The Hongyancun subway station in Chongqing,China,is 116 meters deep and the difference in air pressure often leaves users with clogged(堵塞的)ears when accessed via its elevator.When the air pressure outside the eardr...The Hongyancun subway station in Chongqing,China,is 116 meters deep and the difference in air pressure often leaves users with clogged(堵塞的)ears when accessed via its elevator.When the air pressure outside the eardrum(耳膜)becomes different than the pressure inside,you experience ear barotrauma(气压伤).It occurs most often during steep ascents and descents and is usually associated with plane take⁃offs and landings,or driving up or down mountains.Most subway stations dont usually cause ear barotrauma,because they arent deep or steep enough for your ears to register a significant enough difference in air pressure.But taking the elevator to reach Chinas deepest subway station might actually clog up your ears.Thats because it is located 116 meters below the surface,which is the equivalent of about 40 floors underground.展开更多
The vibration response and noise caused by subway trains can affect the safety and comfort of superstructures.To study the dynamic response characteristics of subway stations and superstructures under train loads with...The vibration response and noise caused by subway trains can affect the safety and comfort of superstructures.To study the dynamic response characteristics of subway stations and superstructures under train loads with a hard combination,a numerical model is developed in this study.The indoor model test verified the accuracy of the numerical model.The influence laws of different hard combinations,train operating speeds and modes were studied and evaluated accordingly.The results show that the frequency corresponding to the peak vibration acceleration level of each floor of the superstructure property is concentrated at 10–20 Hz.The vibration response decreases in the high-frequency parts and increases in the lowfrequency parts with increasing distance from the source.Furthermore,the factors,such as train operating speed,operating mode,and hard combination type,will affect the vibration of the superstructure.The vibration response under the reversible operation of the train is greater than that of the unidirectional operation.The operating speed of the train is proportional to its vibration response.The vibration amplification area appears between the middle and the top of the superstructure at a higher train speed.Its vibration acceleration level will exceed the limit value of relevant regulations,and vibration-damping measures are required.Within the scope of application,this study provides some suggestions for constructing subway stations and superstructures.展开更多
Ground fissure,as a common geo-hazard,impairs the integrity of the site soil and affects the seismic performance of engineering structures.In this paper,a finite element(FE)model for subway stations in a ground fissur...Ground fissure,as a common geo-hazard,impairs the integrity of the site soil and affects the seismic performance of engineering structures.In this paper,a finite element(FE)model for subway stations in a ground fissure area was developed and validated by using experimental results.Numerical analyses were conducted to investigate the seismic response and failure mode of subway stations in a ground fissure area with different locations.Effects of ground fissure on deformations and internal forces of a station,soil pressures and soil plastic strains were discussed.The results showed that the seismic response of the station was significantly amplified by the ground fissure,and stations in the ground fissure area displayed obvious rocking deformation during earthquakes as compared to those in the area without fissures.It also was found that the soil yielding around the station,the dislocation occurring in the ground fissure area,and the dynamic amplification effect were more significant under vertical ground motion,which weakened the station’s ductility and accelerated its destruction process.展开更多
Based on the distribution of cooling load at a subway station and the peak-valley electricity price in Guangzhou,a chilled water storage system is reserved in the ample space above the station's distribution area....Based on the distribution of cooling load at a subway station and the peak-valley electricity price in Guangzhou,a chilled water storage system is reserved in the ample space above the station's distribution area.This study proposes a design scheme and operational strategy for a chilled water storage system suitable for subway engineering,based on calculating the cooling load and designing a chilled water storage system in a subway station.Additionally,it proposes calculation coefficients of hourly cooling load suitable for subway engineering and convenient for estimation of hourly cooling load.Furthermore,an economic analysis is conducted by combining hourly cooling load with time-of-use electricity prices.This study provides a reference for the design and application of chilled water storage systems in subsequent subway projects.展开更多
This study examines the variations in noise levels across various subway lines in Singapore and three other cities,and provides a detailed overview of the trends and factors influencing subway noise.Most of the equiva...This study examines the variations in noise levels across various subway lines in Singapore and three other cities,and provides a detailed overview of the trends and factors influencing subway noise.Most of the equivalent sound pressure level(Leq)in typical subway cabins across the Singapore subway lines are below 85 dBA,with some notable exceptions.These variations in noise levels are influenced by several factors,including rolling stock structure,track conditions and environmental and aerodynamic factors.The spectrogram analysis indicates that the cabin noise is mostly concentrated below the frequency of 1,000 Hz.This study also analyzes cabin noise in subway systems in Suzhou,Seoul,and Tokyo to allow for broader comparisons.It studies the impact of factors such as stock materials,track conditions including the quality of the rails,the presence of curves or irregularities,and maintenance frequency on cabin noise.展开更多
To explore the influence of emergency evacuation signs on passenger behavior during subway fires and improve evacuation efficiency in emergencies,this paper proposes a dynamic emergency evacuation sign system.A simula...To explore the influence of emergency evacuation signs on passenger behavior during subway fires and improve evacuation efficiency in emergencies,this paper proposes a dynamic emergency evacuation sign system.A simulation platform integrating building information modeling(BIM)and virtual reality(VR)technologies was em-ployed to create subway fire evacuation scenarios using both the current and proposed dynamic emergency evacuation signage systems.Through simulation experiments,fine-grained microscopic data on passenger behavior was collected.Seven indicators were selected to assess evacuation efficiency and wayfinding difficulty.The analysis explored the influence of evacuation signs on passenger behavior in both overall and decision-making areas,thereby validating the effectiveness of the new emergency evacuation signage system.The results show that the dynamic evacuation signage system significantly improves overall passenger evacuation efficiency and reduces decision-making errors.It also improves wayfinding efficiency in critical decision areas by reducing the need for direction identification,minimizing stopping times,and lowering the frequency of decision errors.The method for evaluating the effects of emergency evacuation signs on passenger evacuation behavior proposed in this study provides a robust theoretical basis for the design and optimization of emergency-oriented signs.展开更多
Efficiency and safety are paramount concerns for commuters, operators, and designers in subway stations. This study conducted controlled experiments and developed a modified force-based model to investigate the dynami...Efficiency and safety are paramount concerns for commuters, operators, and designers in subway stations. This study conducted controlled experiments and developed a modified force-based model to investigate the dynamics of pedestrian counterflow at bottlenecks, utilizing subway passenger alighting and boarding as a case study. Specifically, the efficiency and safety of three distinct movement modes: the cooperative mode(Coop), the combination of cooperative and competitive mode(C & C), and the competitive mode(Comp), were examined and compared. The experimental findings revealed that the C & C mode exhibited a clear lane formation phenomenon and demonstrated a higher flow rate than the Comp and Coop modes. This observation suggests that a combination of cooperative and competitive behaviors among pedestrians can positively enhance traffic efficiency and safety during the alighting and boarding process. In contrast, pedestrians exhibited increased detouring in their paths and more fluctuating trajectories in the Comp mode. Additionally, a questionnaire survey assessing the level of competition and cooperation among pedestrians provided a comprehensive analysis of the psychological dynamics of passengers during the alighting and boarding activities. Lastly, the proposed force-based model was calibrated and validated, demonstrating a good performance in accurately replicating the overall characteristics of the experimental process. Overall, this study offers valuable insights into enhancing the pedestrian traffic efficiency and safety within subway systems.展开更多
During subway operation,various factors will cause long-term land subsidence,such as the vibration subsidence of foundation soil caused by train vibration load,incomplete consolidation deformation of foundation soil d...During subway operation,various factors will cause long-term land subsidence,such as the vibration subsidence of foundation soil caused by train vibration load,incomplete consolidation deformation of foundation soil during tunnel construction,dense buildings and structures in the vicinity of the tunnel,and changes in water level in the stratum where the tunnel is located.The monitoring of long-term land subsidence during subway operation in high-density urban areas differs from that in low-density urban construction areas.The former is the gathering point of the entire urban population.There are many complex buildings around the project,busy road traffic,high pedestrian flow,and less vegetation cover.Several existing items requiremonitoring.However,monitoring distance is long,and providing early warning is difficult.This study uses the 2.8 km operation line between Wulin Square station and Ding’an Road station of Hangzhou Subway Line 1 as an example to propose the integrated method of DInSAR-GPS-GIS technology and the key algorithm for long-term land subsidence deformation.Then,it selects multiscene image data to analyze long-termland subsidence of high-density urban areas during subway operation.Results show that long-term land subsidence caused by the operation of Wulin Square station to Ding’an Road station of Hangzhou Subway Line 1 is small,with maximumsubsidence of 30.64 mm,and minimumsubsidence of 11.45 mm,and average subsidence ranging from 19.27 to 21.33 mm.And FLAC3D software was used to verify the monitoring situation,using the geological conditions of the soil in the study area and the tunnel profile to simulate the settlement under vehicle load,and the simulation results tended to be consistent with the monitoring situation.展开更多
In rebuilding Tianjin Metro, numerical simulations are performed to evaluate the original design of the ventilation system of Southwest Station and a new system is given to optimize the velocity and temperature fields...In rebuilding Tianjin Metro, numerical simulations are performed to evaluate the original design of the ventilation system of Southwest Station and a new system is given to optimize the velocity and temperature fields at the station. Field measurements are conducted to validate the turbulence model and acquire boundary conditions. The simulation result tallies with testing data on the sport that is found that two-equation turbulence model is acceptable in simulating complex flow at the station. A method of simplifying the simulation of the transient flow at the station into steady flow is used and the validation criterion for this simulation is also given.展开更多
Subway project involves different links such as preliminary planning, research, design, material procurement, construction, acceptance, production and quality assurance. In the supervision and management, subway engin...Subway project involves different links such as preliminary planning, research, design, material procurement, construction, acceptance, production and quality assurance. In the supervision and management, subway engineering design and construction can better consolidate the construction foundation, and realize the efficiency, coordination and standardization of the overall construction of subway project. In the construction of subway and construction personnel, relevant supervisors and construction personnel should strengthen the deep understanding of the supervision and management of subway projects, improve the management system, accumulate construction experience, improve the quality of subway project management, and achieve the expected economic and social benefits.展开更多
The subway station construction engineering design has a significant impact on the overall construction results and follow-up operation of the subway, which greatly affects the overall operation and deployment of urba...The subway station construction engineering design has a significant impact on the overall construction results and follow-up operation of the subway, which greatly affects the overall operation and deployment of urban rail public transit. The relevant units should pay attention to the train of thought and technical points of the subway station construction engineering design of rail public transit. This is a topic worthy of study. Firstly, the importance of reasonable design and planning of subway construction engineering is analyzed. Finally, the technology and key points in the design of subway construction engineering are studied.展开更多
The internal flow field study of car compartments is an important step in railroad vehicle design and optimization. The flow field profile has a significant impact on the temperature distribution and passenger comfort...The internal flow field study of car compartments is an important step in railroad vehicle design and optimization. The flow field profile has a significant impact on the temperature distribution and passenger comfort level. Experimental studies on flow field can yield accurate results but carry a high time and computational cost. In contrast, the numerical simulation method can yield an internal flow field profile in less time than an experimental study. This study aims to improve the computational efficiency of numerical simulation by adapting two simplified models—the porous media model and the porous jump face model—to study the internal flow field of a railroad car compartment. The results provided by both simplified models are compared with the original numerical simulation model and with experimental data. Based on the results, the porous media model has a better agreement with the original model and with the experimental results. The flow field parameters (temperature and velocity) of the porous media model have relatively small numerical errors, with a maximum numerical error of 4.7%. The difference between the numerical results of the original model and those of the porous media model is less than 1%. By replacing the original numerical simulation model with the porous media model, the flow field of subway car compartments can be calculated with a reduction of about 25% in computing resources, while maintaining good accuracy.展开更多
In this study,ground vibrations due to dynamic loadings from trains moving in subway tunnels were investigated using a 2.5D finite element model of an underground tunnel and surrounding soil interactions.In our model,...In this study,ground vibrations due to dynamic loadings from trains moving in subway tunnels were investigated using a 2.5D finite element model of an underground tunnel and surrounding soil interactions.In our model,wave propagation in the infinitely extended ground is dealt with using a simple,yet efficient gradually damped artificial boundary.Based on the assumption of invariant geometry and material distribution in the tunnel's direction,the Fourier transform of the spatial dimension in this direction is applied to represent the waves in terms of the wave-number.Finite element discretization is employed in the cross-section perpendicular to the tunnel direction and the governing equations are solved for every discrete wave-number.The 3D ground responses are calculated from the wave-number expansion by employing the inverse Fourier transform.The accuracy of the proposed analysis method is verified by a semi-analytical solution of a rectangular load moving inside a soil stratum.A case study of subway train induced ground vibration is presented and the dependency of wave attenuation at the ground surface on the vibration frequency of the moving load is discussed.展开更多
Background:Since the 1970 s,terrorist bombings in subways have been frequently occurring worldwide.To cope with this threat and to provide medical response countermeasures,we analyzed the characteristics of subway bom...Background:Since the 1970 s,terrorist bombings in subways have been frequently occurring worldwide.To cope with this threat and to provide medical response countermeasures,we analyzed the characteristics of subway bombing terrorist attacks and used the Haddon matrix to explore medical response strategies.Methods:First,we analyzed 111 subway bombings from 1970 to 2017 recorded in the Global Terrorism Database to provide a reference for the strategy exploration.Then,we convened an expert panel to use the Haddon matrix to explore the medical response strategies to subway bombings.Results:In recent decades,at least one bombing attack occurs every 3 years.Summarized by the Haddon matrix,the influencing factors of medical responses to conventional subway bombings include the adequacy of first-aid kits and the medical evacuation equipment,the traffic conditions affecting the evacuation,the continuity and stability of communication,as well as the factors exclusively attributed to dirty bomb attacks in subways,such as ionizing radiation protection capabilities,the structure of the radiation sickness treatment network based on the subway lines,and the disposal of radioactive sewage.These factors form the basis of the strategy discussion.Conclusions:Since subway bombings are long-term threats,it is necessary to have proper medical response preparation.Based on the Haddon matrix,we explored the medical response strategies for terrorist subway bombings,especially dirty bomb attacks.Haddon matrix can help policymakers systematically find the most important factors,which makes the preparations of the response more efficient.展开更多
There is an increasing demand on wireless communications in subway tunnels to provide video surveillance and sensory data for security,maintenance and train control,and to offer various communication or entertainment ...There is an increasing demand on wireless communications in subway tunnels to provide video surveillance and sensory data for security,maintenance and train control,and to offer various communication or entertainment services(e.g.,Internet,etc.) to passengers as well.The wireless channel in tunnels is quite unique due to the confined space and the waveguide effects.Therefore,modeling the radio channel characteristics in tunnels is critically important for communication systems design or optimization.This paper investigates the key radio channel characteristics of a subway tunnel at 2.4 GHz and 5 GHz,such as the path loss,root mean square(RMS) delay spread,channel stationarity,Doppler shift,and channel capacity.The field measurements show that channel characteristics in tunnels are highly location-dependent and there exist abundant components in Doppler shift domain.In the straight section of the subway tunnel,the measured path loss exponents are close to1.6,lower than that in free space.展开更多
Air samples were collected simultaneously at platform,mezzanine and outdoor in five typical stations of subway system in Shanghai,China using stainless steel canisters and analyzed by gas chromatography-mass selective...Air samples were collected simultaneously at platform,mezzanine and outdoor in five typical stations of subway system in Shanghai,China using stainless steel canisters and analyzed by gas chromatography-mass selective detector (GC-MSD) after cryogenic pre-concentration.Benzene,toluene,ethylbenzene and xylenes (BTEX) at the platforms and mezzanines inside the stations averaged (10.3±2.1),(38.7±9.0),(19.4±10.1) and (30.0±11.1) μg/m 3,respectively;while trichloroethylene (TrCE),tetrachloroethylene (TeCE) and para-dichlorobenzene (pDCB),vinyl chloride and carbon tetrachloride were the most abundant chlorinated hydrocarbons inside the stations with average levels of (3.6±1.3),(1.3±0.5),(4.1±1.1),(2.2±1.1) and (1.2±0.3) μg/m 3,respectively.Mean levels of major aromatic and chlorinated hydrocarbons were higher indoor (platforms and mezzanines) than outdoor with average indoor/outdoor (I/O) ratios of 1.1–9.5,whereas no significant indoor/outdoor differences were found except for benzene and TrCE.The highly significant mutual correlations (p0.01) for BTEX between indoor and outdoor and their significant correlation (p0.05) with methyl tert-butyl ether (MTBE),a marker of traffic-related emission without other indoor and outdoor sources,indicated that BTEX were introduced into the subway stations from indoor/outdoor air exchange and traffic emission should be their dominant source.TrCE and pDCB were mainly from indoor emission and TeCE might have both indoor emission sources and contribution from outdoor air,especially in the mezzanines.展开更多
For the tunnel crossing active fault,the damage induced by fault movement is always serious.To solve such a problem,a detailed anti-faulting tunnel design process for Urumqi subway line 2 was introduced,and seven thre...For the tunnel crossing active fault,the damage induced by fault movement is always serious.To solve such a problem,a detailed anti-faulting tunnel design process for Urumqi subway line 2 was introduced,and seven three-dimensional elastic-plastic finite element models were established.The anti-faulting design process included three steps.First,the damage of tunnel lining from different locations of fault rupture surfaces was analyzed.Then,the analysis of the effect on tunnel buried depth was given.Finally,the effect of the disaster mitigation method on the flexible joint was verified and the location of the flexible joint was discussed.The results show that when the properties of surrounding rock at the tunnel bottom grows soft,the tunnel deformation curve is smoother and tunnel damage induced by fault movement is less serious.The vertical displacement change ratio of secondary linings along the tunnel axis may be the main factor to cause shear damage to the tunnel.The interface between the hanging wall and fracture zone is defined as the most adverse fault rupture surface.The tunnel damage was reduced with the decrease in the tunnel buried depth as more energy was dissipated by overburden soil and the differential uplift zone of soil became more diffuse.The method of the flexible joint can reduce the tunnel damage significantly and the disaster mitigation effect of different locations on the flexible joint is different.The tunnel damage is reduced by the greatest degree when the flexible joint is located on the fault rupture surface.展开更多
Fault diagnosis of various systems on rolling stock has drawn the attention of many researchers. However, obtaining an optimized sensor set of these systems, which is a prerequisite for fault diagnosis, remains a majo...Fault diagnosis of various systems on rolling stock has drawn the attention of many researchers. However, obtaining an optimized sensor set of these systems, which is a prerequisite for fault diagnosis, remains a major challenge. Available literature suggests that the configuration of sensors in these systems is presently dependent on the knowledge and engineering experiences of designers, which may lead to insufficient or redundant development of various sensors. In this paper, the optimization of sensor sets is addressed by using the signed digraph (SDG) method. The method is modified for use in braking systems by the introduction of an effect-function method to replace the traditional quantitative methods. Two criteria are adopted to evaluate the capability of the sensor sets, namely, observability and resolution. The sensors configuration method of braking system is proposed. It consists of generating bipartite graphs from SDG models and then solving the set cover problem using a greedy algorithm. To demonstrate the improvement, the sensor configuration of the HP2008 braking system is investigated and fault diagnosis on a test bench is performed. The test results show that SDG algorithm can improve single-fault resolution from 6 faults to 10 faults, and with additional four brake cylinder pressure (BCP) sensors it can cover up to 67 double faults which were not considered by traditional fault diagnosis system. SDG methods are suitable for reducing redundant sensors and that the sensor sets thereby obtained are capable of detecting typical faults, such as the failure of a release valve. This study investigates the formal extension of the SDG method to the sensor configuration of braking system, as well as the adaptation supported by the effect-function method.展开更多
This paper proposes a novel collision post structure designed to improve the crashworthiness of subway cab cars.The structure provides two innovative features:1)a simpler connection between the post and the car roof,w...This paper proposes a novel collision post structure designed to improve the crashworthiness of subway cab cars.The structure provides two innovative features:1)a simpler connection between the post and the car roof,which gives a more reasonable load transfer path to reduce the stress concentration at the joint;and 2)a stiffness induction design that provides an ideal deformation model to protect the safe space of the cab cars.The novel collision post structure was evaluated with finite element analysis,and a prototype cab car was mechanically tested.The results demonstrate that the deformation response was stable and agreed well with the expected ideal mode.The maximum load was 874.17 kN and the responses remained well above the elastic design load of 334 kN as required by the design specification.In addition,there was no significant tearing failure during the whole test process.Therefore,the novel collision post structure proposed has met the requirements specified in new standard to improve the crashworthiness of subway cab cars.Finally,the energy absorption efficiency and light weight design highlights were also summarized and discussed.展开更多
This paper focuses on the distribution of passenger flow in Huoying Station,Line 13 of Beijing subway system.The transformation measures taken by Line 13 since operation are firstly summarized.Then the authors elabora...This paper focuses on the distribution of passenger flow in Huoying Station,Line 13 of Beijing subway system.The transformation measures taken by Line 13 since operation are firstly summarized.Then the authors elaborate the facilities and equipment of this station,especially the node layout and passenger flow field.An optimization scheme is proposed to rapidly distribute the passenger flow in Huoying Station by adjusting the operation time of the escalator in the direction of Xizhimen.The authors adopt Queuing theory and Anylogic simulation software to simulate the original and the optimized schemes of Huoying Station to distribute the passenger flow.The results of the simulation indicate that the optimized scheme could effectively alleviate the traffic congestion in the hall of Huoying Station,and the pedestrian density in other places of the hall is lowered;passengers could move freely in the hall and no new congestion points would form.The rationality of the scheme is thus proved.展开更多
文摘The Hongyancun subway station in Chongqing,China,is 116 meters deep and the difference in air pressure often leaves users with clogged(堵塞的)ears when accessed via its elevator.When the air pressure outside the eardrum(耳膜)becomes different than the pressure inside,you experience ear barotrauma(气压伤).It occurs most often during steep ascents and descents and is usually associated with plane take⁃offs and landings,or driving up or down mountains.Most subway stations dont usually cause ear barotrauma,because they arent deep or steep enough for your ears to register a significant enough difference in air pressure.But taking the elevator to reach Chinas deepest subway station might actually clog up your ears.Thats because it is located 116 meters below the surface,which is the equivalent of about 40 floors underground.
基金National Natural Science Foundation of China under Grant No.51578463。
文摘The vibration response and noise caused by subway trains can affect the safety and comfort of superstructures.To study the dynamic response characteristics of subway stations and superstructures under train loads with a hard combination,a numerical model is developed in this study.The indoor model test verified the accuracy of the numerical model.The influence laws of different hard combinations,train operating speeds and modes were studied and evaluated accordingly.The results show that the frequency corresponding to the peak vibration acceleration level of each floor of the superstructure property is concentrated at 10–20 Hz.The vibration response decreases in the high-frequency parts and increases in the lowfrequency parts with increasing distance from the source.Furthermore,the factors,such as train operating speed,operating mode,and hard combination type,will affect the vibration of the superstructure.The vibration response under the reversible operation of the train is greater than that of the unidirectional operation.The operating speed of the train is proportional to its vibration response.The vibration amplification area appears between the middle and the top of the superstructure at a higher train speed.Its vibration acceleration level will exceed the limit value of relevant regulations,and vibration-damping measures are required.Within the scope of application,this study provides some suggestions for constructing subway stations and superstructures.
基金National Natural Science Foundation of China under Grant No.52108473Project of Shaanxi Engineering Technology Research Center for Urban Geology and Underground Space under Grant No.2025KT-03Key Project of Education Department of Shaanxi Province under Grant No.23JY042。
文摘Ground fissure,as a common geo-hazard,impairs the integrity of the site soil and affects the seismic performance of engineering structures.In this paper,a finite element(FE)model for subway stations in a ground fissure area was developed and validated by using experimental results.Numerical analyses were conducted to investigate the seismic response and failure mode of subway stations in a ground fissure area with different locations.Effects of ground fissure on deformations and internal forces of a station,soil pressures and soil plastic strains were discussed.The results showed that the seismic response of the station was significantly amplified by the ground fissure,and stations in the ground fissure area displayed obvious rocking deformation during earthquakes as compared to those in the area without fissures.It also was found that the soil yielding around the station,the dislocation occurring in the ground fissure area,and the dynamic amplification effect were more significant under vertical ground motion,which weakened the station’s ductility and accelerated its destruction process.
基金supported by the Science and Technology Development Project of China Railway Design Corporation(Project No.2024CJ0401).
文摘Based on the distribution of cooling load at a subway station and the peak-valley electricity price in Guangzhou,a chilled water storage system is reserved in the ample space above the station's distribution area.This study proposes a design scheme and operational strategy for a chilled water storage system suitable for subway engineering,based on calculating the cooling load and designing a chilled water storage system in a subway station.Additionally,it proposes calculation coefficients of hourly cooling load suitable for subway engineering and convenient for estimation of hourly cooling load.Furthermore,an economic analysis is conducted by combining hourly cooling load with time-of-use electricity prices.This study provides a reference for the design and application of chilled water storage systems in subsequent subway projects.
文摘This study examines the variations in noise levels across various subway lines in Singapore and three other cities,and provides a detailed overview of the trends and factors influencing subway noise.Most of the equivalent sound pressure level(Leq)in typical subway cabins across the Singapore subway lines are below 85 dBA,with some notable exceptions.These variations in noise levels are influenced by several factors,including rolling stock structure,track conditions and environmental and aerodynamic factors.The spectrogram analysis indicates that the cabin noise is mostly concentrated below the frequency of 1,000 Hz.This study also analyzes cabin noise in subway systems in Suzhou,Seoul,and Tokyo to allow for broader comparisons.It studies the impact of factors such as stock materials,track conditions including the quality of the rails,the presence of curves or irregularities,and maintenance frequency on cabin noise.
基金Beijing Natural Science Foundation-Fengtai Rail Transit Frontier Research Joint Foundation(No.L211024),the National Natural Science Foundation of China(No.52072012).
文摘To explore the influence of emergency evacuation signs on passenger behavior during subway fires and improve evacuation efficiency in emergencies,this paper proposes a dynamic emergency evacuation sign system.A simulation platform integrating building information modeling(BIM)and virtual reality(VR)technologies was em-ployed to create subway fire evacuation scenarios using both the current and proposed dynamic emergency evacuation signage systems.Through simulation experiments,fine-grained microscopic data on passenger behavior was collected.Seven indicators were selected to assess evacuation efficiency and wayfinding difficulty.The analysis explored the influence of evacuation signs on passenger behavior in both overall and decision-making areas,thereby validating the effectiveness of the new emergency evacuation signage system.The results show that the dynamic evacuation signage system significantly improves overall passenger evacuation efficiency and reduces decision-making errors.It also improves wayfinding efficiency in critical decision areas by reducing the need for direction identification,minimizing stopping times,and lowering the frequency of decision errors.The method for evaluating the effects of emergency evacuation signs on passenger evacuation behavior proposed in this study provides a robust theoretical basis for the design and optimization of emergency-oriented signs.
基金Project supported by the National Natural Science Foundation of China (Grant No. 72301184)the Natural Science Foundation of Sichuan Province of China (Grant No. 2024NSFSC1073)the Fundamental Research Funds for the Central Universities (Grant No. YJ202329)。
文摘Efficiency and safety are paramount concerns for commuters, operators, and designers in subway stations. This study conducted controlled experiments and developed a modified force-based model to investigate the dynamics of pedestrian counterflow at bottlenecks, utilizing subway passenger alighting and boarding as a case study. Specifically, the efficiency and safety of three distinct movement modes: the cooperative mode(Coop), the combination of cooperative and competitive mode(C & C), and the competitive mode(Comp), were examined and compared. The experimental findings revealed that the C & C mode exhibited a clear lane formation phenomenon and demonstrated a higher flow rate than the Comp and Coop modes. This observation suggests that a combination of cooperative and competitive behaviors among pedestrians can positively enhance traffic efficiency and safety during the alighting and boarding process. In contrast, pedestrians exhibited increased detouring in their paths and more fluctuating trajectories in the Comp mode. Additionally, a questionnaire survey assessing the level of competition and cooperation among pedestrians provided a comprehensive analysis of the psychological dynamics of passengers during the alighting and boarding activities. Lastly, the proposed force-based model was calibrated and validated, demonstrating a good performance in accurately replicating the overall characteristics of the experimental process. Overall, this study offers valuable insights into enhancing the pedestrian traffic efficiency and safety within subway systems.
基金financial supports for this research project by the National Natural Science Foundation of China(Nos.41602308,41967037)supported by Zhejiang Provincial Natural Science Foundation of China under Grant No.LY20E080005+1 种基金funded by National Key Research and Development Projects of China(No.2019YFC507502)Guangxi Science and Technology Plan Project(No.RZ2100000161).
文摘During subway operation,various factors will cause long-term land subsidence,such as the vibration subsidence of foundation soil caused by train vibration load,incomplete consolidation deformation of foundation soil during tunnel construction,dense buildings and structures in the vicinity of the tunnel,and changes in water level in the stratum where the tunnel is located.The monitoring of long-term land subsidence during subway operation in high-density urban areas differs from that in low-density urban construction areas.The former is the gathering point of the entire urban population.There are many complex buildings around the project,busy road traffic,high pedestrian flow,and less vegetation cover.Several existing items requiremonitoring.However,monitoring distance is long,and providing early warning is difficult.This study uses the 2.8 km operation line between Wulin Square station and Ding’an Road station of Hangzhou Subway Line 1 as an example to propose the integrated method of DInSAR-GPS-GIS technology and the key algorithm for long-term land subsidence deformation.Then,it selects multiscene image data to analyze long-termland subsidence of high-density urban areas during subway operation.Results show that long-term land subsidence caused by the operation of Wulin Square station to Ding’an Road station of Hangzhou Subway Line 1 is small,with maximumsubsidence of 30.64 mm,and minimumsubsidence of 11.45 mm,and average subsidence ranging from 19.27 to 21.33 mm.And FLAC3D software was used to verify the monitoring situation,using the geological conditions of the soil in the study area and the tunnel profile to simulate the settlement under vehicle load,and the simulation results tended to be consistent with the monitoring situation.
文摘In rebuilding Tianjin Metro, numerical simulations are performed to evaluate the original design of the ventilation system of Southwest Station and a new system is given to optimize the velocity and temperature fields at the station. Field measurements are conducted to validate the turbulence model and acquire boundary conditions. The simulation result tallies with testing data on the sport that is found that two-equation turbulence model is acceptable in simulating complex flow at the station. A method of simplifying the simulation of the transient flow at the station into steady flow is used and the validation criterion for this simulation is also given.
文摘Subway project involves different links such as preliminary planning, research, design, material procurement, construction, acceptance, production and quality assurance. In the supervision and management, subway engineering design and construction can better consolidate the construction foundation, and realize the efficiency, coordination and standardization of the overall construction of subway project. In the construction of subway and construction personnel, relevant supervisors and construction personnel should strengthen the deep understanding of the supervision and management of subway projects, improve the management system, accumulate construction experience, improve the quality of subway project management, and achieve the expected economic and social benefits.
文摘The subway station construction engineering design has a significant impact on the overall construction results and follow-up operation of the subway, which greatly affects the overall operation and deployment of urban rail public transit. The relevant units should pay attention to the train of thought and technical points of the subway station construction engineering design of rail public transit. This is a topic worthy of study. Firstly, the importance of reasonable design and planning of subway construction engineering is analyzed. Finally, the technology and key points in the design of subway construction engineering are studied.
文摘The internal flow field study of car compartments is an important step in railroad vehicle design and optimization. The flow field profile has a significant impact on the temperature distribution and passenger comfort level. Experimental studies on flow field can yield accurate results but carry a high time and computational cost. In contrast, the numerical simulation method can yield an internal flow field profile in less time than an experimental study. This study aims to improve the computational efficiency of numerical simulation by adapting two simplified models—the porous media model and the porous jump face model—to study the internal flow field of a railroad car compartment. The results provided by both simplified models are compared with the original numerical simulation model and with experimental data. Based on the results, the porous media model has a better agreement with the original model and with the experimental results. The flow field parameters (temperature and velocity) of the porous media model have relatively small numerical errors, with a maximum numerical error of 4.7%. The difference between the numerical results of the original model and those of the porous media model is less than 1%. By replacing the original numerical simulation model with the porous media model, the flow field of subway car compartments can be calculated with a reduction of about 25% in computing resources, while maintaining good accuracy.
基金Project supported by the National Natural Science Foundation of China (Nos. 51178418 and 51222803)the National Key Technology R&D (863) Program of China (No. 2009BAG12A01-B12-3)
文摘In this study,ground vibrations due to dynamic loadings from trains moving in subway tunnels were investigated using a 2.5D finite element model of an underground tunnel and surrounding soil interactions.In our model,wave propagation in the infinitely extended ground is dealt with using a simple,yet efficient gradually damped artificial boundary.Based on the assumption of invariant geometry and material distribution in the tunnel's direction,the Fourier transform of the spatial dimension in this direction is applied to represent the waves in terms of the wave-number.Finite element discretization is employed in the cross-section perpendicular to the tunnel direction and the governing equations are solved for every discrete wave-number.The 3D ground responses are calculated from the wave-number expansion by employing the inverse Fourier transform.The accuracy of the proposed analysis method is verified by a semi-analytical solution of a rectangular load moving inside a soil stratum.A case study of subway train induced ground vibration is presented and the dependency of wave attenuation at the ground surface on the vibration frequency of the moving load is discussed.
文摘Background:Since the 1970 s,terrorist bombings in subways have been frequently occurring worldwide.To cope with this threat and to provide medical response countermeasures,we analyzed the characteristics of subway bombing terrorist attacks and used the Haddon matrix to explore medical response strategies.Methods:First,we analyzed 111 subway bombings from 1970 to 2017 recorded in the Global Terrorism Database to provide a reference for the strategy exploration.Then,we convened an expert panel to use the Haddon matrix to explore the medical response strategies to subway bombings.Results:In recent decades,at least one bombing attack occurs every 3 years.Summarized by the Haddon matrix,the influencing factors of medical responses to conventional subway bombings include the adequacy of first-aid kits and the medical evacuation equipment,the traffic conditions affecting the evacuation,the continuity and stability of communication,as well as the factors exclusively attributed to dirty bomb attacks in subways,such as ionizing radiation protection capabilities,the structure of the radiation sickness treatment network based on the subway lines,and the disposal of radioactive sewage.These factors form the basis of the strategy discussion.Conclusions:Since subway bombings are long-term threats,it is necessary to have proper medical response preparation.Based on the Haddon matrix,we explored the medical response strategies for terrorist subway bombings,especially dirty bomb attacks.Haddon matrix can help policymakers systematically find the most important factors,which makes the preparations of the response more efficient.
基金supported in part by the NSFC project under grant No.61132003the Fundamental Research Funds for the Central Universities(2013JBZ002)the Ph.D.Program Foundation of Ministry of Education of China under grant No.20120009130002
文摘There is an increasing demand on wireless communications in subway tunnels to provide video surveillance and sensory data for security,maintenance and train control,and to offer various communication or entertainment services(e.g.,Internet,etc.) to passengers as well.The wireless channel in tunnels is quite unique due to the confined space and the waveguide effects.Therefore,modeling the radio channel characteristics in tunnels is critically important for communication systems design or optimization.This paper investigates the key radio channel characteristics of a subway tunnel at 2.4 GHz and 5 GHz,such as the path loss,root mean square(RMS) delay spread,channel stationarity,Doppler shift,and channel capacity.The field measurements show that channel characteristics in tunnels are highly location-dependent and there exist abundant components in Doppler shift domain.In the straight section of the subway tunnel,the measured path loss exponents are close to1.6,lower than that in free space.
基金supported by the National Natural Science Foundation of China (No. 40821003)the Guangdong Natural Science Foundation (No. 7118013)the State Key Laboratory of Organic Geochemistry and the Hong Kong Polytechnic University Joint Student Program
文摘Air samples were collected simultaneously at platform,mezzanine and outdoor in five typical stations of subway system in Shanghai,China using stainless steel canisters and analyzed by gas chromatography-mass selective detector (GC-MSD) after cryogenic pre-concentration.Benzene,toluene,ethylbenzene and xylenes (BTEX) at the platforms and mezzanines inside the stations averaged (10.3±2.1),(38.7±9.0),(19.4±10.1) and (30.0±11.1) μg/m 3,respectively;while trichloroethylene (TrCE),tetrachloroethylene (TeCE) and para-dichlorobenzene (pDCB),vinyl chloride and carbon tetrachloride were the most abundant chlorinated hydrocarbons inside the stations with average levels of (3.6±1.3),(1.3±0.5),(4.1±1.1),(2.2±1.1) and (1.2±0.3) μg/m 3,respectively.Mean levels of major aromatic and chlorinated hydrocarbons were higher indoor (platforms and mezzanines) than outdoor with average indoor/outdoor (I/O) ratios of 1.1–9.5,whereas no significant indoor/outdoor differences were found except for benzene and TrCE.The highly significant mutual correlations (p0.01) for BTEX between indoor and outdoor and their significant correlation (p0.05) with methyl tert-butyl ether (MTBE),a marker of traffic-related emission without other indoor and outdoor sources,indicated that BTEX were introduced into the subway stations from indoor/outdoor air exchange and traffic emission should be their dominant source.TrCE and pDCB were mainly from indoor emission and TeCE might have both indoor emission sources and contribution from outdoor air,especially in the mezzanines.
基金The National Natural Science Foundation of China(No.41572276)the National Key Research and Development Program of China(No.2017YFC0805400).
文摘For the tunnel crossing active fault,the damage induced by fault movement is always serious.To solve such a problem,a detailed anti-faulting tunnel design process for Urumqi subway line 2 was introduced,and seven three-dimensional elastic-plastic finite element models were established.The anti-faulting design process included three steps.First,the damage of tunnel lining from different locations of fault rupture surfaces was analyzed.Then,the analysis of the effect on tunnel buried depth was given.Finally,the effect of the disaster mitigation method on the flexible joint was verified and the location of the flexible joint was discussed.The results show that when the properties of surrounding rock at the tunnel bottom grows soft,the tunnel deformation curve is smoother and tunnel damage induced by fault movement is less serious.The vertical displacement change ratio of secondary linings along the tunnel axis may be the main factor to cause shear damage to the tunnel.The interface between the hanging wall and fracture zone is defined as the most adverse fault rupture surface.The tunnel damage was reduced with the decrease in the tunnel buried depth as more energy was dissipated by overburden soil and the differential uplift zone of soil became more diffuse.The method of the flexible joint can reduce the tunnel damage significantly and the disaster mitigation effect of different locations on the flexible joint is different.The tunnel damage is reduced by the greatest degree when the flexible joint is located on the fault rupture surface.
基金Supported by National Hi-tech Research and Development Program of China(863 Program,Grant No.2011AA110503-3)Fundamental Research Funds for the Central Universities of China(Grant No.2860219030)Foundation of Traction Power State Key Laboratory of Southwest Jiaotong University,China(Grant No.TPL1308)
文摘Fault diagnosis of various systems on rolling stock has drawn the attention of many researchers. However, obtaining an optimized sensor set of these systems, which is a prerequisite for fault diagnosis, remains a major challenge. Available literature suggests that the configuration of sensors in these systems is presently dependent on the knowledge and engineering experiences of designers, which may lead to insufficient or redundant development of various sensors. In this paper, the optimization of sensor sets is addressed by using the signed digraph (SDG) method. The method is modified for use in braking systems by the introduction of an effect-function method to replace the traditional quantitative methods. Two criteria are adopted to evaluate the capability of the sensor sets, namely, observability and resolution. The sensors configuration method of braking system is proposed. It consists of generating bipartite graphs from SDG models and then solving the set cover problem using a greedy algorithm. To demonstrate the improvement, the sensor configuration of the HP2008 braking system is investigated and fault diagnosis on a test bench is performed. The test results show that SDG algorithm can improve single-fault resolution from 6 faults to 10 faults, and with additional four brake cylinder pressure (BCP) sensors it can cover up to 67 double faults which were not considered by traditional fault diagnosis system. SDG methods are suitable for reducing redundant sensors and that the sensor sets thereby obtained are capable of detecting typical faults, such as the failure of a release valve. This study investigates the formal extension of the SDG method to the sensor configuration of braking system, as well as the adaptation supported by the effect-function method.
基金Project(2016YFB1200505-016)supported by the National Key Research and Development Program of ChinaProject(51675537)supported by the National Natural Science Foundation of ChinaProject(2018zzts161)supported by the Independent Exploration and Innovation Project of Central South University,China。
文摘This paper proposes a novel collision post structure designed to improve the crashworthiness of subway cab cars.The structure provides two innovative features:1)a simpler connection between the post and the car roof,which gives a more reasonable load transfer path to reduce the stress concentration at the joint;and 2)a stiffness induction design that provides an ideal deformation model to protect the safe space of the cab cars.The novel collision post structure was evaluated with finite element analysis,and a prototype cab car was mechanically tested.The results demonstrate that the deformation response was stable and agreed well with the expected ideal mode.The maximum load was 874.17 kN and the responses remained well above the elastic design load of 334 kN as required by the design specification.In addition,there was no significant tearing failure during the whole test process.Therefore,the novel collision post structure proposed has met the requirements specified in new standard to improve the crashworthiness of subway cab cars.Finally,the energy absorption efficiency and light weight design highlights were also summarized and discussed.
基金This research is supported by Beijing Municipal Natural Science Foundation(9204023)Ministry of Education“Tiancheng Huizhi”Innovation and Education Promotion Foundation(2018A01012).
文摘This paper focuses on the distribution of passenger flow in Huoying Station,Line 13 of Beijing subway system.The transformation measures taken by Line 13 since operation are firstly summarized.Then the authors elaborate the facilities and equipment of this station,especially the node layout and passenger flow field.An optimization scheme is proposed to rapidly distribute the passenger flow in Huoying Station by adjusting the operation time of the escalator in the direction of Xizhimen.The authors adopt Queuing theory and Anylogic simulation software to simulate the original and the optimized schemes of Huoying Station to distribute the passenger flow.The results of the simulation indicate that the optimized scheme could effectively alleviate the traffic congestion in the hall of Huoying Station,and the pedestrian density in other places of the hall is lowered;passengers could move freely in the hall and no new congestion points would form.The rationality of the scheme is thus proved.