期刊文献+
共找到165篇文章
< 1 2 9 >
每页显示 20 50 100
Research progress of intelligent testing technology and evaluation methods for subgrade engineering 被引量:1
1
作者 Guojun Cai Hongliang Tian +2 位作者 Lulu Liu Xiaoyan Liu Songyu Liu 《Journal of Road Engineering》 2025年第2期164-183,共20页
Subgrade engineering is a fundamental aspect of infrastructure construction in China.As the primary structural element responsible for bearing and distributing traffic loads,the subgrade must not only withstand the su... Subgrade engineering is a fundamental aspect of infrastructure construction in China.As the primary structural element responsible for bearing and distributing traffic loads,the subgrade must not only withstand the substantial pressures exerted by vehicles,trains,and other forms of transportation,but also efficiently transfer these loads to the underlying foundation,ensuring the stability and longevity of the roadway.In recent years,advancements in subgrade engineering technology have propelled the industry towards smarter,greener,and more sustainable practices,particularly in the areas of intelligent monitoring,disaster management,and innovative construction methods.This paper reviews the application and methodologies of intelligent testing equipment,including cone penetration testing(CPT)devices,soil resistivity testers,and intelligent rebound testers,in subgrade engineering.It examines the operating principles,advantages,limitations,and application ranges of these tools in subgrade testing.Additionally,the paper evaluates the practical use of advanced equipment from both domestic and international perspectives,addressing the challenges encountered by various instruments in realworld applications.These devices enable precise,comprehensive testing and evaluation of subgrade conditions at different stages,providing real-time data analysis and intelligent early warnings.This supports effective subgrade health management and maintenance.As intelligent technologies continue to evolve and integrate,these tools will increasingly enhance the accuracy,efficiency,and sustainability of subgrade monitoring. 展开更多
关键词 subgrade engineering Intelligent testing technology Technology evaluation Health management and maintenance
在线阅读 下载PDF
Study on static characteristics of a novel prestress-reinforced railway subgrade
2
作者 Junli Dong Fang Xu +3 位作者 Qishu Zhang Wuming Leng Yafeng Li Qi Yang 《Railway Engineering Science》 2025年第1期108-126,共19页
Understanding the reinforcement effect of the newly developed prestressed reinforcement components(PRCs)(a system composed of prestressed steel bars(PSBs),protective sleeves,lateral pressure plates(LPPs),and anchoring... Understanding the reinforcement effect of the newly developed prestressed reinforcement components(PRCs)(a system composed of prestressed steel bars(PSBs),protective sleeves,lateral pressure plates(LPPs),and anchoring elements)is technically significant for the rational design of prestressed subgrade.A three-dimensional finite element model was established and verified based on a novel static model test and utilized to systematically analyze the influence of prestress levels and reinforcement modes on the reinforcement effect of the subgrade.The results show that the PRCs provide additional confining pressure to the subgrade through the diffusion effect of the prestress,which can therefore effectively improve the service performance of the subgrade.Compared to the unreinforced conventional subgrades,the settlements of prestressreinforced subgrades are reduced.The settlement attenuation rate(Rs)near the LPPs is larger than that at the subgrade center,and increasing the prestress positively contributes to the stability of the subgrade structure.In the multi-row reinforcement mode,the reinforcement effect of PRCs can extend from the reinforced area to the unreinforced area.In addition,as the horizontal distance from the LPPs increases,the additional confining pressure converted by the PSBs and LPPs gradually diminishes when spreading to the core load bearing area of the subgrade,resulting in a decrease in the Rs.Under the singlerow reinforcement mode,PRCs can be strategically arranged according to the local areas where subgrade defects readily occurred or observed,to obtain the desired reinforcement effect.Moreover,excessive prestress should not be applied near the subgrade shoulder line to avoid the shear failure of the subgrade shoulder.PRCs can be flexibly used for preventing and treating various subgrade defects of newly constructed or existing railway lines,achieving targeted and classified prevention,and effectively improving the bearing performance and deformation resistance of the subgrade.The research results are instructive for further elucidating the prestress reinforcement effect of PRCs on railway subgrades. 展开更多
关键词 Prestressed subgrade Static characteristic Reinforcement effect Reinforcement mode SETTLEMENT Numerical simulation
在线阅读 下载PDF
Salt rock filling in subgrade:a comprehensive review
3
作者 Liyang Wang Feng Chen +1 位作者 Pengcheng Wang Qianli Zhang 《Railway Sciences》 2025年第2期174-198,共25页
Purpose–Salt rock from salt lakes can serve as a cost-effective material for subgrade filling,as demonstrated in projects like the Qarhan Salt Lake section of the Qinghai-Tibet Railway and the Qarhan Salt Lake sectio... Purpose–Salt rock from salt lakes can serve as a cost-effective material for subgrade filling,as demonstrated in projects like the Qarhan Salt Lake section of the Qinghai-Tibet Railway and the Qarhan Salt Lake section of the G215 Highway.This state-of-the-art paper aims to summarize the engineering properties of salt rock filling and present the advances of its utilization.Design/methodology/approach–This paper collects and analyzes laboratory and field data of salt rock filling from previous studies to present a comprehensive analysis of the engineering properties and utilization of salt rock fillings.Findings–Salt rock primarily contains minerals such as halite and glauberite,which contribute to its unique phase-changing behavior under varying environmental conditions,impacting its mechanical properties.Salt rock filling shrinks when in contact with vapor or unsaturated brine and expands under cooling or evaporation.Its use is particularly recommended for arid regions,with specific restrictions depending on the structure type.This paper discusses suggested countermeasures to mitigate these issues,as well as key quality acceptance indices for salt rock filling compaction.Moisture content after air-drying is recommended as a crucial parameter for construction quality control.Originality/value–This review aims to support future research and engineering practices in salt rock subgrade applications. 展开更多
关键词 Salt rock subgrade filling Engineering properties WATERPROOFING Construction quality control
在线阅读 下载PDF
Numerical simulation 0n the influence of different median strip types in the separated highway subgrade cross section on the transport law of wind-sand flow
4
作者 ZHANG Jing LI Shengyu +1 位作者 SUN Yunlong XIA Tian 《Journal of Mountain Science》 2025年第5期1707-1722,共16页
To mitigate the sand burial of highways in sandy regions,a separated subgrade design was widely adopted in the embankments of high-grade highways,but the problem of sand deposition on subgrade slopes and pavements sti... To mitigate the sand burial of highways in sandy regions,a separated subgrade design was widely adopted in the embankments of high-grade highways,but the problem of sand deposition on subgrade slopes and pavements still happens frequently.Based on the theory of wind-sand two-phase flow,this paper constructed a three-dimensional model of the separated subgrade,the wind-sand flow transport law around the subgrade with varying median strip widths and concave depths was simulated by Fluent software.After comparison and analysis of seven subgrade models,the flow field distribution,wind speed horizontal variation,and erosion-deposition characteristics were investigated.The findings are as follows:(1)The width of the median strip in the separated subgrade had significant influences on the wind-sand flow.The smooth passage of wind-sand flow over the road surface was facilitated with the increase of the median strip width.However,sand deposition in the median strip happened.It can lead to secondary sand damage of downwind subgrade and increase the work load of road sand removal for subsequent maintenance.(2)The obstruction to airflow and sand accumulation was aggravated with greater concave depth of the median strip.Therefore,it is advisable to minimize the concave depth of the median strip in case of more sand damage.(3)A median strip width exceeding 12 m(possibly without guardrails)for an integral embankment without enough road land is recommended.Conversely,median strip width of over 40 m for separate subgrade with unrestricted land is suggested.(4)In the case of sand deposition in the existing separated subgrade,the median strip can be filled by sand deposition or other materials,then was covered with gravel to form a flat ground like Gobi smooth surface,which can let the wind-blown sand flow pass through the subgrade section without sand deposition. 展开更多
关键词 Highway engineering Separated subgrade Median strip Numerical simulation Embankment wind-sand flow
原文传递
Gray relational analysis and SBOA-BP for predicting settlement intervals of high-speed railway subgrade
5
作者 Quanpeng He Shaoyuan Li 《Railway Sciences》 2025年第2期199-212,共14页
Purpose–The deformation of the roadbed is easily influenced by the external environment to improve the accuracy of high-speed railway subgrade settlement prediction.Design/methodology/approach–A high-speed railway s... Purpose–The deformation of the roadbed is easily influenced by the external environment to improve the accuracy of high-speed railway subgrade settlement prediction.Design/methodology/approach–A high-speed railway subgrade settlement interval prediction method using the secretary bird optimization(SBOA)algorithm to optimize the BP neural network under the premise of gray relational analysis is proposed.Findings–Using the SBOA algorithm to optimize the BP neural network,the optimal weights and thresholds are obtained,and the best parameter prediction model is combined.The data were collected from the sensors deployed through the subgrade settlement monitoring system,and the gray relational analysis is used to verify that all four influencing factors had a great correlation to the subgrade settlement,and the collected data are verified using the model.Originality/value–The experimental results show that the SBOA-BP model has higher prediction accuracy than the BP model,and the SBOA-BP model has a wider range of prediction intervals for a given confidence level,which can provide higher guiding value for practical engineering applications. 展开更多
关键词 Gray relational analysis Secretary bird optimization algorithm Backpropagation neural network subgrade settlement Interval prediction
在线阅读 下载PDF
Advanced intelligent compaction strategy for subgrade soil considering heterogeneous database
6
作者 Xuefei Wang Jianhua Li +2 位作者 Jiale Li Jianmin Zhang Guowei Ma 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第5期3265-3279,共15页
Real-time assessment of subgrade compaction quality poses a significant challenge in the implementation of intelligent compaction(IC).Current compaction evaluation models are confined to specific scenarios and lack ro... Real-time assessment of subgrade compaction quality poses a significant challenge in the implementation of intelligent compaction(IC).Current compaction evaluation models are confined to specific scenarios and lack robustness.This study proposes a subgrade compaction strategy that utilizes a heterogeneous dataset to estimate compaction quality across diverse scenarios while maintaining model accuracy.Field compaction tests are conducted in four distinct scenarios,considering various construction parameters.Compaction models are developed using several machine learning algorithms.The datasets are thoroughly assessed in terms of quality,diversity and similarity.The proposed model exhibits good performance in new scenarios by incorporating an additional 5%e8%of new data for retraining.The model's generalization capability is enhanced by conducting a limited number of field tests,which are labor-saving and time-efficient.The model's accuracy consistently improves across diverse scenarios and optimal algorithms.The proposed compaction strategy adopts a physics-and-data dual-driven approach,aimed at practical engineering applications and guiding the compaction procedure. 展开更多
关键词 Intelligent compaction subgrade construction Machine learning algorithms Heterogeneous scenarios Quality evaluation Training strategy
在线阅读 下载PDF
Full-scale performances of the slab track subgrade filled with basalt fiber-reinforced foamed concrete
7
作者 Zhichao Huang Qian Su +3 位作者 Wenhui Zhao Zongyu Zhang Junjie Huang Sakdirat Kaewunruen 《Railway Engineering Science》 2025年第2期238-258,共21页
Foamed concrete has been used to address the issue of differential settlement in high-speed railway subgrades in China.However,to enhance crack resistance,reinforcement is still necessary,and further research is requi... Foamed concrete has been used to address the issue of differential settlement in high-speed railway subgrades in China.However,to enhance crack resistance,reinforcement is still necessary,and further research is required to better understand the performance of foamed concrete in subgrade applications.To this end,a series of tests—including uniaxial compres-sive and dynamic triaxial tests—were conducted to comprehensively examine the effects of basalt fiber reinforcement on the mechanical properties of foamed concrete with densities of 700 and 1000 kg/m3.Additionally,a full-scale model of the foamed concrete subgrade was established,and simulated loading was applied.The diffusion patterns of dynamic stress and dynamic acceleration within the subgrade were explored,leading to the development of experimental formulas to calculate the attenuation coefficients of these two parameters along the depth and width of the subgrade.Furthermore,the dynamic displacement and cumulative settlement were analyzed to evaluate the stability of the subgrade.These findings provide valuable insights for the design and construction of foamed concrete subgrades in high-speed rail systems.The outcomes are currently under consideration for inclusion in the code of practice for high-speed rail restoration. 展开更多
关键词 High-speed railway Slab track subgrade Basalt fiber-reinforced foamed concrete Model testing Dynamic performances
在线阅读 下载PDF
Research on risk identification of railway subgrade deformation based on Bayesian and ICA theories
8
作者 Yi Liu Fengyan Yang +3 位作者 Hu Wang Xuanqi Wang Chengwen Wu Hongsheng Yu 《Railway Sciences》 2025年第6期711-728,共18页
Purpose–This paper conducts a joint analysis of monitoring data in the hidden danger areas of railway subgrade deformation using a data-driven method,thereby realizing the systematic risk identification of regional h... Purpose–This paper conducts a joint analysis of monitoring data in the hidden danger areas of railway subgrade deformation using a data-driven method,thereby realizing the systematic risk identification of regional hidden dangers.Design/methodology/approach–The paper proposes a regional systematic risk identification method based on Bayesian and independent component analysis(ICA)theories.Firstly,the Gray Wolf Optimization(GWO)algorithm is used to partition each group of monitoring data in the hidden danger area,so that the data distribution characteristics within each sub-block are similar.Then,a distributed ICA early warning model is constructed to obtain prior knowledge such as control limits and statistics of the area under normal conditions.For the online evaluation process,the input data is partitioned following the above-mentioned procedure and the ICA statistics of each sub-block are calculated.The Bayesian method is applied to fuse online parameters with offline parameters,yielding statistics under a specific confidence interval.These statistics are then compared with the control limits–specifically,checking whether they exceed the pre-set confidence parameters–thus realizing the systematic risk identification of the hidden danger area.Findings–Through simulation experiments,the proposed method can integrate prior knowledge such as control limits and statistics to effectively determine the overall stability status of the area,thereby realizing the systematic risk identification of the hidden danger area.Originality/value–The proposed method leverages Bayesian theory to fuse online process parameters with offline parameters and further compares them with confidence parameters,thereby effectively enhancing the utilization efficiency of monitoring data and the robustness of the analytical model. 展开更多
关键词 Bayesian theory Grey Wolf Algorithm Independent component analysis Railway subgrade Deformation analysis
在线阅读 下载PDF
Effect of fine-grained wood biochar on the geotechnical and microstructural behaviour of expansive clay as pavement subgrade
9
作者 Mohammad Saberian Jiasheng Zhu +3 位作者 Rajeev Roychand Xi Sun Jie Li Chun-Qing Li 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第10期6648-6661,共14页
Biochar,a solid carbonaceous material produced by heating biomass in oxygen-free or low-oxygen conditions(pyrolysis),has been used in various applications,including wastewater treatment,carbon sequestration,and improv... Biochar,a solid carbonaceous material produced by heating biomass in oxygen-free or low-oxygen conditions(pyrolysis),has been used in various applications,including wastewater treatment,carbon sequestration,and improving soil fertility.However,very limited research has been performed to explore its feasibility to improve the expansive clay(EC)subgrade.In this study,fine-grained wood biochar derived from wood waste was used to stabilise and enhance the mechanical performance of the EC as road subgrade.A comprehensive series of geotechnical tests,including unconfined compressive strength(UCS),California bearing ratio(CBR),repeated load triaxial(RLT),and swelling-shrinkage tests,were conducted to investigate the engineering properties of expansive clay mixed with different contents of the fine-grained biochar(FGB)(i.e.0,1%,2%,3%,and 4%by weight of dry soil).Furthermore,X-ray diffraction(XRD),X-ray fluorescence(XRF),X-ray micro-CT,and thermogravimetric analysis(TGA)analyses were performed to study the microchemical modification of the EC-FGB mixtures.The results showed that adding FGB reduced the swelling and shrinkage potential while enhancing the mechanical properties of the EC.The micro-level analysis also supported the enhancement of the geotechnical performance of the EC resulting from the incorporation of FGB.According to the test results,2%FGB was considered the optimum content,increasing UCS,CBR,and resilient modulus by 31.1%,24.1%,and 31.5%,respectively,and decreasing the swell-shrinkage index by 7%. 展开更多
关键词 Expansive clay Wood biochar Soil stabilisation Pavement subgrade
在线阅读 下载PDF
Pile-plate structure subgrade performance in seasonally frozen regions with freeze-thaw cycles
10
作者 LIU Xianfeng LIU Tianyu +3 位作者 YUAN Shengyang ZHANG Shuming REN Hao JIANG Guanlu 《Journal of Mountain Science》 2025年第9期3480-3492,共13页
The pile-plate structure has proven highly effective support for high-speed railway subgrades,particularly in poor geological conditions.Although its efficacy in non-frozen regions is well-established,its potential in... The pile-plate structure has proven highly effective support for high-speed railway subgrades,particularly in poor geological conditions.Although its efficacy in non-frozen regions is well-established,its potential in frozen regions remains underexplored.In seasonally frozen areas,F-T(freeze-thaw)cycles threaten subgrade stability,necessitating research on pile-plate structure’s behavior under such conditions.To address this challenge,a scaled model experiment was conducted on a silty sand foundation,simulating F-T cycles using temperature control devices.Key parameters,including soil temperature,frozen depth,and displacement,were systematically monitored.Results indicate that the bearing plate functions as an effective insulation layer,significantly reducing sub-zero temperature penetration.Additionally,the anchoring action of the piles mitigates frost heave in the foundation soil,while the plate middle restrains soil deformation more effectively due to increased constraint.The thermal insulation provided by the plate maintains higher soil temperatures,delaying the onset of freezing.By the end of each freezing stage,the vertical displacement in the natural subgrade is approximately 4 times greater than that beneath the pile-plate structure.Furthermore,the frost depth is about 1.3-1.4 times and 1.6-4.9 times greater than that measured below the plate edge and middle,respectively.These insights contribute to the development of more resilient designs for high-speed railway subgrades in seasonally frozen regions,offering engineers a robust,scientifically-backed foundation for future infrastructure projects. 展开更多
关键词 Pile-plate structure High speed railway subgrade Freeze thaw cycles Seasonally frozen soil Scaled model experiment
原文传递
Mechanical behavior of train-slab track coupled system under subgrade settlement and earthquake excitation
11
作者 LOU Ping SHI Tao YANG T.Y. 《Journal of Central South University》 2025年第11期4417-4438,共22页
Subgrade settlement is a common issue in soil ground within earthquake-prone regions,posing a threat to the safe operation of train-slab track coupled system(TSCS)in high-speed railways(HSRs).This study aims to analyz... Subgrade settlement is a common issue in soil ground within earthquake-prone regions,posing a threat to the safe operation of train-slab track coupled system(TSCS)in high-speed railways(HSRs).This study aims to analyze the mechanical behavior evolution of TSCS under subgrade settlement and earthquake excitation.The refined numerical model of slab track under subgrade differential settlement is established.The short settlement wavelength of 10 m causes the separation between the base and subgrade.The dynamic model of TSCS under subgrade settlement and earthquake excitation is developed.The dynamic response of TSCS exhibits more pronounced fluctuations under the combined effects of subgrade settlement and earthquake excitation than under the effects of settlement or earthquake alone.The evaluation indexes for the running safety of train on slab track under different settlement wavelengths exhibit varying degrees of increase with settlement amplitude and are particularly sensitive to the short settlement wavelength of 10 m.The wheel unloading rate and derailment coefficient of TSCS increase with earthquake intensity.Under the settlement wavelength of 10 m and amplitude of 20 mm,the wheel unloading rate of TSCS exceeds the allowable limit when the earthquake intensity exceeds 0.17g,and the derailment coefficient exceeds the allowable limit when the earthquake intensity surpasses 0.29g. 展开更多
关键词 train-slab track coupled system mechanical behavior subgrade differential settlement earthquake excitation running safety of train
在线阅读 下载PDF
A novel digital design method for railway subgrade sections
12
作者 Qingbo Bai Xu Li +2 位作者 Zhenze Ma Xiaokang Li Long Liu 《Railway Sciences》 2025年第3期375-387,共13页
Purpose-Conventional high-speed railways(HSR)subgrade design methods remain constrained by platformdependent drafting systems,leading to data interaction hindrances and redundant design processes.This study strives to... Purpose-Conventional high-speed railways(HSR)subgrade design methods remain constrained by platformdependent drafting systems,leading to data interaction hindrances and redundant design processes.This study strives to develop a digital earthwork design methodology that enhances design while reducing collaborative expenses.Design/methodology/approach-A novel digital subgrade design approach,utilizing sophisticated analysis and modeling tools customized for different subgrade elements,is put forward in this study.The methodology incorporates the following essential steps:(1)the advancement of digital analysis and modeling techniques for diverse subgrade components,including surfaces,filling,slopes,retaining structures,and foundation treatments;(2)the formulation of a digital design principle repository incorporating various slope protection combinations;(3)the establishment of a comprehensive digital design framework and process for subgrade cross-sections;and(4)the development and implementation of an open-source digital design system.Findings-The proposed method liberates subgrade design from the constraints of conventional drawing platforms,elevating efficiency,intelligence,and flexibility.The open software architecture and code have achieved over 60%efficiency gains in design workflows during its deployment on three major high-speed rail projects:the Baotou-Yinchuan HSR corridor,Shenyang-Baihe HSR network,and Weifang-Yantai HSR system.Originality/value-This paper introduces an innovative digital design methodology that enables modular and parametric design for railway subgrade sections.The proposed approach provides a digital base for the intelligent design and maintenance of the next-generation high-speed railway. 展开更多
关键词 Software development Digital design subgrade High-speed railway Paper type Technical paper
在线阅读 下载PDF
Impact of sandstone slurry waste with calcium carbonate nanoparticles on geotechnical properties of clayey soil subgrade
13
作者 Amrit Singh Shekhawat Suresh Kumar Tiwari 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第8期5318-5333,共16页
The sustainable geotechnical approach for addressing the challenges associated with clayey soils at construction sites involves the modification of these soils’mechanical and chemical characteristics using soil enhan... The sustainable geotechnical approach for addressing the challenges associated with clayey soils at construction sites involves the modification of these soils’mechanical and chemical characteristics using soil enhancement methods.The present study investigates the coupling effect of sandstone slurry waste(SSW)and calcium carbonate nanoparticle(CCN)as potential stabilizers to enhance the characteristics of clayey soil.A comprehensive investigation was conducted using compaction tests,plasticity index(PI)tests,California bearing ratio(CBR)tests,unconfined compressive strength(UCS)tests,and microstructural analyses of clayey soil,SSW and SSW-CCN-treated clay samples containing 5%,10%,15%,20%,25%,30%,and 35%SSW and 0.3%,0.6%,0.9%,1.2%,and 1.5%CCN mixed with clayey soil in different combinations of clay,SSW,and CCN.The findings reveal that incorporating 25%SSW with 0.9%CCN into clay soil results in an increase in the UCS from 132.2 kPa for untreated clayey soil without curing to 263 kPa after a 28-d curing period.Similarly,a rising trend in CBR results is observed up to 25%SSW addition in clay soil and up to 0.9%CCN addition in SSW-clay mixture.Initially,notable enhancements in UCS were attributed to a denser soil structure,followed by the formation of calcium–silicate–hydrate(CSH)gel,which intensified with prolonged curing.Gel patches were detected by scanning electron microscopy(SEM)in addition to particle aggregation.The results obtained from thermogravimetric analysis,Fourier transform infrared spectroscopy(FTIR),and X-ray diffraction(XRD)supported the presence of hydration products such as CSH.The experimental study indicates that SSW,in combination with CCN,offers a sustainable alternative to traditional soil stabilizers. 展开更多
关键词 Clayey soil stabilization Sandstone slurry waste(SSW) Calcium carbonate nanoparticle(CCN) subgrade stabilization
在线阅读 下载PDF
Analysis of Key Technologies for On-site Detection of Subgrade and Pavement of Municipal Roads
14
作者 Zijian Hu 《Journal of Architectural Research and Development》 2025年第6期90-97,共8页
On-site inspection of municipal road subgrade and pavement is of great significance for ensuring the quality,safety,and durability of urban road infrastructure.This paper analyzes its key technologies,introduces non-d... On-site inspection of municipal road subgrade and pavement is of great significance for ensuring the quality,safety,and durability of urban road infrastructure.This paper analyzes its key technologies,introduces non-destructive testing methods such as ground-penetrating radar and ultrasonic testing,elaborates on the multifaceted roles of inspection in engineering construction as well as relevant standards,explores site challenges,key technologies,and corresponding measures,and points out future research directions in intelligent sensing and predictive maintenance. 展开更多
关键词 Municipal roads subgrade and pavement inspection Key technologies
在线阅读 下载PDF
Numerical simulation on flow field,wind erosion and sand sedimentation patterns over railway subgrades 被引量:3
15
作者 ZHANG Kai ZHAO Li-ming +3 位作者 ZHANG Hai-long GUO Ao-jun YANG Bo LI Sheng 《Journal of Mountain Science》 SCIE CSCD 2022年第10期2968-2986,共19页
The railway subgrades in the sandy areas act as an obstacle interfering wind-blown sand,causing sand erosion and sedimentation,which can disrupt the safe and stable operation of the railway system.Most previous studie... The railway subgrades in the sandy areas act as an obstacle interfering wind-blown sand,causing sand erosion and sedimentation,which can disrupt the safe and stable operation of the railway system.Most previous studies mainly focus on the flow field around railway subgrades,however,the real erosion and sedimentation patterns are rarely studied.This study aims to analyze the erosion and sand sedimentation patterns of wind-blown sand over the subgrades with different heights and steel rails using the ratio of the wall shear stress to the critical value of erosion shear stress.Results show that wind erosion near the top of the upwind slope of the embankment and the shoulder on the upwind side are more severe,and the severity increases with an increase in the height of the embankment.With the increase of wind velocity,sand sedimentation both on the windward and leeside of the subgrade decreases and wind erosion by reverse flow occur.This study indicates that railways in sandy areas should be constructed with a moderate subgrade height(4 m). 展开更多
关键词 Numerical simulation Flow field Wind erosion Sand sedimentation Railway subgrades subgrade height
原文传递
Transfer relation between subgrade frost heave and slab track deformation and vehicle dynamic response in seasonally frozen ground 被引量:3
16
作者 Juanjuan REN Junhong DU +2 位作者 Kaiyao ZHANG Bin YAN Jincheng TIAN 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2024年第2期130-146,共17页
Subgrade frost heave in seasonally frozen ground can greatly influence the safety and smooth running of high-speed trains and the service performance of track structures.In this study,we used a static model to:(1)inve... Subgrade frost heave in seasonally frozen ground can greatly influence the safety and smooth running of high-speed trains and the service performance of track structures.In this study,we used a static model to:(1)investigate track-subgrade frost heave and develop a dynamic model of vehicle-track-subgrade frost heave;(2)explore the transfer relation between subgrade frost heave and track structure deformation;(3)examine the characteristics of interlayer debonding;(4)study the influence of subgrade frost heave on the dynamic response of vehicles in high-speed railways in seasonally frozen regions.A Fourier series was used to fit the frost heave waveform and simulate the behavior of subgrade uneven frost heave using data collected on-site.The results show:(i)The position of frost heave significantly affects the transfer of deformation to a slab track.The largest deformation of the track slab,with the amplitude transfer ratio reaching 20%,was recorded when the frost heave occurred near the joint of the base plate.(ii)At the same frost heave amplitude,long-wave frost heave causes smaller deformation and debonding of the track structure than short-wave frost heave.In the wavelength range of 10-30 m,the main frequency of the acceleration spectral density was concentrated between 3.5 and 3.7 Hz,with larger frost heave wavelengths producing smaller superposition on the vertical acceleration of the vehicle.(ii)The maximum wheel-rail force occurs when the front bogie passes the frost heave peak,with greater frost heave amplitudes producing greater wheel-rail force.From these results,we conclude there is a clear need to control the frost heave deformation of the track to reduce the dynamic response of the vehicle and in turn improve train operatSubgrade frost heave in seasonally frozen ground can greatly influence the safety and smooth running of high-speed trains and the service performance of track structures.In this study,we used a static model to:(1)investigate track`-subgrade frost heave and develop a dynamic model of vehicle`-track`-subgrade frost heave;(2)explore the transfer relation between subgrade frost heave and track structure deformation;(3)examine the characteristics of interlayer debonding;(4)study the influence of subgrade frost heave on the dynamic response of vehicles in high-speed railways in seasonally frozen regions.A Fourier series was used to fit the frost heave waveform and simulate the behavior of subgrade uneven frost heave using data collected on-site.The results show:(i)The position of frost heave significantly affects the transfer of deformation to a slab track.The largest deformation of the track slab,with the amplitude transfer ratio reaching 20%,was recorded when the frost heave occurred near the joint of the base plate.(ii)At the same frost heave amplitude,long-wave frost heave causes smaller deformation and debonding of the track structure than short-wave frost heave.In the wavelength range of 10-30 m,the main frequency of the acceleration spectral density was concentrated between 3.5 and 3.7 Hz,with larger frost heave wavelengths producing smaller superposition on the vertical acceleration of the vehicle.(iii)The maximum wheel`-rail force occurs when the front bogie passes the frost heave peak,with greater frost heave amplitudes producing greater wheel`-rail force.From these results,we conclude there is a clear need to control the frost heave deformation of the track to reduce the dynamic response of the vehicle and in turn improve train operations.ions. 展开更多
关键词 Slab track subgrade frost heave Transfer relation Vehicle-track-subgrade coupling Dynamic response
原文传递
Effect of granite gravel content on improved granular mixtures as railway subgrade fillings 被引量:2
17
作者 陈晓斌 李志勇 张家生 《Journal of Central South University》 SCIE EI CAS 2014年第8期3361-3369,共9页
The improved granular mixtures are widely used as the fillings of railway 8ubgrade, and in order to investigate the effect of coarse grain content on granular mixtures, a series of field tests were conducted. The expe... The improved granular mixtures are widely used as the fillings of railway 8ubgrade, and in order to investigate the effect of coarse grain content on granular mixtures, a series of field tests were conducted. The experimental results indicate that the permeability coefficient increases significantly with the increment of granite gravel content, especially in the range of 60%-70%. Thcrc exists a coarse grain content limit defined as 53%-58.5% to reform the permeable granular skeleton. Beyond this limit, the permeable granular skeleton is efficiently formed, and the macro pores between the separate gravels are partially filled, which is the explanation lbr the permeability increase. The investigations indicate the subgrade resistance modulus (ks0, Ev2, and Evd) depends on the granite gravel content, and the resistance modulus increases significantly beyond granite gravel content of 50%. The skeletons of granitc gravel clayey sand mixture change in the long-term deformation objected to the train-induced dynamic load, which involves three main repeated and circular deformation stages. Generally, the long-time deformation is explained as the gravel crushing and filling the internal porous space with crushed gravel fragments. Through these investigations, the C40-G60 or C30-G70 is recommended as an optimum soil mixture for the good permeability and high resistance modulus. 展开更多
关键词 granular mixture coarse grain content permeability coefficient railway subgrade fillings subgrade resistance modulus
在线阅读 下载PDF
The effect of subgrade inhomogeneity induced by freeze-thaw on the dynamic response of track-subgrade system 被引量:1
18
作者 QiongLin Li XianZhang Ling +1 位作者 Feng Zhang JiaHui Wang 《Research in Cold and Arid Regions》 CSCD 2013年第5期554-561,共8页
The developed vertical coupling model of Vehicle-Track-Subgrade which considered subgrade layer vibration is present- ed. The equations of motion for the ballast, top and bottom subgrade layers are presented in detail... The developed vertical coupling model of Vehicle-Track-Subgrade which considered subgrade layer vibration is present- ed. The equations of motion for the ballast, top and bottom subgrade layers are presented in detail. Through inputting different coefficients, the dynamic response of track-subgrade system in a seasonal frozen region in different seasons is obtained by the developed model and the uneven freeze-thaw action of subgrade soil is presented in this model. The ef- fect of subgrade inhomogeneity induced by uneven freeze-thaw on the dynamic response of track-subgrade system was studied and the conclusions are as follows. The force at the interface of ballast and top subgrade layer and the defor- mation of ballast induced by a passing train changed sharply at the stiffness mutation zone. The force and deformation decreased with increasing stiffness ratio with the same amplitude of irregularities as the excitation source. The force and deformation were larger with larger amplitudes of irregularities. There was an obvious effect of uneven deformation and stiffness of subgrade on the dynamic response of track-subgrade system. 展开更多
关键词 uneven freeze-thaw vertical vehicle-track-subgrade coupling model subgrade vibration dynamic response
在线阅读 下载PDF
Stabilized effects of L-S cement-mixed batter pile composite foundation for existed warm frozen soil subgrade
19
作者 SUN Gao-chen YAO Gang +4 位作者 ZHANG Jian-ming LI Bo LI Jun-qi LIAN Wei-ping WEI Yi 《Journal of Mountain Science》 SCIE CSCD 2023年第2期542-556,共15页
In permafrost regions with warm frozen soil,subgrade thaw-collapse phenomenon commonly occurs,facing thaw collapse problems of the existed frozen soil subgrade,thus it is difficult to use traditional methods such as a... In permafrost regions with warm frozen soil,subgrade thaw-collapse phenomenon commonly occurs,facing thaw collapse problems of the existed frozen soil subgrade,thus it is difficult to use traditional methods such as active cooling and passive protection technology to stabilize the existed warm frozen soil subgrade.This study derives a novel stabilizer method,a long-short(L-S)cement-mixed batter pile composite foundation to stabilize the existed warm frozen soil subgrade.To solve the thawcollapse problems in warm frozen soil subgrade,high water content and large compressibility characteristics were compared between soft soil and warm frozen soils.Theoretical analysis of heat conduction and numerical simulation of finite element model were used to study the freeze–thaw process and evaluate the stabilized effects of the L-S cement-mixed batter piles on the warm frozen soil foundation of the Qinghai-Xizang Highway.Furthermore,the thaw process and mechanical properties of foundation and piles were analyzed by introducing the hydration heat factor in the thermodynamic control equation.The results indicate that the thawing displacement of the existed warm frozen soil subgrade was reduced owing to the“support”and“grasp”effects of the L-S cement-mixed batter piles on the surrounding soil.The composite ground formed by strengthening the warm frozen ground with batter piles could considerably improve the bearing capacity of the existed warm frozen ground,effectively restrain the deformation of the upper embankment,and improve the strength of the ground.The analysis can provide method for the construction design of cement mixing batter pile foundation in cold regions. 展开更多
关键词 Warm frozen soil subgrade Thaw collapse Thermal disturbance Long-short cementmixed batter pile Existed frozen soil subgrade
原文传递
Current situation and development trend of design methods for subgrade structure of high speed railways
20
作者 Yangsheng Ye Degou Cai +3 位作者 Qianli Zhang Shaowei Wei Hongye Yan Lin Geng 《Railway Sciences》 2023年第3期289-309,共21页
Purpose–This method will become a new development trend in subgrade structure design for high speed railways.Design/methodology/approach–This paper summarizes the structural types and design methods of subgrade bed ... Purpose–This method will become a new development trend in subgrade structure design for high speed railways.Design/methodology/approach–This paper summarizes the structural types and design methods of subgrade bed for high speed railways in China,Japan,France,Germany,the United States and other countries based on the study and analysis of existing literature and combined with the research results and practices of high speed railway subgrade engineering at home and abroad.Findings–It is found that in foreign countries,the layered reinforced structure is generally adopted for the subgrade bed of high speed railways,and the unified double-layer or multi-layer structure is adopted for the surface layer of subgrade bed,while the simple structure is adopted in China;in foreign countries,different inspection parameters are adopted to evaluate the compaction state of fillers according to their respective understanding and practice,while in China,compaction coefficient,subsoil coefficient and dynamic deformation modulus are adopted for such evaluation;in foreign countries,the subgrade top deformation control method,the subgrade bottom deformation control method,the subsurface fill strength control method are mainly adopted in subgrade bed structure design of high speed railways,while in China,dynamic deformation control of subgrade surface and dynamic strain control of subgrade bed bottom layer is adopted in the design.However,the cumulative deformation of subgrade caused by train cyclic vibration load is not considered in the existing design methods.Originality/value–This paper introduces a new subgrade structure design method based on whole-process dynamics analysis that meets subgrade functional requirements and is established on the basis of the existing research at home and abroad on prediction methods for cumulative deformation of subgrade soil. 展开更多
关键词 High speed railway subgrade engineering subgrade bed structure Design method Existing research Development trend
在线阅读 下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部