The efficient separation of styrene(ST)and ethylbenzene(EB)remains a significant challenge in the petrochemical industry due to their similar physical properties and kinetic molecular sizes.In this study,we cleverly u...The efficient separation of styrene(ST)and ethylbenzene(EB)remains a significant challenge in the petrochemical industry due to their similar physical properties and kinetic molecular sizes.In this study,we cleverly utilized the voids of a fluorescent flexible hydrogen-bonded organic framework(X-HOF-10)constructed from a pure organic phenothiazine derivative with three cyano groups(PTTCN)to selectively adsorb and separate ST and EB based on their slight size difference.Single crystal structure analysis and fluorescence spectra reveal that the adsorption process of ST involves a gate-opening mechanism accompanied by a fluorescent color switch behavior.Upon simple heating,ST can be released from the voids through a gate-closing process.Conversely,exposure to EB vapor does not promote X-HOF-10a to adsorb EB due to its slightly larger size in comparison with ST,facilitating a single crystal to single crystal transition,leading to the formation of a new non-porous crystal without EB.Under equimolar vapor condition,X-HOF-10a transforms into X-HOF-10 rather than X-HOF-11 owing to the superior stability of X-HOF-10over X-HOF-11,accompanied by selective adsorption of ST.The purity of ST can reach 92%after release from the framework,which further increases to over 98%when exposed to the mixed vapor containing 90%ST.Additionally,this HOF material exhibits recyclability without any discernible loss in performance.展开更多
The sulfonated poly(α-methyl styrene-b-isobutylene-b-α-methyl styrene)copolymers(S-ASIBS)with the average molar percentage of sulfonic acid(-SO_(3)H)groups(SP)ranging from 3.6 mol%to 14.3 mol%could be synthesized by...The sulfonated poly(α-methyl styrene-b-isobutylene-b-α-methyl styrene)copolymers(S-ASIBS)with the average molar percentage of sulfonic acid(-SO_(3)H)groups(SP)ranging from 3.6 mol%to 14.3 mol%could be synthesized by sulfonation of ASIBS with acetyl sulfate.The hydrophilic ionic channels were generated for proton exchange membranes(PEMs)by ion aggregation of-SO_(3)H groups and microphase separation between hydrophobic polyisobutylene and hydrophilic sulfonated poly(α-methyl styrene)segments in S-ASIBS.The proton transport ability was improved while oxidative stability was decreased by increasing SP in S-ASIBS.The appropriate SP of about 12.7 mol%in S-ASIBS provides the available PEMs with high proton transport ability,low methanol permeability and good oxidative stability.The absence of active tertiary hydrogen atoms along S-ASIBS copolymer chains avoids their attack by peroxy radicals.The residual rates of weight(RW)and proton conductivity(Rσ)of S-ASIBS-12.7 membrane after oxidation treatment for 916 h were 84.3%and 88.1%respectively,near to those of commercial Nafion 117(RW=87.9%,Rσ=90.3%).The membrane electrode assembly(MEA)could be prepared by using various S-ASIBS as PEMs for direct methanol fuel cell.The single cell with S-ASIBS-12.7 MEA behaves high performance of open circuit voltage(OCV)of 548 mV and peak power density(Pmax)of 36.1 mW·cm^(-2),which is similar to those of Nafion 117(OCV=506 mV,P_(max)=35.6 mW·cm^(-2)).To the best of our knowledge,this is the first example of advanced S-ASIBS membrane with high proton conductivity,excellent fuel barrier property and remarkable oxidative stability for promising PEMs.展开更多
Using hydrogen-bonded organic frameworks(HOFs)as photosensitizers to perform photocatalytic oxidation reactions under green and mild conditions is still a challenge for the application of HOFs materials.This study pre...Using hydrogen-bonded organic frameworks(HOFs)as photosensitizers to perform photocatalytic oxidation reactions under green and mild conditions is still a challenge for the application of HOFs materials.This study presents a novel approach that exploits HOFs to enhance the efficiency of photocatalytic oxidation for achieving visible light catalytic oxidation of styrene and its derivatives in the aqueous environment.By using 1,3,6,8-tetrakis(p-benzoic acid)pyrene(H_(4)TBAPy)as the monomer,a pyrene-based hydrogen-bonded organic framework(PFC-1)with a microporous structure was successfully prepared.Compared with monomer H_(4)TBAPy,due to the exciton effect and the interlayer confinement of HOFs,the singlet oxygen(1O_(2))production efficiency is significantly improved,which has great potential in photocatalytic oxidation reactions.Subsequently,the practicality of PFC-1 as a photocatalyst was studied,and the photocatalytic oxidation of styrene and its derivatives in aqueous solution was achieved under visible light with high catalytic efficiency,indicating that PFC-1 has significant potential to promote photocatalytic oxidation reactions under mild conditions.The utilization of HOFs as photosensitizers in this straightforward approach enables the attainment of green photocatalytic oxidation,hence expanding the potential applications of HOFs materials within the realm of photocatalysis.展开更多
Plastic equipment used in cell culture processes contains styrene residues and 2-chloroethanol, a byproduct of ethylene oxide sterilization. Both compounds can have long-term effects on the quality and safety of the c...Plastic equipment used in cell culture processes contains styrene residues and 2-chloroethanol, a byproduct of ethylene oxide sterilization. Both compounds can have long-term effects on the quality and safety of the cells in plastic equipment. GB/T 43778-2024, which establishes a gas chromatography-mass spectrometry(GC-MS) method for the simultaneous detection of st yrene and 2-chloroethanol in cell culture media, includes several technical requirements that need to be thoroughly interpreted. This paper provides a detailed explanation of the internal standard calibration method used for detecting styrene and 2-chloroethanol, covering the overall framework and innovation aspects of the standard. Additionally, it elucidates the principles and rationale of each step, including sample processing, detection parameters, preparation of standard solutions, and the determination of detection and quantification limits, to assist testing technical staff in applying the method effectively.展开更多
The heterogeneously copper-catalyzed oxidative cleavage of styrene was studied using copper-doped mesoporous KIT-6(CU-KIT-6_x) prepared via pH adjustment(where x is the pH:1.43,2.27,3.78,3.97,4.24 or 6.62).Variat...The heterogeneously copper-catalyzed oxidative cleavage of styrene was studied using copper-doped mesoporous KIT-6(CU-KIT-6_x) prepared via pH adjustment(where x is the pH:1.43,2.27,3.78,3.97,4.24 or 6.62).Variations in the catalyst structure and morphology with pH values were characterized by X-ray power diffraction,nitrogen adsorption-desorption analysis,transmission electron microscopy and X-ray photoelectron spectroscopy.As the pH value applied during the initial synthesis,the resulting Cu-KIT-6_x exhibited different structural,textural and surface characteristics,especially in terms of specific copper species and copper content At a pH value of 3.78,approximately 4.6 wt%copper(Ⅱ) was successfully incorporated into the framework of the initial KIT-6,in the form of-Cu-O-Si- groups.The catalytic performance of each catalyst was evaluated by following the epoxidation of styrene,employing tert-butyl hydroperoxide as the oxidant and CH_3CN as the solvent.A significant styrene conversion of 43.5%with 86.6%selectivity for the desired styrene epoxide was obtained over the Cu-KIT-63.78.A higher Cu content,an ordered cubic laid mesoporous architecture and various specific textural characteristics all combined to endow the Cu-KIT-63.78 with high catalytic activity and good stability.展开更多
The polymerization of styrene is monitored by pyrene excimer formation. The ratio of monomer to excimer intensities ( I m/ I e) of pyrene increases as polymerization proceeds. The increase of I m/ I e...The polymerization of styrene is monitored by pyrene excimer formation. The ratio of monomer to excimer intensities ( I m/ I e) of pyrene increases as polymerization proceeds. The increase of I m/ I e is ascribed to the increase of microviscosity surrounding the probes forming excimer during polymerization. The linear relationship between the changing rate of I m/ I e and the polymerization rate of styrene is obtained. Therefore, I m/ I e may be used to monitor the progress of the polymerization of styrene.展开更多
Bottled water may not be safer, or healthier, than tap water. The present studies have proved that styrene and some other aromatic compounds leach continuously from polystyrene (PS) bottles used locally for packagin...Bottled water may not be safer, or healthier, than tap water. The present studies have proved that styrene and some other aromatic compounds leach continuously from polystyrene (PS) bottles used locally for packaging. Water sapmles in contact with PS were extracted by a preconcentration technique called as "purge and trap" and analysed by gas chromatograph-mass spectrometer (GC/MS). Eleven aromatic compounds were identified in these studies. Maximum concentration of styrene in PS bottles was 29.5 μg/L. Apart from styrene, ethyl benzene, toluene and benzene were also quantified but their concentrations were much less than WHO guide line values. All other compounds were in traces. Quality of plastic and storage time were the major factor in leaching of styrene. Concentration of styrene was increased to 69.53 μg/L after one-year storage. In Styrofoam and PS cups studies, hot water was found to be contaminated with styrene and other aromatic compounds. It was observed that temperature played a major role in the leaching of styrene monomer from Styrofoam cups. Paper cups were found to be safe for hot drinks.展开更多
La-doped and La-B-doped KIT-6 mesoporous materials were prepared by direct hydrothermal synthesis with pH-adjusting method and characterized by X-ray diffractometer(XRD),nitrogen sorption,FT-IR,UV-Vis,X-ray photoelect...La-doped and La-B-doped KIT-6 mesoporous materials were prepared by direct hydrothermal synthesis with pH-adjusting method and characterized by X-ray diffractometer(XRD),nitrogen sorption,FT-IR,UV-Vis,X-ray photoelectron spectroscopy(XPS) and ICP-AES.The catalytic performance for the oxidation of styrene by hydrogen peroxide,tert-butyl hydroperoxide or oxygen was investigated.The results showed that the introduction of heteroatoms did not destroy the mesostructure of KIT-6 with cubic Ia3d space group.La or ...展开更多
Cu(II) and Mn(II) metals embedded on mesoporous SBA-15 were synthesized by co-precipitation technique.The support and catalysts were characterized by SEM–EDX,TEM,BET,XRD and ICP-AES methods.The catalytic activity of ...Cu(II) and Mn(II) metals embedded on mesoporous SBA-15 were synthesized by co-precipitation technique.The support and catalysts were characterized by SEM–EDX,TEM,BET,XRD and ICP-AES methods.The catalytic activity of these catalysts was evaluated for styrene oxidation at various reaction conditions such as styrene to TBHP mole ratio,temperature,catalyst amount by using TBHP as an oxidizing agent.Major reaction products were styrene oxide and benzaldehyde and highest styrene conversion(97.3%) was observed at styrene to TBHP mole ratio of 1:4,temperature at 80 °C and 20 mg of catalyst.Further,the recyclability of the catalysts was observed and found that they can be recycled three times without major loss in their activity and selectivity.展开更多
The catalytic performa nee of rare-earth metal dialkyl complexes in combi nation with DMAO(dry methylalumi no xane)is explored.In the presence of 60 equivalents of DMAO,the half-sandwich complex(C_(13)H_(8)CH_(2)Ph)Sc...The catalytic performa nee of rare-earth metal dialkyl complexes in combi nation with DMAO(dry methylalumi no xane)is explored.In the presence of 60 equivalents of DMAO,the half-sandwich complex(C_(13)H_(8)CH_(2)Ph)Sc(CH_(2)SiMe_(3))_(2)(THF)(1)is inert for styrene polymerization,but(C_(5)Me_(4)Ph)Sc(CH_(2)C_(6)H_(4)NMe_(2)-o)_(2)(2)con verts 18% styre ne into syn diotactic polystyrene.Under the same conditi ons,the con strained-geometry configuration sandium complex(C13H8CH2Py)Sc(CH_(2)SiMe_(3))_(2)(3a)displays extremely high catalytic activity(>6420 kg·mol_(sc)^(-1)h^(-1))and perfect syndiospecific(rrrr>99%)for styrene polymerization,while its lutetium(3b)and yttrium(3c)analogues are nearly inactive.Although the binary catalytic system 3a/DMAO exhibits very low activity for 4-methoxystyrene polymerization,it is an efficient catalyst for the syndioselective polymerization of other styrene derivatives such as 2-methoxystyrene,4-methylthiostyrene,4-fluorostyrene,4-dimethylhydrosilylstyrene,alkyne-susbstituted styrenes and 4-methylstyrene.In addition,the binary system 3a/DMAO can copolymerize ethylene and styrene to give alternating copolymers with a single glass tran sition at 80℃ and 0.4 MPa ethylene pressures.By in creasing styrene feed amount from 20 mmol to 60 mmol,the styre ne con tent slight in creases from 48.2 mol% to 53.8 mol%,but the polymerizatio n activity is obviously promoted from 240 kg·mol_(Sc)^(-1)·h^(-1) to 532 kg·mol_(sc)^(-1)·h^(-1).展开更多
In this paper, the effects of temperature from 60 ℃ to 80 ℃ and the molar ratios in monomer feed on the copolymerization of α-methylstyrene (AMS) and styrene (St) were studied. The resulting copolymers, designa...In this paper, the effects of temperature from 60 ℃ to 80 ℃ and the molar ratios in monomer feed on the copolymerization of α-methylstyrene (AMS) and styrene (St) were studied. The resulting copolymers, designated as PAS, were characterized by FTIR, GPC, NMR and TGA. When the reaction temperature was below 75 ℃, the molecular weights increased almost linearly as the evolution of the copolymerization. The phenomenon revealed that AMS could mediate the conventional free radical polymerization having some features of a controlled system. As the AMS/St = 50/50 (molar) in feed, the overall fraction of the AMS unit incorporated into the copolymer was as high as 42 mol%, the monomer conversion could be more than 90 wt% and the molecular weights could reach as high as 4400. However, since the styrene is more reactive than AMS, the AMS fraction in copolymer increased with the overall monomer conversion. The 13C-NMR revealed the products were random copolymers which had triads, such as -AMS-AMS-AMS-, -St-AMS-AMS- (-AMS-AMS-St-) and -St-AMS-St-. TGA curves demonstrated that the degradation temperature of the resulting copolymers went down from about 356.9 ℃ (0 mol% AMS) to 250.2 ℃ (42 tool% AMS). This behavior demonstrated that there exist weak bonds in the AMS- containing sequences which could be used as potential free radical generators.展开更多
[Objective] The paper was to study the structure and performance of starch and styrene graft copolymer. [Method] The microscopic structure of corn starch and styrene graft copolymer was analyzed by using infrared spec...[Objective] The paper was to study the structure and performance of starch and styrene graft copolymer. [Method] The microscopic structure of corn starch and styrene graft copolymer was analyzed by using infrared spectrum and scanning electron microscope, and the property of starch and styrene graft copoly- mer was confirmed through grinding experiment, tensile strength, water absorption rate, hot water resistance properties and enzymatic properties analysis. [Result] The starch and styrene graft copolymer had the properties of thermoplastic and microbial degradation. IConclusion] The starch and styrene graft copolymer is expected to be developed as a biodegradable material.展开更多
Two multi-nuclear titanium complexes [Ti(η^5-Cp^*)Cl(μ-O)]3 (1) and [(η^5-Cp^*TiCl)(μ-O)2(η^5-Cp^*Ti)2(μ- O)(μ-O)2]2Ti (Cp^* = C5Me5) (2) have been investigated as the precatalysts for s...Two multi-nuclear titanium complexes [Ti(η^5-Cp^*)Cl(μ-O)]3 (1) and [(η^5-Cp^*TiCl)(μ-O)2(η^5-Cp^*Ti)2(μ- O)(μ-O)2]2Ti (Cp^* = C5Me5) (2) have been investigated as the precatalysts for syndiospecific polymerization of styrene. In the presence of modified methylaluminoxane (MMAO) as a cocatalyst, complexes 1 and 2 display much higher catalytic activities towards styrene polymerization, and produce the higher molecular weight polystyrenes with higher syndiotacticities and melting temperatures (Tm) than the mother complex Cp^*TiCl3 does when the polymerization temperature is above 70℃ and the Al/Ti molar ratio is in the low range especially.展开更多
Some highly active η~5-pentamethylcyclopentadienyltribenzyloxy titanium complexes [Cp Ti(OBz)_3] activated by modified methylaluminoxane (mMAO) were prepared and used as the catalyst for styrene syndiospecific polyme...Some highly active η~5-pentamethylcyclopentadienyltribenzyloxy titanium complexes [Cp Ti(OBz)_3] activated by modified methylaluminoxane (mMAO) were prepared and used as the catalyst for styrene syndiospecific polymerization and propene atactic polymerization. Styrene could be copolymerized with propene when the propene was prepolymerized for a period, to which styrene and tri-isobutylaluminum (TIBA) were then added. The titled block copolymer together with the related homopolymers was obtained. The copolymerization porducts can be divided into the homopolymers and the copolymer by successive solvent extraction with boiling butanone, heptane and tetrahydrofuran (THF), and each fraction was characterized by ~13C NMR, DSC and WAXD. It was found that aPS and aPP were soluble in boiling butanone and heptane respectively. The block copolymer (sPS-b-aPP) composed of syndiottactic polystyrene segment was soluble in boiling THF and the residue was chiefly sPS.展开更多
Using cetyl-trimethyl-ammonium bromide (CTMAB) as the template agent and tetraethylorthosilicate (TEOS) as the silica source, the MCM-41 mesoporous materials were synthesized with La or Ce incorporated in the fram...Using cetyl-trimethyl-ammonium bromide (CTMAB) as the template agent and tetraethylorthosilicate (TEOS) as the silica source, the MCM-41 mesoporous materials were synthesized with La or Ce incorporated in the framework under hydrothermal conditions. The structure and the state of La or Ce were investigated through the analyses of XRD, nitrogen adsorption-desorption, FT-IR, and UV-Vis. XRD and N2 adsorption-desorption results showed that Ln-MCM-41 exhibited the loss of the lattice ordering of the MCM-41 construct, and larger unit cell parameter and pore diameter than pure silica MCM-41. The FT-IR and UV-Vis results indicated the presence of isolated tetra-coordinated La or Ce ions in the framework and other Ln species dispersed highly on the Ln-MCM-41 surface simultaneously. Furthermore, their catalytic behaviors in the oxidation of styrene were studied using H2O2 as the oxidant. The La-MCM-41 catalysts exhibited high reactivity and the reactivity increased with the increase of the La content in the La-MCM-41 samples. On the contrary, Ce-MCM-41 catalysts showed low reactivity in the oxidation of styrene and the conversion of styrene decreased with the increase of the Ce content in the Ce-MCM-41 samples.展开更多
Sulfur hexafluoride (SF6) is known as one of the most powerful greenhouse gases in the atmosphere. Reductive photodegradation of SF6 by styrene has been studied with the purpose of developing a novel remediation for...Sulfur hexafluoride (SF6) is known as one of the most powerful greenhouse gases in the atmosphere. Reductive photodegradation of SF6 by styrene has been studied with the purpose of developing a novel remediation for sulfur hexafluoride pollution. Effects of reaction conditions on the destruction and removal efficiency (DRE) of SF6 are examined in this study. Both initial styrene-to-SF6 ratio and initial oxygen concentration exert a significant influence on DRE. SF6 removal efficiency reaches a maximum value at the initial styrene-to-SF6 ratio of 0.2. It is found that DRE increases with oxygen concentration over the range of 0 to 0.09 mol/m^3 and then decreases with increasing oxygen concentration. When water vapor is fed into the gas mixture, DRE is slightly enhanced over the whole studied time scale. The X-ray Photoelectron Spectroscopy (XPS) analysis, together with gas chromatography-mass spectrometry (GC-MS) and Fourier Transform Infrared spectroscopy (FT-IR) analysis, prove that nearly all the initial fluorine residing in the gas phase is in the form of SiF4, whereas, the initial sulfur is deposited in the form of elemental sulfur, after photodegradation. Free from toxic byproducts, photodegradation in the presence of styrene may serve as a promising technique for SF6 abatement.展开更多
Different mole ratio Al-B catalysts (Al-10B to Al-35B) were synthesized by using sol-gel (SG) method. Ethyl benzene (EB) dehydrogenation in the presence of oxygen and water steam was carried out on these catalysts at ...Different mole ratio Al-B catalysts (Al-10B to Al-35B) were synthesized by using sol-gel (SG) method. Ethyl benzene (EB) dehydrogenation in the presence of oxygen and water steam was carried out on these catalysts at 450–500℃ with EB contact time of 0.54 gcat.s.cm^–3. Acidity of Al-B catalysts was estimated by using NH3-TPD-mass spectral analysis studies. SEM-mapping images revealed fine distribution of boron up to 15% of its loading in alumina (Al-15B), whereas, boron aggregation was observed in higher boron content (Al-25B and Al-35B) catalysts. Essentially, acid sites of very weak strength (Tmax ≤ 125℃) were observed for Al and Al-10B catalysts and resulted in low EB conversion and styrene yield. On the other hand, acid sites of weak strength (Tmax ≤ 180℃) were observed for Al-25B and Al-35B catalysts and resulted in high EB conversion. However, greater styrene yield (43.2%) with reasonable EB conversion (46%) was obtained on acid sites of weak moderate strength in Al-15B catalyst. Further, Al-15B catalyst was synthesized by using co-precipitation (COP) and impregnation (IMP) methods. Acid sites related to NOx formation during the NH3-TPD-mass analysis on IMP and COP catalyst essentially improved the EB conversion to 66% and 63% respectively at 500℃. However, these acid sites were diminished in Al-B SG catalyst and resulted in 50% of EB conversion at 500 ℃. At 50% of EB conversion level, styrene selectivity of 73%, 82.5% and 84% were observed on Al-B IMP, Al-B COP and Al-SG catalysts, respectively. Hence, different method of preparation of Al-B catalyst generated acid sites of different strength and density and thereby influenced the styrene formation.展开更多
The adsorption behavior and description behavior of benzene , ethylene and ethylbenzene over HZSM-5 and Co/HZSM-5 catalysts were studied by means of TPSR (Temperature programmed surface reaction) technique. TPSR resul...The adsorption behavior and description behavior of benzene , ethylene and ethylbenzene over HZSM-5 and Co/HZSM-5 catalysts were studied by means of TPSR (Temperature programmed surface reaction) technique. TPSR results of ben- zene and ethylene co-adsorption show that the maian products are styrene , ethylben- zene, toluene, propane, and butane. In a separate experiment of ethylbenzene ad- sorption, styrene . toluene and benzene are formed due to cracking and dehydro- genation. The mechanism of styrene formation was proposed , i. e. , the reaction was carried out via. the dehydrogenation of mediate species ethylbenzene according to the results of TPSR-MS , activity testing and thermodynamic analysis.展开更多
The flotation performances of styrene phosphonic acid(SPA) to synthetic(Ce,La)2O3(REO), calcium fluorite(CaF2) and fluorapatite(Ca5F(PO4)3) were investigated by flotation tests, flotation of synthetic mixe...The flotation performances of styrene phosphonic acid(SPA) to synthetic(Ce,La)2O3(REO), calcium fluorite(CaF2) and fluorapatite(Ca5F(PO4)3) were investigated by flotation tests, flotation of synthetic mixed mineral, the surface adsorption capacity and the polarizing microscopy to solve the flotation separation problem of rare earth oxides from roasted concentrate. The flotation test results indicated that compared with CaF2 and Ca5F(PO4)3, SPA exhibited superior collecting performance to direct flotation recovery of REO and floated out above 90% REO at pH 3–6. However, the collecting ability of SPA to CaF2 and Ca5F(PO4)3 was extremely weak and the highest recovery was only 20% at pH 2–11. The flotation of synthetic mixed mineral showed that SPA was a good collector reagent for flotation of synthetic REO at pH 5, so REO, CaF2 and Ca5F(PO4)3 could be separated from roasted concentrate by using SPA as a collector. The surface adsorption capacity tests and polarizing microscopy results confirmed that SPA was adsorbed on REO surface, while CaF2 and Ca5F(PO4)3 were not. The adsorption mechanism of SPA to synthetic REO was studied by solution chemistry analysis of collector, the ζ-potential tests, infrared spectroscopy and X-ray photoelectron spectroscopy(XPS) analyses. The results indicated that SPA was physically adsorbed onto REO surface, which exhibited excellent flotation selectivity to REO against CaF2 and Ca5F(PO4)3.展开更多
The morphology effect of Zr-doped CeOwas studied in terms of their activities in the selective oxidation of styrene to styrene oxide using tert-butyl hydroperoxide as the oxidant. In the present work, Zrdoped CeOnanor...The morphology effect of Zr-doped CeOwas studied in terms of their activities in the selective oxidation of styrene to styrene oxide using tert-butyl hydroperoxide as the oxidant. In the present work, Zrdoped CeOnanorods exhibited the highest catalytic performance(yield of styrene oxide and TOF value)followed by nanoparticles and nanocubes. For the Zr-doped CeOnanorods, the apparent activation energy is 56.3 k J/mol, which is much lower than the values of catalysts supported on nanoparticles and nanocubes(73.3 and 93.4 k J/mol). The high resolution transmission electron microscopy results indicated that(100) and(110) crystal planes are predominantly exposed for Zr-doped CeOnanorods while(100)and(111) for nanocubes,(111) for nanoparticles. The remarkably increased catalytic activity of the Zrdoped CeOnanorods is mainly attributed to the higher percentage of Cespecies and more oxygen vacancies, which are associated with their exposed(100) and(110) crystal planes. Furthermore, recycling studies proved that the heterogeneous Zr-doped CeOnanorods did not lose its initial high catalytic activity after five successive recycles.展开更多
基金supported by the Scientific Research Foundation of Tianjin Normal University(No.5RL151)the Tianjin Research Innovation Project for Postgraduate Students(No.2022SKY252)+1 种基金the National Natural Science Foundation of China(NSFC,Nos.22265026,22002108)the Project of Qinghai Science&Technology Department(No.2024-ZJ-935)。
文摘The efficient separation of styrene(ST)and ethylbenzene(EB)remains a significant challenge in the petrochemical industry due to their similar physical properties and kinetic molecular sizes.In this study,we cleverly utilized the voids of a fluorescent flexible hydrogen-bonded organic framework(X-HOF-10)constructed from a pure organic phenothiazine derivative with three cyano groups(PTTCN)to selectively adsorb and separate ST and EB based on their slight size difference.Single crystal structure analysis and fluorescence spectra reveal that the adsorption process of ST involves a gate-opening mechanism accompanied by a fluorescent color switch behavior.Upon simple heating,ST can be released from the voids through a gate-closing process.Conversely,exposure to EB vapor does not promote X-HOF-10a to adsorb EB due to its slightly larger size in comparison with ST,facilitating a single crystal to single crystal transition,leading to the formation of a new non-porous crystal without EB.Under equimolar vapor condition,X-HOF-10a transforms into X-HOF-10 rather than X-HOF-11 owing to the superior stability of X-HOF-10over X-HOF-11,accompanied by selective adsorption of ST.The purity of ST can reach 92%after release from the framework,which further increases to over 98%when exposed to the mixed vapor containing 90%ST.Additionally,this HOF material exhibits recyclability without any discernible loss in performance.
基金financially supported by the National Natural Science Foundation of China (No. 21774006)
文摘The sulfonated poly(α-methyl styrene-b-isobutylene-b-α-methyl styrene)copolymers(S-ASIBS)with the average molar percentage of sulfonic acid(-SO_(3)H)groups(SP)ranging from 3.6 mol%to 14.3 mol%could be synthesized by sulfonation of ASIBS with acetyl sulfate.The hydrophilic ionic channels were generated for proton exchange membranes(PEMs)by ion aggregation of-SO_(3)H groups and microphase separation between hydrophobic polyisobutylene and hydrophilic sulfonated poly(α-methyl styrene)segments in S-ASIBS.The proton transport ability was improved while oxidative stability was decreased by increasing SP in S-ASIBS.The appropriate SP of about 12.7 mol%in S-ASIBS provides the available PEMs with high proton transport ability,low methanol permeability and good oxidative stability.The absence of active tertiary hydrogen atoms along S-ASIBS copolymer chains avoids their attack by peroxy radicals.The residual rates of weight(RW)and proton conductivity(Rσ)of S-ASIBS-12.7 membrane after oxidation treatment for 916 h were 84.3%and 88.1%respectively,near to those of commercial Nafion 117(RW=87.9%,Rσ=90.3%).The membrane electrode assembly(MEA)could be prepared by using various S-ASIBS as PEMs for direct methanol fuel cell.The single cell with S-ASIBS-12.7 MEA behaves high performance of open circuit voltage(OCV)of 548 mV and peak power density(Pmax)of 36.1 mW·cm^(-2),which is similar to those of Nafion 117(OCV=506 mV,P_(max)=35.6 mW·cm^(-2)).To the best of our knowledge,this is the first example of advanced S-ASIBS membrane with high proton conductivity,excellent fuel barrier property and remarkable oxidative stability for promising PEMs.
基金financial support from the National Natural Science Foundation of China(No.52205210)the Natural Science Foundation of Shandong Province(Nos.ZR2020MB018,ZR2022QE033 and ZR2021QB049)。
文摘Using hydrogen-bonded organic frameworks(HOFs)as photosensitizers to perform photocatalytic oxidation reactions under green and mild conditions is still a challenge for the application of HOFs materials.This study presents a novel approach that exploits HOFs to enhance the efficiency of photocatalytic oxidation for achieving visible light catalytic oxidation of styrene and its derivatives in the aqueous environment.By using 1,3,6,8-tetrakis(p-benzoic acid)pyrene(H_(4)TBAPy)as the monomer,a pyrene-based hydrogen-bonded organic framework(PFC-1)with a microporous structure was successfully prepared.Compared with monomer H_(4)TBAPy,due to the exciton effect and the interlayer confinement of HOFs,the singlet oxygen(1O_(2))production efficiency is significantly improved,which has great potential in photocatalytic oxidation reactions.Subsequently,the practicality of PFC-1 as a photocatalyst was studied,and the photocatalytic oxidation of styrene and its derivatives in aqueous solution was achieved under visible light with high catalytic efficiency,indicating that PFC-1 has significant potential to promote photocatalytic oxidation reactions under mild conditions.The utilization of HOFs as photosensitizers in this straightforward approach enables the attainment of green photocatalytic oxidation,hence expanding the potential applications of HOFs materials within the realm of photocatalysis.
基金funded by National Key Research and Development Project (No. 2018YFA0108403)Provincial University Basic Research Operating Expenses Project (No. 21SBYB08)
文摘Plastic equipment used in cell culture processes contains styrene residues and 2-chloroethanol, a byproduct of ethylene oxide sterilization. Both compounds can have long-term effects on the quality and safety of the cells in plastic equipment. GB/T 43778-2024, which establishes a gas chromatography-mass spectrometry(GC-MS) method for the simultaneous detection of st yrene and 2-chloroethanol in cell culture media, includes several technical requirements that need to be thoroughly interpreted. This paper provides a detailed explanation of the internal standard calibration method used for detecting styrene and 2-chloroethanol, covering the overall framework and innovation aspects of the standard. Additionally, it elucidates the principles and rationale of each step, including sample processing, detection parameters, preparation of standard solutions, and the determination of detection and quantification limits, to assist testing technical staff in applying the method effectively.
基金supported by Guangdong Science and Technology Planning Project(2015A020216002)Guangdong Natural Science Foundation(2014A030313259)the National Natural Science Foundation of China(21543014,21173086,U1301245)~~
文摘The heterogeneously copper-catalyzed oxidative cleavage of styrene was studied using copper-doped mesoporous KIT-6(CU-KIT-6_x) prepared via pH adjustment(where x is the pH:1.43,2.27,3.78,3.97,4.24 or 6.62).Variations in the catalyst structure and morphology with pH values were characterized by X-ray power diffraction,nitrogen adsorption-desorption analysis,transmission electron microscopy and X-ray photoelectron spectroscopy.As the pH value applied during the initial synthesis,the resulting Cu-KIT-6_x exhibited different structural,textural and surface characteristics,especially in terms of specific copper species and copper content At a pH value of 3.78,approximately 4.6 wt%copper(Ⅱ) was successfully incorporated into the framework of the initial KIT-6,in the form of-Cu-O-Si- groups.The catalytic performance of each catalyst was evaluated by following the epoxidation of styrene,employing tert-butyl hydroperoxide as the oxidant and CH_3CN as the solvent.A significant styrene conversion of 43.5%with 86.6%selectivity for the desired styrene epoxide was obtained over the Cu-KIT-63.78.A higher Cu content,an ordered cubic laid mesoporous architecture and various specific textural characteristics all combined to endow the Cu-KIT-63.78 with high catalytic activity and good stability.
文摘The polymerization of styrene is monitored by pyrene excimer formation. The ratio of monomer to excimer intensities ( I m/ I e) of pyrene increases as polymerization proceeds. The increase of I m/ I e is ascribed to the increase of microviscosity surrounding the probes forming excimer during polymerization. The linear relationship between the changing rate of I m/ I e and the polymerization rate of styrene is obtained. Therefore, I m/ I e may be used to monitor the progress of the polymerization of styrene.
文摘Bottled water may not be safer, or healthier, than tap water. The present studies have proved that styrene and some other aromatic compounds leach continuously from polystyrene (PS) bottles used locally for packaging. Water sapmles in contact with PS were extracted by a preconcentration technique called as "purge and trap" and analysed by gas chromatograph-mass spectrometer (GC/MS). Eleven aromatic compounds were identified in these studies. Maximum concentration of styrene in PS bottles was 29.5 μg/L. Apart from styrene, ethyl benzene, toluene and benzene were also quantified but their concentrations were much less than WHO guide line values. All other compounds were in traces. Quality of plastic and storage time were the major factor in leaching of styrene. Concentration of styrene was increased to 69.53 μg/L after one-year storage. In Styrofoam and PS cups studies, hot water was found to be contaminated with styrene and other aromatic compounds. It was observed that temperature played a major role in the leaching of styrene monomer from Styrofoam cups. Paper cups were found to be safe for hot drinks.
基金supported by the National Basic Research Program of China (2010CB732300)Education Commission of Shanghai Municipality (2008CG35)Science and Technology Commission of Shanghai Municipality (09ZR1408200)
文摘La-doped and La-B-doped KIT-6 mesoporous materials were prepared by direct hydrothermal synthesis with pH-adjusting method and characterized by X-ray diffractometer(XRD),nitrogen sorption,FT-IR,UV-Vis,X-ray photoelectron spectroscopy(XPS) and ICP-AES.The catalytic performance for the oxidation of styrene by hydrogen peroxide,tert-butyl hydroperoxide or oxygen was investigated.The results showed that the introduction of heteroatoms did not destroy the mesostructure of KIT-6 with cubic Ia3d space group.La or ...
文摘Cu(II) and Mn(II) metals embedded on mesoporous SBA-15 were synthesized by co-precipitation technique.The support and catalysts were characterized by SEM–EDX,TEM,BET,XRD and ICP-AES methods.The catalytic activity of these catalysts was evaluated for styrene oxidation at various reaction conditions such as styrene to TBHP mole ratio,temperature,catalyst amount by using TBHP as an oxidizing agent.Major reaction products were styrene oxide and benzaldehyde and highest styrene conversion(97.3%) was observed at styrene to TBHP mole ratio of 1:4,temperature at 80 °C and 20 mg of catalyst.Further,the recyclability of the catalysts was observed and found that they can be recycled three times without major loss in their activity and selectivity.
基金This work was partially financially supported by the National Natural Science Foundation of China(Nos.51773193 and 52073275).
文摘The catalytic performa nee of rare-earth metal dialkyl complexes in combi nation with DMAO(dry methylalumi no xane)is explored.In the presence of 60 equivalents of DMAO,the half-sandwich complex(C_(13)H_(8)CH_(2)Ph)Sc(CH_(2)SiMe_(3))_(2)(THF)(1)is inert for styrene polymerization,but(C_(5)Me_(4)Ph)Sc(CH_(2)C_(6)H_(4)NMe_(2)-o)_(2)(2)con verts 18% styre ne into syn diotactic polystyrene.Under the same conditi ons,the con strained-geometry configuration sandium complex(C13H8CH2Py)Sc(CH_(2)SiMe_(3))_(2)(3a)displays extremely high catalytic activity(>6420 kg·mol_(sc)^(-1)h^(-1))and perfect syndiospecific(rrrr>99%)for styrene polymerization,while its lutetium(3b)and yttrium(3c)analogues are nearly inactive.Although the binary catalytic system 3a/DMAO exhibits very low activity for 4-methoxystyrene polymerization,it is an efficient catalyst for the syndioselective polymerization of other styrene derivatives such as 2-methoxystyrene,4-methylthiostyrene,4-fluorostyrene,4-dimethylhydrosilylstyrene,alkyne-susbstituted styrenes and 4-methylstyrene.In addition,the binary system 3a/DMAO can copolymerize ethylene and styrene to give alternating copolymers with a single glass tran sition at 80℃ and 0.4 MPa ethylene pressures.By in creasing styrene feed amount from 20 mmol to 60 mmol,the styre ne con tent slight in creases from 48.2 mol% to 53.8 mol%,but the polymerizatio n activity is obviously promoted from 240 kg·mol_(Sc)^(-1)·h^(-1) to 532 kg·mol_(sc)^(-1)·h^(-1).
基金financially supported by the National Natural Science Foundation of China(Nos.51033001 and 21074006)
文摘In this paper, the effects of temperature from 60 ℃ to 80 ℃ and the molar ratios in monomer feed on the copolymerization of α-methylstyrene (AMS) and styrene (St) were studied. The resulting copolymers, designated as PAS, were characterized by FTIR, GPC, NMR and TGA. When the reaction temperature was below 75 ℃, the molecular weights increased almost linearly as the evolution of the copolymerization. The phenomenon revealed that AMS could mediate the conventional free radical polymerization having some features of a controlled system. As the AMS/St = 50/50 (molar) in feed, the overall fraction of the AMS unit incorporated into the copolymer was as high as 42 mol%, the monomer conversion could be more than 90 wt% and the molecular weights could reach as high as 4400. However, since the styrene is more reactive than AMS, the AMS fraction in copolymer increased with the overall monomer conversion. The 13C-NMR revealed the products were random copolymers which had triads, such as -AMS-AMS-AMS-, -St-AMS-AMS- (-AMS-AMS-St-) and -St-AMS-St-. TGA curves demonstrated that the degradation temperature of the resulting copolymers went down from about 356.9 ℃ (0 mol% AMS) to 250.2 ℃ (42 tool% AMS). This behavior demonstrated that there exist weak bonds in the AMS- containing sequences which could be used as potential free radical generators.
文摘[Objective] The paper was to study the structure and performance of starch and styrene graft copolymer. [Method] The microscopic structure of corn starch and styrene graft copolymer was analyzed by using infrared spectrum and scanning electron microscope, and the property of starch and styrene graft copoly- mer was confirmed through grinding experiment, tensile strength, water absorption rate, hot water resistance properties and enzymatic properties analysis. [Result] The starch and styrene graft copolymer had the properties of thermoplastic and microbial degradation. IConclusion] The starch and styrene graft copolymer is expected to be developed as a biodegradable material.
基金This work was financially supported by the National Natural Science Foundation of China and SINOPEC (No. 20334030)by the National Basic Research Program of China (No. 2005CB623801).
文摘Two multi-nuclear titanium complexes [Ti(η^5-Cp^*)Cl(μ-O)]3 (1) and [(η^5-Cp^*TiCl)(μ-O)2(η^5-Cp^*Ti)2(μ- O)(μ-O)2]2Ti (Cp^* = C5Me5) (2) have been investigated as the precatalysts for syndiospecific polymerization of styrene. In the presence of modified methylaluminoxane (MMAO) as a cocatalyst, complexes 1 and 2 display much higher catalytic activities towards styrene polymerization, and produce the higher molecular weight polystyrenes with higher syndiotacticities and melting temperatures (Tm) than the mother complex Cp^*TiCl3 does when the polymerization temperature is above 70℃ and the Al/Ti molar ratio is in the low range especially.
文摘Some highly active η~5-pentamethylcyclopentadienyltribenzyloxy titanium complexes [Cp Ti(OBz)_3] activated by modified methylaluminoxane (mMAO) were prepared and used as the catalyst for styrene syndiospecific polymerization and propene atactic polymerization. Styrene could be copolymerized with propene when the propene was prepolymerized for a period, to which styrene and tri-isobutylaluminum (TIBA) were then added. The titled block copolymer together with the related homopolymers was obtained. The copolymerization porducts can be divided into the homopolymers and the copolymer by successive solvent extraction with boiling butanone, heptane and tetrahydrofuran (THF), and each fraction was characterized by ~13C NMR, DSC and WAXD. It was found that aPS and aPP were soluble in boiling butanone and heptane respectively. The block copolymer (sPS-b-aPP) composed of syndiottactic polystyrene segment was soluble in boiling THF and the residue was chiefly sPS.
基金Project supported by the National Basic Research Program of China (2004CB719500)the Commission of Science and Technology of Shanghai Municipality (03DJ14006)
文摘Using cetyl-trimethyl-ammonium bromide (CTMAB) as the template agent and tetraethylorthosilicate (TEOS) as the silica source, the MCM-41 mesoporous materials were synthesized with La or Ce incorporated in the framework under hydrothermal conditions. The structure and the state of La or Ce were investigated through the analyses of XRD, nitrogen adsorption-desorption, FT-IR, and UV-Vis. XRD and N2 adsorption-desorption results showed that Ln-MCM-41 exhibited the loss of the lattice ordering of the MCM-41 construct, and larger unit cell parameter and pore diameter than pure silica MCM-41. The FT-IR and UV-Vis results indicated the presence of isolated tetra-coordinated La or Ce ions in the framework and other Ln species dispersed highly on the Ln-MCM-41 surface simultaneously. Furthermore, their catalytic behaviors in the oxidation of styrene were studied using H2O2 as the oxidant. The La-MCM-41 catalysts exhibited high reactivity and the reactivity increased with the increase of the La content in the La-MCM-41 samples. On the contrary, Ce-MCM-41 catalysts showed low reactivity in the oxidation of styrene and the conversion of styrene decreased with the increase of the Ce content in the Ce-MCM-41 samples.
基金This work was supported by the National Natural Science Foundation of China (No. 20177004, 20507004).
文摘Sulfur hexafluoride (SF6) is known as one of the most powerful greenhouse gases in the atmosphere. Reductive photodegradation of SF6 by styrene has been studied with the purpose of developing a novel remediation for sulfur hexafluoride pollution. Effects of reaction conditions on the destruction and removal efficiency (DRE) of SF6 are examined in this study. Both initial styrene-to-SF6 ratio and initial oxygen concentration exert a significant influence on DRE. SF6 removal efficiency reaches a maximum value at the initial styrene-to-SF6 ratio of 0.2. It is found that DRE increases with oxygen concentration over the range of 0 to 0.09 mol/m^3 and then decreases with increasing oxygen concentration. When water vapor is fed into the gas mixture, DRE is slightly enhanced over the whole studied time scale. The X-ray Photoelectron Spectroscopy (XPS) analysis, together with gas chromatography-mass spectrometry (GC-MS) and Fourier Transform Infrared spectroscopy (FT-IR) analysis, prove that nearly all the initial fluorine residing in the gas phase is in the form of SiF4, whereas, the initial sulfur is deposited in the form of elemental sulfur, after photodegradation. Free from toxic byproducts, photodegradation in the presence of styrene may serve as a promising technique for SF6 abatement.
基金funded by the Deanship of Scientific Research(DSR)at King Abdulaziz University,Jeddah,under grant no.(G-1281-135-1440)DSR for technical and financial support
文摘Different mole ratio Al-B catalysts (Al-10B to Al-35B) were synthesized by using sol-gel (SG) method. Ethyl benzene (EB) dehydrogenation in the presence of oxygen and water steam was carried out on these catalysts at 450–500℃ with EB contact time of 0.54 gcat.s.cm^–3. Acidity of Al-B catalysts was estimated by using NH3-TPD-mass spectral analysis studies. SEM-mapping images revealed fine distribution of boron up to 15% of its loading in alumina (Al-15B), whereas, boron aggregation was observed in higher boron content (Al-25B and Al-35B) catalysts. Essentially, acid sites of very weak strength (Tmax ≤ 125℃) were observed for Al and Al-10B catalysts and resulted in low EB conversion and styrene yield. On the other hand, acid sites of weak strength (Tmax ≤ 180℃) were observed for Al-25B and Al-35B catalysts and resulted in high EB conversion. However, greater styrene yield (43.2%) with reasonable EB conversion (46%) was obtained on acid sites of weak moderate strength in Al-15B catalyst. Further, Al-15B catalyst was synthesized by using co-precipitation (COP) and impregnation (IMP) methods. Acid sites related to NOx formation during the NH3-TPD-mass analysis on IMP and COP catalyst essentially improved the EB conversion to 66% and 63% respectively at 500℃. However, these acid sites were diminished in Al-B SG catalyst and resulted in 50% of EB conversion at 500 ℃. At 50% of EB conversion level, styrene selectivity of 73%, 82.5% and 84% were observed on Al-B IMP, Al-B COP and Al-SG catalysts, respectively. Hence, different method of preparation of Al-B catalyst generated acid sites of different strength and density and thereby influenced the styrene formation.
文摘The adsorption behavior and description behavior of benzene , ethylene and ethylbenzene over HZSM-5 and Co/HZSM-5 catalysts were studied by means of TPSR (Temperature programmed surface reaction) technique. TPSR results of ben- zene and ethylene co-adsorption show that the maian products are styrene , ethylben- zene, toluene, propane, and butane. In a separate experiment of ethylbenzene ad- sorption, styrene . toluene and benzene are formed due to cracking and dehydro- genation. The mechanism of styrene formation was proposed , i. e. , the reaction was carried out via. the dehydrogenation of mediate species ethylbenzene according to the results of TPSR-MS , activity testing and thermodynamic analysis.
基金Project supported by National Basic Research Program of China(973 Program)(2012CBA01205)
文摘The flotation performances of styrene phosphonic acid(SPA) to synthetic(Ce,La)2O3(REO), calcium fluorite(CaF2) and fluorapatite(Ca5F(PO4)3) were investigated by flotation tests, flotation of synthetic mixed mineral, the surface adsorption capacity and the polarizing microscopy to solve the flotation separation problem of rare earth oxides from roasted concentrate. The flotation test results indicated that compared with CaF2 and Ca5F(PO4)3, SPA exhibited superior collecting performance to direct flotation recovery of REO and floated out above 90% REO at pH 3–6. However, the collecting ability of SPA to CaF2 and Ca5F(PO4)3 was extremely weak and the highest recovery was only 20% at pH 2–11. The flotation of synthetic mixed mineral showed that SPA was a good collector reagent for flotation of synthetic REO at pH 5, so REO, CaF2 and Ca5F(PO4)3 could be separated from roasted concentrate by using SPA as a collector. The surface adsorption capacity tests and polarizing microscopy results confirmed that SPA was adsorbed on REO surface, while CaF2 and Ca5F(PO4)3 were not. The adsorption mechanism of SPA to synthetic REO was studied by solution chemistry analysis of collector, the ζ-potential tests, infrared spectroscopy and X-ray photoelectron spectroscopy(XPS) analyses. The results indicated that SPA was physically adsorbed onto REO surface, which exhibited excellent flotation selectivity to REO against CaF2 and Ca5F(PO4)3.
基金the financial support from NNSFC(Project 21373054,21303023,21173052)the Natural Science Foundation of Shanghai Science and Technology Committee(08DZ2270500)
文摘The morphology effect of Zr-doped CeOwas studied in terms of their activities in the selective oxidation of styrene to styrene oxide using tert-butyl hydroperoxide as the oxidant. In the present work, Zrdoped CeOnanorods exhibited the highest catalytic performance(yield of styrene oxide and TOF value)followed by nanoparticles and nanocubes. For the Zr-doped CeOnanorods, the apparent activation energy is 56.3 k J/mol, which is much lower than the values of catalysts supported on nanoparticles and nanocubes(73.3 and 93.4 k J/mol). The high resolution transmission electron microscopy results indicated that(100) and(110) crystal planes are predominantly exposed for Zr-doped CeOnanorods while(100)and(111) for nanocubes,(111) for nanoparticles. The remarkably increased catalytic activity of the Zrdoped CeOnanorods is mainly attributed to the higher percentage of Cespecies and more oxygen vacancies, which are associated with their exposed(100) and(110) crystal planes. Furthermore, recycling studies proved that the heterogeneous Zr-doped CeOnanorods did not lose its initial high catalytic activity after five successive recycles.