CuAlMn SMAs Gyroid TPMS lattice structure is negatively correlated with the unit size and positively correlated with the volume fraction.The superelastic recovery of all CuAlMn SMAs with Gyroid TPMS lattice structures is within 5%when the cyclic cumulative strain is set to be 10%.The lattice structure shows the maximum superelasticity when the unit size is 3.00 mm and the volume fraction is 12%,and after heating recovery,the total recovery strain increases as the volume fraction increases.This study introduces a new strategy to enhance the superelastic properties and expand the applications of CuAlMn SMAs in soft robotics,medical equipment,aerospace and other fields.
基金financially supported by the National Key R&D Program of China (No.2018YFC1106600)the Funding from the Industrial Transformation and Upgrading of Strong Base Project of China (No.TC150B5C0/03)
文摘Martensitic transformations,mechanical properties,shape memory effect and superelasticity of Ti-xZr-(30-x)Nb-4Ta(x=15,16,17 and 18;at%) alloys were investigated.X-ray diffraction(XRD),optical microscopy(OM) and transmission electron microscopy(TEM) results indicated that the Ti-16Zr-14Nb-4Ta,Ti-17Zr-13Nb-4Ta and Ti-18Zr-12Nb4Ta alloys were mainly composed of α″-martensite,while the Ti-15Zr-15Nb-4Ta alloy was characterized by predominant p phase.The reverse martensitic transformation temperatures increased when Nb was replaced by Zr,indicating stronger p-stabilizing effect for the former.The Ti-15Zr-15Nb-4Ta alloy displayed superelasticity during tensile deformation with a recovery strain of 3.51%.For the other three alloys with higher Zr content,the martensitic reorientation occurred during tensile deformation,resulting in shape memory recovery upon subsequent heating.The maximum shape memory effect was 3.46% in the Ti-18Zr-12Nb-4Ta alloy.
基金the support of National Key Research and Development Program of China(2021YFB3802104)National Natural Science Foundation of China(Grant Nos.51931004,52173228,52271190 and 51571156)the 111 project 2.0(BP2018008)。
文摘Functional stability of superelasticity is crucial for practical applications of shape memory alloys.It is degraded by a Lüders-like deformation with elevated local stress concentration under tensile load.By increasing the degree of solute supersaturation and applying appropriate thermomechanical treatments,a Ti-Ni alloy with nanocrystallinity and dispersed nanoprecipitates is obtained.In contrast to conventional Ti-Ni alloys,the superelasticity in the target alloy is accompanied by homogeneous deformation due to the sluggish stress-induced martensitic transformation.The alloy thus shows a fully recoverable strain of 6%under tensile stress over 1 GPa and a large adiabatic temperature decrease of 13.1 K under tensile strain of 4.5%at room temperature.Moreover,both superelasticity and elastocaloric effect exhibit negligible degradation in response to applied strain of 4%during cycling.We attribute the improved functional stability to low dislocation activity resulting from the suppression of localized deformation and the combined strengthening effect of nanocrystalline structure and nanoprecipitates.Thus,the design of such a microstructure enabling homogeneous deformation provides a recipe for stable superelasticity and elastocaloric effect.
基金This work was supported financially by the National Natural Science Foundation of China(Nos.51871080 and 51571073).
文摘In the present study,the in-situ TiB whisker was introduced into the Ti-Ni-Hf shape memory alloy composite by the in-situ reaction of the Ti-Ni-Hf alloy powder and TiB2 powders.The(Ti,Hf)2 Ni phase also precipitated,accompanied with the formation of TiB phase.Moreover,the residual TiB2 particles can be observed,as the TiB2 content was higher than 0.7 wt%.Thereinto,the larger scale reinforcements constituted the quasi-continuous network structure.The smaller scale reinforcements distributed in the interior of the network structure.The two-scale reinforcements showed the uniform distribution at macroscopic level and inhomogeneous distribution at microscopic level.The single stage B19?B2 martensitic transformation occurred in the Ti-Ni-Hf composites.In addition,the martensitic transformation temperatures continuously decreased with the increased TiB2 content owing to the compositional and mechanical effect.The moderate TiB2 addition not noly enhanced the matrix strength,but also significantly improved the superelasticity.The excellent superelaticity with the completely recoverable strain of 4%can be obtained in the Ti-Ni-Hf composite containing 0.7 wt%TiB2.
基金This work was financially supported by the Tribology Science Fund of the State Key Laboratory of Tribology(No.SKLT2022C20)the National Natural Science Foundation of China(Nos.51875309 and 51905310)the Natural Science Foundation of Shandong Province(No.ZR2020YQ39).
文摘For the first time,this work comprehensively studied the effectiveness of precipitation hardening achieved by aging treatment in improving the tensile superelasticity of NiTi alloys fabricated by elec-tron beam wire-feed additive manufacturing(EBAM),which possesses inherent advantages in producing dense and oxidation-free structures.Aging treatments under three temperatures(450,350,and 250℃)and different durations were conducted,and the resultant performance of tensile superelasticity,together with the corresponding evolution of precipitation and phase transformation behavior were investigated for the EBAM-fabricated NiTi alloys.Results showed that by appropriate aging treatment,EBAM fabricated NiTi alloys could achieve excellent recovery rates of approximately 95%and 90%after the 1st and 10th load/unload cycle for a maximum tensile strain of 6%,which were almost the highest achieved so far by AM processed NiTi alloys and close to those of some conventional NiTi alloys.The improvement of tensile superelasticity benefited from the fine and dispersive Ni4Ti3 precipitates,which could be introduced by aging at 350℃ for 4 h or at 250℃ for 200 h.Moreover,the large amount of Ni4Ti3 precipitates would promote the intermediate R-phase transformation and bring a two-stage or three-stage transformation sequence,which depended on whether the distribution of the precipitation was homogeneous or not.This work could provide guidance for the production of NiTi alloys with good tensile superelasticity by EBAM or other additive manufacturing processes.
基金supported by the National Basic Research Program of China (Nos. 2012CB933901, 2012CB619103, 2012CB619405, 2012CB619402 and 2014CB644003)the National High Technical Program of China (2015AA033702)the National Natural Foundation of China and US (Nos. 51271180, 51571190, 51527801 and DMR-1410322)
文摘Materials that undergo a reversible change of crystal structure through martensitic transformation (MT) possess unusual functionalities including shape memory, superelasticity, and low/negative thermal ex- pansion. These properties have many advanced applications, such as actuators, sensors, and energy conversion, but are limited typically in a narrow temperature range of tens of Kelvin. Here we report that, by creating a nano-scale concentration modulation via phase separation, the MT can be rendered continuous by an in-situ elastic confinement mechanism. Through a model titanium alloy, we demon- strate that the elastically confined continuous MT has unprecedented properties, such as superelasticity from below 4.2 K to 500 K, fully tunable and stable thermal expansion, from positive, through zero, to negative, from below 4.2 K to 573 K, and high strength-to-modulus ratio across a wide temperature range. The elastic tuning on the MT, together with a significant extension of the crystal stability limit, provides new opportunities to explore advanced materials.
基金financially supported by the National Key R&D Program of China(No.2018YFB1105100)the NSFC(Nos.51971244 and 51731010)+1 种基金the Advanced Structural Technology Foundation of China(No.2020-JCJQ-JJ-024)supported by the US Department of Energy,Office of Science and thr Office of Basic Energy Science,under Contract No.DE-AC02-06CH11357。
文摘TiNi alloys with high content Ni(52-55 at.%)are perfectly suitable for preparing wear-and corrosionresistant parts that service on the space station,spacecraft,and submarine,because of their superior superelasticity,high strength,and hardwearing.However,the fabrication of complicated Ni-rich TiNi parts by the traditional machining method often faces problems of poor precision,low efficiency,and high cost.In this work,we succeed in preparing an excellent Ti_(47)Ni_(53) alloy by selective laser melting(SLM),and thus,open a new way for the efficient and precise formation of complicated Ni-rich TiNi parts with superelasticity and hardwearing.An optimized processing window for compact parts without defects is reported.The elaborately fabricated Ti_(47)Ni_(53) alloy exhibited a breaking strain of 11%,a breaking stress of 2.0 GPa,a superelastic strain of 9%,and a better hardwearing than that of casting and quenched Ti_(47)Ni_(53) alloy.Besides,the microstructure,phase transformation,and deformation,as well as their influence mechanisms are investigated by in situ transmission electron microscope(TEM)and high-energy X-ray diffraction(HE-XRD).The results obtained are of significance for both fundamental research and technological applications of SLM-fabricated high Ni content TiNi alloys.
基金financially supported by the National Nature Science Foundation of China (No. 50921003)the Industry, Education, and Research Projects of the China Aviation Industrial (No. cxy2012BH04)
文摘The effects of annealing on the phase transformation behavior and superelasticity of cold-rolled Ti50Ni48Fe2 shape memory alloy were extensively investigated. Curves of temperature dependence of electrical resistivity reveal that both the cold-rolled and annealed specimens exhibit a B2→R→B19’two-stage martensitic transformation upon cooling and a B19’→B2 one-stage transformation upon heating, although the austenitic transformation temperature decreases with the increase of the annealing temperature. Tensile stress–strain curves show the critical stress for stress-induced martensite(rSIM)of Ti50Ni48Fe2 alloys decreases with the increase of annealing temperature due to the decrement of dislocation density caused by the recrystallization. As a result, the rSIM decreases. Upon a cold-rolling and annealing at 623 K for30 min, the Ti50Ni48Fe2 alloy exhibits excellent superelasticity with the maximum recoverable strain of 5.8 % at a loading strain of 7 %. In such a case, a complete superelasticity of 5 % can be obtained in the Ti50Ni48Fe2 alloy after deformation increasing to 15 cycles.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.52074257 and 51790484)the Chinese Academy of Sciences(Grant No.ZDBS-LY-JSC023)。
文摘Superelasticity has been widely used in various fields.High elastic limit simultaneously with large superelasticity is urgent in the critical applications.In this study,we have employed the high entropy alloy(HEA)concept to develop a new TiHfNiFe-Nb eutectic HEA(EHEA)based on the TiNi-Nb eutectic alloy.The results show the directional catkin-like microstructure with the fiber eutectic in the center and the lamella eutectic in the outside form along the directional solidification direction when the growth rate is 60 mm/h.The corresponding specimens display the high strength of 1409 MPa and superelasticity of 3.1%in tension at room temperature,which is attributed to the synergetic effect of high entropy,preferred orientation,ordered body-centered cubic(B2)phase and disordered body-centered cubic phase in the eutectic structure.This work sheds light on designing the high-performance superelastic function materials with EHEAs.
文摘TiNi shape memory alloy thin films were deposited by using a RF magnetron sputtering apparatus. The transformation and shape memory characteristics of the thin films have been investigated by using DSC and tensile tests. After aging, perfect shape memory effect and superelasticity were achieved in TiNi thin films.
基金financially supported by the National Natural Science Foundation of China (No.52272258)Fundamental Research Funds for the Central Universities (No.2023ZKPYJD07)+1 种基金Key R&D and transformation projects in Qinghai Province (No.2021-HZ-808)and Hebei Province (No.21314401D)American Chemical Society Petroleum Research Fund for the support (No.PRF-59722-ND10)。
文摘The Cu-based shape memory alloy(SMA)with highly oriented columnar crystals is an ideal candidate for the commercial application,especially the ones obtained through rapid cooling via additive manufacturing method.In this work,Cu_(71)Al_(18)Mn_(11)(at%)shape memory alloy with strong<001>texture columnar grains was successfully prepared by selective laser melting(SLM).An L27(313)orthogonal array was designed to systematically investigate the effects of laser power,scanning speed,scanning spacing,layer thickness and their interactions on the forming quality of Cu_(71)Al_(18)Mn_(11)alloys.Cu_(71)Al_(18)Mn_(11)alloys with density of 7.3204 g·cm^(-3)and relative density of 99.18%were successfully prepared when the laser power,scanning speed,scanning distance and layer thickness were 240 W,1000 mm·s^(-1),0.11 mm and 25μm,the transformation onset temperature(Ms),martensite phase transformation termination temperature(Mf),austenite phase transformation onset temperature(AS)and austenite phase transformation termination temperature(Af)are-21.84,-26.04,-15.75 and-12.36℃,respectively.The compression strength and fracture strain along the building direction(BD)were significantly superior to the scanning direction(SD),while the superelasticity of compression along the SD reached 2.50%,which was better than that of2.32%along BD.The mechanical property and superelasticity anisotropy due to the formation of columnar grains and texture were discussed.This study shows that SLM is a proposed method for the preparation of Cu-Al-Mn SMAs with high superelasticity,which provides a new strategy for enhancing the shape memory alloy superelasticity.
文摘The superelastic properties of NiTi thin films prepared with sputtering were studied. To characterize their superelasticity, tensile and bulging and indentation tests were performed. The measured mechanisms using these three methods were compared, and the factors that influence superelasticity were described.
基金financially supported by the National Natural Science Foundation of China (Nos. 51574027 and 51604206)the Financial Support from the State Key Laboratory for Advanced Metals and Materials (No. 2016Z-22)
文摘The effect of aging treatment on the superelasticity and martensitic transformation critical stress in columnar-grained Cu_(71)Al_(18)Mn_(11) shape memory alloy(SMA) at the temperature ranging from 250°C to 400°C was investigated. The microstructure evolution during the aging treatment was characterized by optical microscopy, scanning electron microscopy, transmission electron microscopy, and X-ray diffraction. The results show that the plate-like bainite precipitates distribute homogeneously within austenitic grains and at grain boundaries. The volume fraction of bainite increases with the increase in aging temperature and aging time, which substantially improves the martensitic transformation critical stress of the alloy, whereas the bainite only slightly affects the superelasticity. This behavior is attributed to a coherent relationship between the bainite and the austenite, as well as to the bainite and the martensite exhibiting the same crystal structure. The variations of the martensitic transformation critical stress and the superelasticity of columnar-grained Cu_(71)Al_(18)Mn_(11) SMA with aging-temperature and aging time are described by the Austin-Rickett equation, where the activation energy of bainite precipitation is 77.2 kJ ·mol1. Finally, a columnar-grained Cu_(71)Al_(18)Mn_(11) SMA with both excellent superelasticity(5%-9%) and high martensitic transformation critical stress(443-677 MPa) is obtained through the application of the appropriate aging treatments.
基金financially supported by the Russian Science Foundation(No.21-19-00287).
文摘The study of the influence of the cobalt content on the cyclic stability of superelasticity(SE)was carried out in quenched Ni_(44)Fe_(19)Ga_(27)Co_(10)and Ni_(39)Fe_(19)Ga_(27)Co_(15)(at.%)single crystals under compression.It is shown that an increase in the cobalt content leads to embrittlement of the material and a decrease in the cyclic stability of SE.In Ni_(44)Fe_(19)Ga_(27)Co_(10)single crystals,during the first 20 loading/unloading cycles,the elastic energy relaxation occurs along with the formation of dislocations and residual martensite,which leads to a decrease in critical stress of martensite formation and in stress hysteresis.During the next 80 cycles,SE becomes more stable.Stabilization is accompanied by a slight change in the parameters.On the contrary,Ni_(39)Fe_(19)Ga_(27)Co_(15)single crystals are characterized by high-strength characteristics,which lead to high SE stability during the first 20 loading/unloading cycles.However,after 20 cycles,a strong degradation of the SE is observed through the formation of microcracks,which ultimately leads to the destruction of the sample.The results of work are replicable for cycling at different temperatures from all temperature ranges of superelasticity.
文摘The influence of a small amount of α phase in β′ matrix on shape memory effect and superelasticity of CuZnAl shape memory alloy has been studied systematically.It has been found that transformation temperature can be adjusted in a large scale by controlling the amount of α phase, meanwhile,shape memory effect and superelasticity do not decrease obviously when there exists a small amount of α phase.Based on the optical and trans- mission electron microscopy observation,the influ- ence of α phase on shape memory effect and superelasticity has been discussed.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 51701099,51801044,and 51671071)the Natural Science Foundation of Heilongjiang Province of China (Grant No. LH2019E091)+1 种基金Fundamental Research Funds in Heilongjiang Provincial Universities,China (Grant No. 135409320)the help of Technology Innovation Center of Agricultural Multi-Dimensional Sensor Information Perception,Heilongjiang Province.
文摘Ni50Mn25Ga20Fe5 ferromagnetic shape memory alloy microwires with diameters of^30-50μm and grain sizes of^2-5μm were prepared by melt-extraction technique.A step-wise chemical ordering annealing was carried out to improve the superelasticity strain and recovery ratio which were hampered by the internal stress,compositional inhomogeneity,and high-density defects in the as-extracted Ni50Mn25Ga20Fe5 microwires.The annealed microwires exhibited enhanced atomic ordering degree,narrow thermal hysteresis,and high saturation magnetization under a low magnetic field.As a result,the annealed microwire showed decreased superelastic critical stress,improved reversibility,and a high superelastic strain(1.9%)with a large recovery ratio(>96%).This kind of filamentous material with superior superelastic effects may be promising materials for minor-devices.
基金This work is sponsored by the Science and Technology Commission of the Shanghai Municipal Government, No. OOJC14055.
文摘Ti50.6Pd30Ni19.4 and Ti51Pd28Ni21 (Ce) alloys have been prepared under various temperatures for long time annealing. Differential scanning calorimetery (DSC), X-ray diffraction (XRD) and tensile test were employed to investigate the phase transformation behavior and superelasticity of the alloys. It has been found that the phase transformation temperature of Ti50.6Pd30Ni19.4 is about 40C higher than that of Ti51Pd28Ni21(Ce), and do not change much with different annealed temperature. Obvious superelasticity is retained in Ti50.6Pd30Ni19.4 alloy annealed at 400C for 18 h, and annealing at higher temperature shows a deterioration of this property. The Ce addition in TisiPd28Ni2i alloy significantly delays recrystallization, increases yied strength and elastic modulus, but the superelasticity is poor.