The vibration response and noise caused by subway trains can affect the safety and comfort of superstructures.To study the dynamic response characteristics of subway stations and superstructures under train loads with...The vibration response and noise caused by subway trains can affect the safety and comfort of superstructures.To study the dynamic response characteristics of subway stations and superstructures under train loads with a hard combination,a numerical model is developed in this study.The indoor model test verified the accuracy of the numerical model.The influence laws of different hard combinations,train operating speeds and modes were studied and evaluated accordingly.The results show that the frequency corresponding to the peak vibration acceleration level of each floor of the superstructure property is concentrated at 10–20 Hz.The vibration response decreases in the high-frequency parts and increases in the lowfrequency parts with increasing distance from the source.Furthermore,the factors,such as train operating speed,operating mode,and hard combination type,will affect the vibration of the superstructure.The vibration response under the reversible operation of the train is greater than that of the unidirectional operation.The operating speed of the train is proportional to its vibration response.The vibration amplification area appears between the middle and the top of the superstructure at a higher train speed.Its vibration acceleration level will exceed the limit value of relevant regulations,and vibration-damping measures are required.Within the scope of application,this study provides some suggestions for constructing subway stations and superstructures.展开更多
Ground fissure,as a common geo-hazard,impairs the integrity of the site soil and affects the seismic performance of engineering structures.In this paper,a finite element(FE)model for subway stations in a ground fissur...Ground fissure,as a common geo-hazard,impairs the integrity of the site soil and affects the seismic performance of engineering structures.In this paper,a finite element(FE)model for subway stations in a ground fissure area was developed and validated by using experimental results.Numerical analyses were conducted to investigate the seismic response and failure mode of subway stations in a ground fissure area with different locations.Effects of ground fissure on deformations and internal forces of a station,soil pressures and soil plastic strains were discussed.The results showed that the seismic response of the station was significantly amplified by the ground fissure,and stations in the ground fissure area displayed obvious rocking deformation during earthquakes as compared to those in the area without fissures.It also was found that the soil yielding around the station,the dislocation occurring in the ground fissure area,and the dynamic amplification effect were more significant under vertical ground motion,which weakened the station’s ductility and accelerated its destruction process.展开更多
Based on the distribution of cooling load at a subway station and the peak-valley electricity price in Guangzhou,a chilled water storage system is reserved in the ample space above the station's distribution area....Based on the distribution of cooling load at a subway station and the peak-valley electricity price in Guangzhou,a chilled water storage system is reserved in the ample space above the station's distribution area.This study proposes a design scheme and operational strategy for a chilled water storage system suitable for subway engineering,based on calculating the cooling load and designing a chilled water storage system in a subway station.Additionally,it proposes calculation coefficients of hourly cooling load suitable for subway engineering and convenient for estimation of hourly cooling load.Furthermore,an economic analysis is conducted by combining hourly cooling load with time-of-use electricity prices.This study provides a reference for the design and application of chilled water storage systems in subsequent subway projects.展开更多
This study examines the variations in noise levels across various subway lines in Singapore and three other cities,and provides a detailed overview of the trends and factors influencing subway noise.Most of the equiva...This study examines the variations in noise levels across various subway lines in Singapore and three other cities,and provides a detailed overview of the trends and factors influencing subway noise.Most of the equivalent sound pressure level(Leq)in typical subway cabins across the Singapore subway lines are below 85 dBA,with some notable exceptions.These variations in noise levels are influenced by several factors,including rolling stock structure,track conditions and environmental and aerodynamic factors.The spectrogram analysis indicates that the cabin noise is mostly concentrated below the frequency of 1,000 Hz.This study also analyzes cabin noise in subway systems in Suzhou,Seoul,and Tokyo to allow for broader comparisons.It studies the impact of factors such as stock materials,track conditions including the quality of the rails,the presence of curves or irregularities,and maintenance frequency on cabin noise.展开更多
To explore the influence of emergency evacuation signs on passenger behavior during subway fires and improve evacuation efficiency in emergencies,this paper proposes a dynamic emergency evacuation sign system.A simula...To explore the influence of emergency evacuation signs on passenger behavior during subway fires and improve evacuation efficiency in emergencies,this paper proposes a dynamic emergency evacuation sign system.A simulation platform integrating building information modeling(BIM)and virtual reality(VR)technologies was em-ployed to create subway fire evacuation scenarios using both the current and proposed dynamic emergency evacuation signage systems.Through simulation experiments,fine-grained microscopic data on passenger behavior was collected.Seven indicators were selected to assess evacuation efficiency and wayfinding difficulty.The analysis explored the influence of evacuation signs on passenger behavior in both overall and decision-making areas,thereby validating the effectiveness of the new emergency evacuation signage system.The results show that the dynamic evacuation signage system significantly improves overall passenger evacuation efficiency and reduces decision-making errors.It also improves wayfinding efficiency in critical decision areas by reducing the need for direction identification,minimizing stopping times,and lowering the frequency of decision errors.The method for evaluating the effects of emergency evacuation signs on passenger evacuation behavior proposed in this study provides a robust theoretical basis for the design and optimization of emergency-oriented signs.展开更多
Efficiency and safety are paramount concerns for commuters, operators, and designers in subway stations. This study conducted controlled experiments and developed a modified force-based model to investigate the dynami...Efficiency and safety are paramount concerns for commuters, operators, and designers in subway stations. This study conducted controlled experiments and developed a modified force-based model to investigate the dynamics of pedestrian counterflow at bottlenecks, utilizing subway passenger alighting and boarding as a case study. Specifically, the efficiency and safety of three distinct movement modes: the cooperative mode(Coop), the combination of cooperative and competitive mode(C & C), and the competitive mode(Comp), were examined and compared. The experimental findings revealed that the C & C mode exhibited a clear lane formation phenomenon and demonstrated a higher flow rate than the Comp and Coop modes. This observation suggests that a combination of cooperative and competitive behaviors among pedestrians can positively enhance traffic efficiency and safety during the alighting and boarding process. In contrast, pedestrians exhibited increased detouring in their paths and more fluctuating trajectories in the Comp mode. Additionally, a questionnaire survey assessing the level of competition and cooperation among pedestrians provided a comprehensive analysis of the psychological dynamics of passengers during the alighting and boarding activities. Lastly, the proposed force-based model was calibrated and validated, demonstrating a good performance in accurately replicating the overall characteristics of the experimental process. Overall, this study offers valuable insights into enhancing the pedestrian traffic efficiency and safety within subway systems.展开更多
In the realm of subway shield tunnel operations,the impact of tunnel settlement on the operational performance of subway vehicles is a crucial concern.This study introduces an advanced analytical model to investigate ...In the realm of subway shield tunnel operations,the impact of tunnel settlement on the operational performance of subway vehicles is a crucial concern.This study introduces an advanced analytical model to investigate rail geometric deformations caused by settlement within a vehicle-track-tunnel coupled system.The model integrates the geometric deformations of the track,attributed to settlement,as track irregularities.A novel“cyclic model”algorithm was employed to enhance computational efficiency without compromising on precision,a claim that was rigorously validated.The model’s capability extends to analyzing the time-history responses of vehicles traversing settlement-affected areas.The research primarily focuses on how settlement wavelength,amplitude,and vehicle speed influence operational performance.Key findings indicate that an increase in settlement wavelength can improve vehicle performance,whereas a rise in amplitude can degrade it.The study also establishes settlement thresholds,based on vehicle operation comfort and safety.These insights are pivotal for maintaining and enhancing the safety and efficiency of subway systems,providing a valuable framework for urban infrastructure management and long-term maintenance strategies in metropolitan transit systems.展开更多
Subway tunnels often suffer from surface pathologies such as cracks,corrosion,fractures,peeling,water and sand infiltration,and sudden hazards caused by foreign object intrusions.Installing a mobile visual pathology s...Subway tunnels often suffer from surface pathologies such as cracks,corrosion,fractures,peeling,water and sand infiltration,and sudden hazards caused by foreign object intrusions.Installing a mobile visual pathology sensing system at the front end of operating trains is a critical measure to ensure subway safety.Taking leakage as the typical pathology,a tunnel pathology automatic visual detection method based on Deeplabv3+(ASTPDS)was proposed to achieve automatic and high-precision detection and pixel-level morphology extraction of pathologies.Compared with similar methods,this approach showed significant advantages and achieved a detection accuracy of 93.12%,surpassing FCN and U-Net.Moreover,it also exceeded the recall rates for detecting leaks of FCN and U-Net by 8.33%and 8.19%,respectively.展开更多
The present study analyses the differences between the subways systems of two cities, Lisbon (Portugal) and Brasília (Brazil), verifying the extent to which their subway systems are spatially integrated with the ...The present study analyses the differences between the subways systems of two cities, Lisbon (Portugal) and Brasília (Brazil), verifying the extent to which their subway systems are spatially integrated with the respective urban fabric-which would promote a better synchrony in terms of economy and sustainability. For interpreting the data, the methodology and tools of the Theory of the Social Logic of Space were used, by means of axial maps, researching the relationship between the constructed and empty (public spaces) areas of the urban structures. Based on the findings, meaningful differences between the subway systems and the configuration of urban spaces were observed, as a product of specific design matrixes. In Lisbon, the mobility associated to the subway seems to be encouraged by the integration of the system with the potential for movement provided by the urban tissue (making the secondary centralities articulated with the subway stations more dynamic). In Brasilia, however, there are several difficulties for such mobility, due to the predominant role of the empty spaces in the city which weakens the gathering potential of such areas, despite the fact that such articulation with secondary centralities is also present there.展开更多
As the urban populations grow,the number and size of subway construction projects are increasing while also meeting higher construction standards.So,subway construction projects must have a better understanding of con...As the urban populations grow,the number and size of subway construction projects are increasing while also meeting higher construction standards.So,subway construction projects must have a better understanding of construction technology.This article focuses on the construction technology of the subway tunnel expansion under the bridge foundation.By analyzing the engineering characteristics of the bridge foundation and using a project as an example,this article provides a detailed discussion of the construction process of tunnel expansion under a bridge foundation.This article aims to serve as a reference for subway tunnel construction in China to ensure the key points of construction technology are understood,thus improving construction quality and laying a solid technical foundation for the sustainable development of urban rail engineering.展开更多
Urban infrastructure has become more complex with the rapid development of urban transportation networks.In urban environments with limited space,construction of facilities like subways and bridges may mutually influe...Urban infrastructure has become more complex with the rapid development of urban transportation networks.In urban environments with limited space,construction of facilities like subways and bridges may mutually influence each other,especially when subway construction requires passing under bridges.In such cases,pile foundation replacement technology is often necessary.However,this technology is highly specialized,with a lengthy and risky construction period,and high costs.Personnel must be proficient in key technical aspects to ensure construction quality.This article discusses the technical principle,construction process,and core technology of pile foundation replacement,along with the application of this technology in subway tunnel crossing bridge projects,supported by engineering examples for reference.展开更多
During subway operation,various factors will cause long-term land subsidence,such as the vibration subsidence of foundation soil caused by train vibration load,incomplete consolidation deformation of foundation soil d...During subway operation,various factors will cause long-term land subsidence,such as the vibration subsidence of foundation soil caused by train vibration load,incomplete consolidation deformation of foundation soil during tunnel construction,dense buildings and structures in the vicinity of the tunnel,and changes in water level in the stratum where the tunnel is located.The monitoring of long-term land subsidence during subway operation in high-density urban areas differs from that in low-density urban construction areas.The former is the gathering point of the entire urban population.There are many complex buildings around the project,busy road traffic,high pedestrian flow,and less vegetation cover.Several existing items requiremonitoring.However,monitoring distance is long,and providing early warning is difficult.This study uses the 2.8 km operation line between Wulin Square station and Ding’an Road station of Hangzhou Subway Line 1 as an example to propose the integrated method of DInSAR-GPS-GIS technology and the key algorithm for long-term land subsidence deformation.Then,it selects multiscene image data to analyze long-termland subsidence of high-density urban areas during subway operation.Results show that long-term land subsidence caused by the operation of Wulin Square station to Ding’an Road station of Hangzhou Subway Line 1 is small,with maximumsubsidence of 30.64 mm,and minimumsubsidence of 11.45 mm,and average subsidence ranging from 19.27 to 21.33 mm.And FLAC3D software was used to verify the monitoring situation,using the geological conditions of the soil in the study area and the tunnel profile to simulate the settlement under vehicle load,and the simulation results tended to be consistent with the monitoring situation.展开更多
In rebuilding Tianjin Metro, numerical simulations are performed to evaluate the original design of the ventilation system of Southwest Station and a new system is given to optimize the velocity and temperature fields...In rebuilding Tianjin Metro, numerical simulations are performed to evaluate the original design of the ventilation system of Southwest Station and a new system is given to optimize the velocity and temperature fields at the station. Field measurements are conducted to validate the turbulence model and acquire boundary conditions. The simulation result tallies with testing data on the sport that is found that two-equation turbulence model is acceptable in simulating complex flow at the station. A method of simplifying the simulation of the transient flow at the station into steady flow is used and the validation criterion for this simulation is also given.展开更多
Subway project involves different links such as preliminary planning, research, design, material procurement, construction, acceptance, production and quality assurance. In the supervision and management, subway engin...Subway project involves different links such as preliminary planning, research, design, material procurement, construction, acceptance, production and quality assurance. In the supervision and management, subway engineering design and construction can better consolidate the construction foundation, and realize the efficiency, coordination and standardization of the overall construction of subway project. In the construction of subway and construction personnel, relevant supervisors and construction personnel should strengthen the deep understanding of the supervision and management of subway projects, improve the management system, accumulate construction experience, improve the quality of subway project management, and achieve the expected economic and social benefits.展开更多
The subway station construction engineering design has a significant impact on the overall construction results and follow-up operation of the subway, which greatly affects the overall operation and deployment of urba...The subway station construction engineering design has a significant impact on the overall construction results and follow-up operation of the subway, which greatly affects the overall operation and deployment of urban rail public transit. The relevant units should pay attention to the train of thought and technical points of the subway station construction engineering design of rail public transit. This is a topic worthy of study. Firstly, the importance of reasonable design and planning of subway construction engineering is analyzed. Finally, the technology and key points in the design of subway construction engineering are studied.展开更多
The internal flow field study of car compartments is an important step in railroad vehicle design and optimization. The flow field profile has a significant impact on the temperature distribution and passenger comfort...The internal flow field study of car compartments is an important step in railroad vehicle design and optimization. The flow field profile has a significant impact on the temperature distribution and passenger comfort level. Experimental studies on flow field can yield accurate results but carry a high time and computational cost. In contrast, the numerical simulation method can yield an internal flow field profile in less time than an experimental study. This study aims to improve the computational efficiency of numerical simulation by adapting two simplified models—the porous media model and the porous jump face model—to study the internal flow field of a railroad car compartment. The results provided by both simplified models are compared with the original numerical simulation model and with experimental data. Based on the results, the porous media model has a better agreement with the original model and with the experimental results. The flow field parameters (temperature and velocity) of the porous media model have relatively small numerical errors, with a maximum numerical error of 4.7%. The difference between the numerical results of the original model and those of the porous media model is less than 1%. By replacing the original numerical simulation model with the porous media model, the flow field of subway car compartments can be calculated with a reduction of about 25% in computing resources, while maintaining good accuracy.展开更多
In this study,ground vibrations due to dynamic loadings from trains moving in subway tunnels were investigated using a 2.5D finite element model of an underground tunnel and surrounding soil interactions.In our model,...In this study,ground vibrations due to dynamic loadings from trains moving in subway tunnels were investigated using a 2.5D finite element model of an underground tunnel and surrounding soil interactions.In our model,wave propagation in the infinitely extended ground is dealt with using a simple,yet efficient gradually damped artificial boundary.Based on the assumption of invariant geometry and material distribution in the tunnel's direction,the Fourier transform of the spatial dimension in this direction is applied to represent the waves in terms of the wave-number.Finite element discretization is employed in the cross-section perpendicular to the tunnel direction and the governing equations are solved for every discrete wave-number.The 3D ground responses are calculated from the wave-number expansion by employing the inverse Fourier transform.The accuracy of the proposed analysis method is verified by a semi-analytical solution of a rectangular load moving inside a soil stratum.A case study of subway train induced ground vibration is presented and the dependency of wave attenuation at the ground surface on the vibration frequency of the moving load is discussed.展开更多
Background:Since the 1970 s,terrorist bombings in subways have been frequently occurring worldwide.To cope with this threat and to provide medical response countermeasures,we analyzed the characteristics of subway bom...Background:Since the 1970 s,terrorist bombings in subways have been frequently occurring worldwide.To cope with this threat and to provide medical response countermeasures,we analyzed the characteristics of subway bombing terrorist attacks and used the Haddon matrix to explore medical response strategies.Methods:First,we analyzed 111 subway bombings from 1970 to 2017 recorded in the Global Terrorism Database to provide a reference for the strategy exploration.Then,we convened an expert panel to use the Haddon matrix to explore the medical response strategies to subway bombings.Results:In recent decades,at least one bombing attack occurs every 3 years.Summarized by the Haddon matrix,the influencing factors of medical responses to conventional subway bombings include the adequacy of first-aid kits and the medical evacuation equipment,the traffic conditions affecting the evacuation,the continuity and stability of communication,as well as the factors exclusively attributed to dirty bomb attacks in subways,such as ionizing radiation protection capabilities,the structure of the radiation sickness treatment network based on the subway lines,and the disposal of radioactive sewage.These factors form the basis of the strategy discussion.Conclusions:Since subway bombings are long-term threats,it is necessary to have proper medical response preparation.Based on the Haddon matrix,we explored the medical response strategies for terrorist subway bombings,especially dirty bomb attacks.Haddon matrix can help policymakers systematically find the most important factors,which makes the preparations of the response more efficient.展开更多
There is an increasing demand on wireless communications in subway tunnels to provide video surveillance and sensory data for security,maintenance and train control,and to offer various communication or entertainment ...There is an increasing demand on wireless communications in subway tunnels to provide video surveillance and sensory data for security,maintenance and train control,and to offer various communication or entertainment services(e.g.,Internet,etc.) to passengers as well.The wireless channel in tunnels is quite unique due to the confined space and the waveguide effects.Therefore,modeling the radio channel characteristics in tunnels is critically important for communication systems design or optimization.This paper investigates the key radio channel characteristics of a subway tunnel at 2.4 GHz and 5 GHz,such as the path loss,root mean square(RMS) delay spread,channel stationarity,Doppler shift,and channel capacity.The field measurements show that channel characteristics in tunnels are highly location-dependent and there exist abundant components in Doppler shift domain.In the straight section of the subway tunnel,the measured path loss exponents are close to1.6,lower than that in free space.展开更多
Air samples were collected simultaneously at platform,mezzanine and outdoor in five typical stations of subway system in Shanghai,China using stainless steel canisters and analyzed by gas chromatography-mass selective...Air samples were collected simultaneously at platform,mezzanine and outdoor in five typical stations of subway system in Shanghai,China using stainless steel canisters and analyzed by gas chromatography-mass selective detector (GC-MSD) after cryogenic pre-concentration.Benzene,toluene,ethylbenzene and xylenes (BTEX) at the platforms and mezzanines inside the stations averaged (10.3±2.1),(38.7±9.0),(19.4±10.1) and (30.0±11.1) μg/m 3,respectively;while trichloroethylene (TrCE),tetrachloroethylene (TeCE) and para-dichlorobenzene (pDCB),vinyl chloride and carbon tetrachloride were the most abundant chlorinated hydrocarbons inside the stations with average levels of (3.6±1.3),(1.3±0.5),(4.1±1.1),(2.2±1.1) and (1.2±0.3) μg/m 3,respectively.Mean levels of major aromatic and chlorinated hydrocarbons were higher indoor (platforms and mezzanines) than outdoor with average indoor/outdoor (I/O) ratios of 1.1–9.5,whereas no significant indoor/outdoor differences were found except for benzene and TrCE.The highly significant mutual correlations (p0.01) for BTEX between indoor and outdoor and their significant correlation (p0.05) with methyl tert-butyl ether (MTBE),a marker of traffic-related emission without other indoor and outdoor sources,indicated that BTEX were introduced into the subway stations from indoor/outdoor air exchange and traffic emission should be their dominant source.TrCE and pDCB were mainly from indoor emission and TeCE might have both indoor emission sources and contribution from outdoor air,especially in the mezzanines.展开更多
基金National Natural Science Foundation of China under Grant No.51578463。
文摘The vibration response and noise caused by subway trains can affect the safety and comfort of superstructures.To study the dynamic response characteristics of subway stations and superstructures under train loads with a hard combination,a numerical model is developed in this study.The indoor model test verified the accuracy of the numerical model.The influence laws of different hard combinations,train operating speeds and modes were studied and evaluated accordingly.The results show that the frequency corresponding to the peak vibration acceleration level of each floor of the superstructure property is concentrated at 10–20 Hz.The vibration response decreases in the high-frequency parts and increases in the lowfrequency parts with increasing distance from the source.Furthermore,the factors,such as train operating speed,operating mode,and hard combination type,will affect the vibration of the superstructure.The vibration response under the reversible operation of the train is greater than that of the unidirectional operation.The operating speed of the train is proportional to its vibration response.The vibration amplification area appears between the middle and the top of the superstructure at a higher train speed.Its vibration acceleration level will exceed the limit value of relevant regulations,and vibration-damping measures are required.Within the scope of application,this study provides some suggestions for constructing subway stations and superstructures.
基金National Natural Science Foundation of China under Grant No.52108473Project of Shaanxi Engineering Technology Research Center for Urban Geology and Underground Space under Grant No.2025KT-03Key Project of Education Department of Shaanxi Province under Grant No.23JY042。
文摘Ground fissure,as a common geo-hazard,impairs the integrity of the site soil and affects the seismic performance of engineering structures.In this paper,a finite element(FE)model for subway stations in a ground fissure area was developed and validated by using experimental results.Numerical analyses were conducted to investigate the seismic response and failure mode of subway stations in a ground fissure area with different locations.Effects of ground fissure on deformations and internal forces of a station,soil pressures and soil plastic strains were discussed.The results showed that the seismic response of the station was significantly amplified by the ground fissure,and stations in the ground fissure area displayed obvious rocking deformation during earthquakes as compared to those in the area without fissures.It also was found that the soil yielding around the station,the dislocation occurring in the ground fissure area,and the dynamic amplification effect were more significant under vertical ground motion,which weakened the station’s ductility and accelerated its destruction process.
基金supported by the Science and Technology Development Project of China Railway Design Corporation(Project No.2024CJ0401).
文摘Based on the distribution of cooling load at a subway station and the peak-valley electricity price in Guangzhou,a chilled water storage system is reserved in the ample space above the station's distribution area.This study proposes a design scheme and operational strategy for a chilled water storage system suitable for subway engineering,based on calculating the cooling load and designing a chilled water storage system in a subway station.Additionally,it proposes calculation coefficients of hourly cooling load suitable for subway engineering and convenient for estimation of hourly cooling load.Furthermore,an economic analysis is conducted by combining hourly cooling load with time-of-use electricity prices.This study provides a reference for the design and application of chilled water storage systems in subsequent subway projects.
文摘This study examines the variations in noise levels across various subway lines in Singapore and three other cities,and provides a detailed overview of the trends and factors influencing subway noise.Most of the equivalent sound pressure level(Leq)in typical subway cabins across the Singapore subway lines are below 85 dBA,with some notable exceptions.These variations in noise levels are influenced by several factors,including rolling stock structure,track conditions and environmental and aerodynamic factors.The spectrogram analysis indicates that the cabin noise is mostly concentrated below the frequency of 1,000 Hz.This study also analyzes cabin noise in subway systems in Suzhou,Seoul,and Tokyo to allow for broader comparisons.It studies the impact of factors such as stock materials,track conditions including the quality of the rails,the presence of curves or irregularities,and maintenance frequency on cabin noise.
基金Beijing Natural Science Foundation-Fengtai Rail Transit Frontier Research Joint Foundation(No.L211024),the National Natural Science Foundation of China(No.52072012).
文摘To explore the influence of emergency evacuation signs on passenger behavior during subway fires and improve evacuation efficiency in emergencies,this paper proposes a dynamic emergency evacuation sign system.A simulation platform integrating building information modeling(BIM)and virtual reality(VR)technologies was em-ployed to create subway fire evacuation scenarios using both the current and proposed dynamic emergency evacuation signage systems.Through simulation experiments,fine-grained microscopic data on passenger behavior was collected.Seven indicators were selected to assess evacuation efficiency and wayfinding difficulty.The analysis explored the influence of evacuation signs on passenger behavior in both overall and decision-making areas,thereby validating the effectiveness of the new emergency evacuation signage system.The results show that the dynamic evacuation signage system significantly improves overall passenger evacuation efficiency and reduces decision-making errors.It also improves wayfinding efficiency in critical decision areas by reducing the need for direction identification,minimizing stopping times,and lowering the frequency of decision errors.The method for evaluating the effects of emergency evacuation signs on passenger evacuation behavior proposed in this study provides a robust theoretical basis for the design and optimization of emergency-oriented signs.
基金Project supported by the National Natural Science Foundation of China (Grant No. 72301184)the Natural Science Foundation of Sichuan Province of China (Grant No. 2024NSFSC1073)the Fundamental Research Funds for the Central Universities (Grant No. YJ202329)。
文摘Efficiency and safety are paramount concerns for commuters, operators, and designers in subway stations. This study conducted controlled experiments and developed a modified force-based model to investigate the dynamics of pedestrian counterflow at bottlenecks, utilizing subway passenger alighting and boarding as a case study. Specifically, the efficiency and safety of three distinct movement modes: the cooperative mode(Coop), the combination of cooperative and competitive mode(C & C), and the competitive mode(Comp), were examined and compared. The experimental findings revealed that the C & C mode exhibited a clear lane formation phenomenon and demonstrated a higher flow rate than the Comp and Coop modes. This observation suggests that a combination of cooperative and competitive behaviors among pedestrians can positively enhance traffic efficiency and safety during the alighting and boarding process. In contrast, pedestrians exhibited increased detouring in their paths and more fluctuating trajectories in the Comp mode. Additionally, a questionnaire survey assessing the level of competition and cooperation among pedestrians provided a comprehensive analysis of the psychological dynamics of passengers during the alighting and boarding activities. Lastly, the proposed force-based model was calibrated and validated, demonstrating a good performance in accurately replicating the overall characteristics of the experimental process. Overall, this study offers valuable insights into enhancing the pedestrian traffic efficiency and safety within subway systems.
基金funded by the Scientific Research Startup Foundation of Fujian University of Technology (GY-Z21067 and GY-Z21026).
文摘In the realm of subway shield tunnel operations,the impact of tunnel settlement on the operational performance of subway vehicles is a crucial concern.This study introduces an advanced analytical model to investigate rail geometric deformations caused by settlement within a vehicle-track-tunnel coupled system.The model integrates the geometric deformations of the track,attributed to settlement,as track irregularities.A novel“cyclic model”algorithm was employed to enhance computational efficiency without compromising on precision,a claim that was rigorously validated.The model’s capability extends to analyzing the time-history responses of vehicles traversing settlement-affected areas.The research primarily focuses on how settlement wavelength,amplitude,and vehicle speed influence operational performance.Key findings indicate that an increase in settlement wavelength can improve vehicle performance,whereas a rise in amplitude can degrade it.The study also establishes settlement thresholds,based on vehicle operation comfort and safety.These insights are pivotal for maintaining and enhancing the safety and efficiency of subway systems,providing a valuable framework for urban infrastructure management and long-term maintenance strategies in metropolitan transit systems.
文摘Subway tunnels often suffer from surface pathologies such as cracks,corrosion,fractures,peeling,water and sand infiltration,and sudden hazards caused by foreign object intrusions.Installing a mobile visual pathology sensing system at the front end of operating trains is a critical measure to ensure subway safety.Taking leakage as the typical pathology,a tunnel pathology automatic visual detection method based on Deeplabv3+(ASTPDS)was proposed to achieve automatic and high-precision detection and pixel-level morphology extraction of pathologies.Compared with similar methods,this approach showed significant advantages and achieved a detection accuracy of 93.12%,surpassing FCN and U-Net.Moreover,it also exceeded the recall rates for detecting leaks of FCN and U-Net by 8.33%and 8.19%,respectively.
基金the financial support during the Doctorate internship carried out at IST-UTL(Lisbon/Portugal).
文摘The present study analyses the differences between the subways systems of two cities, Lisbon (Portugal) and Brasília (Brazil), verifying the extent to which their subway systems are spatially integrated with the respective urban fabric-which would promote a better synchrony in terms of economy and sustainability. For interpreting the data, the methodology and tools of the Theory of the Social Logic of Space were used, by means of axial maps, researching the relationship between the constructed and empty (public spaces) areas of the urban structures. Based on the findings, meaningful differences between the subway systems and the configuration of urban spaces were observed, as a product of specific design matrixes. In Lisbon, the mobility associated to the subway seems to be encouraged by the integration of the system with the potential for movement provided by the urban tissue (making the secondary centralities articulated with the subway stations more dynamic). In Brasilia, however, there are several difficulties for such mobility, due to the predominant role of the empty spaces in the city which weakens the gathering potential of such areas, despite the fact that such articulation with secondary centralities is also present there.
文摘As the urban populations grow,the number and size of subway construction projects are increasing while also meeting higher construction standards.So,subway construction projects must have a better understanding of construction technology.This article focuses on the construction technology of the subway tunnel expansion under the bridge foundation.By analyzing the engineering characteristics of the bridge foundation and using a project as an example,this article provides a detailed discussion of the construction process of tunnel expansion under a bridge foundation.This article aims to serve as a reference for subway tunnel construction in China to ensure the key points of construction technology are understood,thus improving construction quality and laying a solid technical foundation for the sustainable development of urban rail engineering.
文摘Urban infrastructure has become more complex with the rapid development of urban transportation networks.In urban environments with limited space,construction of facilities like subways and bridges may mutually influence each other,especially when subway construction requires passing under bridges.In such cases,pile foundation replacement technology is often necessary.However,this technology is highly specialized,with a lengthy and risky construction period,and high costs.Personnel must be proficient in key technical aspects to ensure construction quality.This article discusses the technical principle,construction process,and core technology of pile foundation replacement,along with the application of this technology in subway tunnel crossing bridge projects,supported by engineering examples for reference.
基金financial supports for this research project by the National Natural Science Foundation of China(Nos.41602308,41967037)supported by Zhejiang Provincial Natural Science Foundation of China under Grant No.LY20E080005+1 种基金funded by National Key Research and Development Projects of China(No.2019YFC507502)Guangxi Science and Technology Plan Project(No.RZ2100000161).
文摘During subway operation,various factors will cause long-term land subsidence,such as the vibration subsidence of foundation soil caused by train vibration load,incomplete consolidation deformation of foundation soil during tunnel construction,dense buildings and structures in the vicinity of the tunnel,and changes in water level in the stratum where the tunnel is located.The monitoring of long-term land subsidence during subway operation in high-density urban areas differs from that in low-density urban construction areas.The former is the gathering point of the entire urban population.There are many complex buildings around the project,busy road traffic,high pedestrian flow,and less vegetation cover.Several existing items requiremonitoring.However,monitoring distance is long,and providing early warning is difficult.This study uses the 2.8 km operation line between Wulin Square station and Ding’an Road station of Hangzhou Subway Line 1 as an example to propose the integrated method of DInSAR-GPS-GIS technology and the key algorithm for long-term land subsidence deformation.Then,it selects multiscene image data to analyze long-termland subsidence of high-density urban areas during subway operation.Results show that long-term land subsidence caused by the operation of Wulin Square station to Ding’an Road station of Hangzhou Subway Line 1 is small,with maximumsubsidence of 30.64 mm,and minimumsubsidence of 11.45 mm,and average subsidence ranging from 19.27 to 21.33 mm.And FLAC3D software was used to verify the monitoring situation,using the geological conditions of the soil in the study area and the tunnel profile to simulate the settlement under vehicle load,and the simulation results tended to be consistent with the monitoring situation.
文摘In rebuilding Tianjin Metro, numerical simulations are performed to evaluate the original design of the ventilation system of Southwest Station and a new system is given to optimize the velocity and temperature fields at the station. Field measurements are conducted to validate the turbulence model and acquire boundary conditions. The simulation result tallies with testing data on the sport that is found that two-equation turbulence model is acceptable in simulating complex flow at the station. A method of simplifying the simulation of the transient flow at the station into steady flow is used and the validation criterion for this simulation is also given.
文摘Subway project involves different links such as preliminary planning, research, design, material procurement, construction, acceptance, production and quality assurance. In the supervision and management, subway engineering design and construction can better consolidate the construction foundation, and realize the efficiency, coordination and standardization of the overall construction of subway project. In the construction of subway and construction personnel, relevant supervisors and construction personnel should strengthen the deep understanding of the supervision and management of subway projects, improve the management system, accumulate construction experience, improve the quality of subway project management, and achieve the expected economic and social benefits.
文摘The subway station construction engineering design has a significant impact on the overall construction results and follow-up operation of the subway, which greatly affects the overall operation and deployment of urban rail public transit. The relevant units should pay attention to the train of thought and technical points of the subway station construction engineering design of rail public transit. This is a topic worthy of study. Firstly, the importance of reasonable design and planning of subway construction engineering is analyzed. Finally, the technology and key points in the design of subway construction engineering are studied.
文摘The internal flow field study of car compartments is an important step in railroad vehicle design and optimization. The flow field profile has a significant impact on the temperature distribution and passenger comfort level. Experimental studies on flow field can yield accurate results but carry a high time and computational cost. In contrast, the numerical simulation method can yield an internal flow field profile in less time than an experimental study. This study aims to improve the computational efficiency of numerical simulation by adapting two simplified models—the porous media model and the porous jump face model—to study the internal flow field of a railroad car compartment. The results provided by both simplified models are compared with the original numerical simulation model and with experimental data. Based on the results, the porous media model has a better agreement with the original model and with the experimental results. The flow field parameters (temperature and velocity) of the porous media model have relatively small numerical errors, with a maximum numerical error of 4.7%. The difference between the numerical results of the original model and those of the porous media model is less than 1%. By replacing the original numerical simulation model with the porous media model, the flow field of subway car compartments can be calculated with a reduction of about 25% in computing resources, while maintaining good accuracy.
基金Project supported by the National Natural Science Foundation of China (Nos. 51178418 and 51222803)the National Key Technology R&D (863) Program of China (No. 2009BAG12A01-B12-3)
文摘In this study,ground vibrations due to dynamic loadings from trains moving in subway tunnels were investigated using a 2.5D finite element model of an underground tunnel and surrounding soil interactions.In our model,wave propagation in the infinitely extended ground is dealt with using a simple,yet efficient gradually damped artificial boundary.Based on the assumption of invariant geometry and material distribution in the tunnel's direction,the Fourier transform of the spatial dimension in this direction is applied to represent the waves in terms of the wave-number.Finite element discretization is employed in the cross-section perpendicular to the tunnel direction and the governing equations are solved for every discrete wave-number.The 3D ground responses are calculated from the wave-number expansion by employing the inverse Fourier transform.The accuracy of the proposed analysis method is verified by a semi-analytical solution of a rectangular load moving inside a soil stratum.A case study of subway train induced ground vibration is presented and the dependency of wave attenuation at the ground surface on the vibration frequency of the moving load is discussed.
文摘Background:Since the 1970 s,terrorist bombings in subways have been frequently occurring worldwide.To cope with this threat and to provide medical response countermeasures,we analyzed the characteristics of subway bombing terrorist attacks and used the Haddon matrix to explore medical response strategies.Methods:First,we analyzed 111 subway bombings from 1970 to 2017 recorded in the Global Terrorism Database to provide a reference for the strategy exploration.Then,we convened an expert panel to use the Haddon matrix to explore the medical response strategies to subway bombings.Results:In recent decades,at least one bombing attack occurs every 3 years.Summarized by the Haddon matrix,the influencing factors of medical responses to conventional subway bombings include the adequacy of first-aid kits and the medical evacuation equipment,the traffic conditions affecting the evacuation,the continuity and stability of communication,as well as the factors exclusively attributed to dirty bomb attacks in subways,such as ionizing radiation protection capabilities,the structure of the radiation sickness treatment network based on the subway lines,and the disposal of radioactive sewage.These factors form the basis of the strategy discussion.Conclusions:Since subway bombings are long-term threats,it is necessary to have proper medical response preparation.Based on the Haddon matrix,we explored the medical response strategies for terrorist subway bombings,especially dirty bomb attacks.Haddon matrix can help policymakers systematically find the most important factors,which makes the preparations of the response more efficient.
基金supported in part by the NSFC project under grant No.61132003the Fundamental Research Funds for the Central Universities(2013JBZ002)the Ph.D.Program Foundation of Ministry of Education of China under grant No.20120009130002
文摘There is an increasing demand on wireless communications in subway tunnels to provide video surveillance and sensory data for security,maintenance and train control,and to offer various communication or entertainment services(e.g.,Internet,etc.) to passengers as well.The wireless channel in tunnels is quite unique due to the confined space and the waveguide effects.Therefore,modeling the radio channel characteristics in tunnels is critically important for communication systems design or optimization.This paper investigates the key radio channel characteristics of a subway tunnel at 2.4 GHz and 5 GHz,such as the path loss,root mean square(RMS) delay spread,channel stationarity,Doppler shift,and channel capacity.The field measurements show that channel characteristics in tunnels are highly location-dependent and there exist abundant components in Doppler shift domain.In the straight section of the subway tunnel,the measured path loss exponents are close to1.6,lower than that in free space.
基金supported by the National Natural Science Foundation of China (No. 40821003)the Guangdong Natural Science Foundation (No. 7118013)the State Key Laboratory of Organic Geochemistry and the Hong Kong Polytechnic University Joint Student Program
文摘Air samples were collected simultaneously at platform,mezzanine and outdoor in five typical stations of subway system in Shanghai,China using stainless steel canisters and analyzed by gas chromatography-mass selective detector (GC-MSD) after cryogenic pre-concentration.Benzene,toluene,ethylbenzene and xylenes (BTEX) at the platforms and mezzanines inside the stations averaged (10.3±2.1),(38.7±9.0),(19.4±10.1) and (30.0±11.1) μg/m 3,respectively;while trichloroethylene (TrCE),tetrachloroethylene (TeCE) and para-dichlorobenzene (pDCB),vinyl chloride and carbon tetrachloride were the most abundant chlorinated hydrocarbons inside the stations with average levels of (3.6±1.3),(1.3±0.5),(4.1±1.1),(2.2±1.1) and (1.2±0.3) μg/m 3,respectively.Mean levels of major aromatic and chlorinated hydrocarbons were higher indoor (platforms and mezzanines) than outdoor with average indoor/outdoor (I/O) ratios of 1.1–9.5,whereas no significant indoor/outdoor differences were found except for benzene and TrCE.The highly significant mutual correlations (p0.01) for BTEX between indoor and outdoor and their significant correlation (p0.05) with methyl tert-butyl ether (MTBE),a marker of traffic-related emission without other indoor and outdoor sources,indicated that BTEX were introduced into the subway stations from indoor/outdoor air exchange and traffic emission should be their dominant source.TrCE and pDCB were mainly from indoor emission and TeCE might have both indoor emission sources and contribution from outdoor air,especially in the mezzanines.