Accurate crown control is paramount for ensuring the quality of hot-rolled strip products.Given the multitude of influencing parameters and the intricate coupling and genetic relationships among them,the conventional ...Accurate crown control is paramount for ensuring the quality of hot-rolled strip products.Given the multitude of influencing parameters and the intricate coupling and genetic relationships among them,the conventional crown control method is no longer sufficient to meet the precision requirements of schedule-free rolling.To address this limitation,an optimization framework for hot-rolled strip crown control was developed based on model-driven digital twin(MDDT).This framework enhances the strip crown control precision by facilitating collaborative operations among physical entities,virtual models,and functional application layers.In virtual modeling,a data-driven approach that integrates the extreme gradient boosting and the improved Harris hawk optimization algorithm was firstly proposed to fit the relationship between key process parameters and strip crown,and a global-local collaborative training strategy was proposed to enhance the model adaptability to diverse working conditions.Subsequently,the influence of crucial process factors on the virtual model was examined through model responses.Furthermore,a novel optimization mode for crown control based on MDDT was established by aligning and reconstructing both the physical and virtual models,thereby enhancing the crown control precision.Finally,data trials were conducted to validate the effectiveness of the proposed framework.The results indicated that the proposed method exhibited satisfactory performance and could be effectively utilized to improve the crown control precision.展开更多
[Objectives]To address the weeding challenges within the corn and soybean strip intercropping field and identify appropriate herbicide types and application methods suitable for the corn and soybean strip intercroppin...[Objectives]To address the weeding challenges within the corn and soybean strip intercropping field and identify appropriate herbicide types and application methods suitable for the corn and soybean strip intercropping fields in Siyang County.[Methods]The trial comprised six herbicide treatments and one blank control,with investigations conducted to assess efficacy,safety,and yield.[Results]Each herbicide treatment effectively controlled weeds,demonstrated high safety,and enhanced the yields of both soybeans and corn.The combined application of soil sealing with stem and leaf spray exhibited superior overall weed control compared to soil sealing alone.At 28 d following stem and leaf spray,the plant control effect and fresh weight control effect against weeds in the combined treatment of soil sealing with stem and leaf spray all exceeded 89%.[Conclusions]This study offers technical support for advancing the practice of strip intercropping between corn and soybeans.展开更多
The soybean and corn strip compound planting technology is a crucial measure for improving land use efficiency and ensuring food security.This paper deeply analyzed the principles,advantages,and key technical aspects ...The soybean and corn strip compound planting technology is a crucial measure for improving land use efficiency and ensuring food security.This paper deeply analyzed the principles,advantages,and key technical aspects of this technology,including variety selection,planting pattern,sowing management,and field management.It also illustrated its application effectiveness through practical cases and proposed corresponding solutions to existing challenges in its promotion.This study provides theoretical support and practical reference for the widespread adoption and efficient application of this technology.展开更多
Stripping injection overcomes the limitations of Liouville's theorem and is widely used for beam injection and accumulation in high-intensity synchrotrons.The interaction between the stripping foil and beam is cru...Stripping injection overcomes the limitations of Liouville's theorem and is widely used for beam injection and accumulation in high-intensity synchrotrons.The interaction between the stripping foil and beam is crucial in the study of stripping injection,particularly in low-energy stripping injection synchrotrons,such as the XiPAF synchrotron.The foil thickness is the main parameter that affects the properties of the beam after injection.The thin stripping foil is reinforced with collodion during its installation.However,the collodion on the foil surface makes it difficult to determine its equivalent thickness,because the mechanical measurements are not sufficiently reliable or convenient for continuously determining foil thickness.We propose an online stripping foil thickness measurement method based on the ionization energy loss effect,which is suitable for any foil thickness and does not require additional equipment.Experimental studies were conducted using the XiPAF synchrotron.The limitation of this method was examined,and the results were verified by comparing the experimentally obtained beam current accumulation curves with the simulation results.This confirms the accuracy and reliability of the proposed method for measuring the stripping foil thickness.展开更多
The exogenous plant growth regulator,diethyl aminoethyl hexanoate(DA-6),in combination with suitable varieties and planting densities,is important to increase yield in the maize-soybean strip intercropping system.To i...The exogenous plant growth regulator,diethyl aminoethyl hexanoate(DA-6),in combination with suitable varieties and planting densities,is important to increase yield in the maize-soybean strip intercropping system.To identify the role of DA-6 in mitigating high-density stress and increasing yield,we conducted a two-year field experiment examining changes in branching architecture and other yield traits of soybeans in maize-soybean strip intercropping systems.In the planting system,two soybean cultivars(ND:Nandou 25 and QH:Qihuang 34)were grown under three planting densities(D1:102,000 plants ha^(-1),D2:130,000 plants ha^(-1),D3:158,000 plants ha^(-1))with DA-6 treatments(DA0:water control;DA60:60 mg L^(-1);DA100:100 mg L^(-1)).Applying DA-6 at 60 mg L^(-1)at the fourth trifoliolate leaf stage increased soybean yield,with QH yield rising by 22.4% and 29.5% at D3 density,and ND yield by 29.5% and 30.0% at D2 density in 2022 and 2023,respectively,compared with D1 under DA0.DA-6improved photosynthesis in both varieties under D2 density,with DA60 increasing ND canopy photosynthetic rate by 15.1%-16.4% and QG by 9.1%-20.6% over two years.In ND,DA-6 enhanced branching,raising the leaf area index by 37%,branch number from 3.6 to 4.7 per plant,and total pod number by 19.7%.In QH,yield grains were mainly due to a 17% increase in the number of stem pods and a 6.5% improvement in hundred-grain weight.In the maize-soybean strip intercropping system,QH achieved a high yield by forming a high-density(D2 to D3)main stem pod,and ND by combining moderate density(D1 to D2)with DA-6-induced branching.展开更多
Aflatoxins B1(AFB1)contamination in agro-food holds great threaten to human and animal health.Conventional test strips for rapid AFB1 visualized monitoring remains challenged by improvement of sensitivity and matrix i...Aflatoxins B1(AFB1)contamination in agro-food holds great threaten to human and animal health.Conventional test strips for rapid AFB1 visualized monitoring remains challenged by improvement of sensitivity and matrix interference resistance.In this case,we developed a portable electrochemiluminescence(ECL)imaging test strip with dual-signal outputs for AFB1 quantification in corn samples.RuPEI@SiO_(2)@Au nanospheres were synthesized for bonding with anti-AFB1 antibody and then colorimetrical signal-reported on test line through the capillary flow at strips.Meanwhile,ECL imaging signal of the constructed carbon-ink-based working electrode on polyvinyl chloride substrate of strips was exported under an applied potential of 1.25 V.The whole ECL test strips not only endowed convenient colorimetric responses but guaranteed quick-witted ECL image distinguishment even at extremely low AFB1 content.The detection limit of this ECL imaging-integrated mode was 10-fold lower than that of only colorimetric mode.Furthermore,satisfactory selectivity,reliability and practicability of the as-proposed ECL test strips were demonstrated.This work offered a promising platform for on-site,accurate and sensitive detection of pollutants in foods.展开更多
High ammonia-nitrogen digestate has become a key bottleneck limiting the anaerobic digestion of organic solid waste.Vacuum ammonia stripping can simultaneously remove and recover ammonia nitrogen,which has attracted a...High ammonia-nitrogen digestate has become a key bottleneck limiting the anaerobic digestion of organic solid waste.Vacuum ammonia stripping can simultaneously remove and recover ammonia nitrogen,which has attracted a lot of attention in recent years.To investigate the parameter effects on the efficiency and mass transfer,five combination conditions(53℃ 15 kPa,60°C 20 kPa,65°C 25 kPa,72°C 35 kPa,and 81°C 50 kPa)were conducted for ammonia stripping of sludge digestate.The results showed that 80%of ammonia nitrogen was stripped in 45 min for all experimental groups,but the ammonia transfer coefficient varied under different conditions,which increased with the rising of boiling point temperature,and reached the maximum value(39.0 mm/hr)at 81°C 50 kPa.The ammonia nitrogen removal efficiency was more than 80%for 30 min vacuum stripping after adjusting the initial pH to above 9.5,and adjustment of the initial alkalinity also affects the pH value of liquid digestate.It was found that pH and alkalinity are the key factors influencing the ammonia nitrogen dissociation and removal efficiency,while temperature and vacuum mainly affect the ammonia nitrogen mass transfer and removal velocity.In terms of the mechanism of vacuum ammonia stripping,it underwent alkalinity destruction,pH enhancement,ammonia nitrogen dissociation,and free ammonia removal.In this study,two-stage experiments of alkalinity destruction and ammonia removal were also carried out,which showed that the two-stage configuration was beneficial for ammonia removal.It provides a theoretical basis and practical technology for the vacuum ammonia stripping from liquid digestate of organic solid waste.展开更多
We developed a dedicated data analysis framework for silicon strip detector telescopes(SSDTs)of the Compact Spectrometer for Heavy-IoN Experiments(CSHINE)that addresses the challenges of processing complex signals.The...We developed a dedicated data analysis framework for silicon strip detector telescopes(SSDTs)of the Compact Spectrometer for Heavy-IoN Experiments(CSHINE)that addresses the challenges of processing complex signals.The framework integrates advanced algorithms for precise calibration,accurate particle identification,and efficient event reconstruction,aiming to account for critical experimental factors such as charge-sharing effects,multi-hit event resolution,and detector response nonuniformity.Its robust performance was demonstrated through the successful analysis of light-charged particles in the 25 MeV/u^(86)Kr+^(124)Sn experiment conducted at the first Radioactive Ion Beam Line in Lanzhou,allowing for precise extraction of physical observables,including energy,momentum,and particle type.Furthermore,utilizing the reconstructed physical information,such as the number of effective physical events and energy spectra to optimize the track recognition algorithm,the final track recognition efficiencies of approximately 90%were achieved.This framework establishes a valuable reference methodology for SSDT-based detector systems in heavy-ion reaction experiments,thereby significantly enhancing the accuracy and efficiency of data analysis in nuclear physics research.展开更多
The interfacial structure and its effect on the resistivity of cross-layered silver-copper composite strip fabricated by hot-roll bonding and diffusion welding processes with the same specification were studied.Throug...The interfacial structure and its effect on the resistivity of cross-layered silver-copper composite strip fabricated by hot-roll bonding and diffusion welding processes with the same specification were studied.Through optical and scanning electron microscope analysis of metallographic structure of the diffusion region of interface,it is found that the thickness of the interfacial diffusion layer is related to the composite conditions.Under the condition of sufficient diffusion,the interface of silver-copper composite strip produced by diffusion welding process has a wider interfacial transition region and fine grain area.Due to the higher diffusion rate of copper atoms than that of silver atoms,copper atoms tend to aggregate at the silver boundaries to form a copper-rich second solid solution,which has a fixing and expanding effect during annealing.The fine grain area at the interface of the composite strip produced by diffusion welding process still exists after annealing treatment and reaches a width of 55-97μm.While the fine grain region at the interface of hot-rolled composite strips is mainly formed by crushing the surface under rolling pressure with less diffusion effect,it almost disappears after annealing.The resistivity of silver-copper composite strip increases with the extension of the interfacial diffusion region.The resistivity of hot-roll bonding composite strip is increased by about 4%higher than that of the theoretical calculation,while the resistivity of diffusion welding composite strip is increased by 6%.展开更多
Accurate prediction of strip width is a key factor related to the quality of hot rolling manufacture.Firstly,based on strip width formation mechanism model within strip rolling process,an improved width mechanism calc...Accurate prediction of strip width is a key factor related to the quality of hot rolling manufacture.Firstly,based on strip width formation mechanism model within strip rolling process,an improved width mechanism calculation model is delineated for the optimization of process parameters via the particle swarm optimization algorithm.Subsequently,a hybrid strip width prediction model is proposed by effectively combining the respective advantages of the improved mechanism model and the data-driven model.In acknowledgment of prerequisite for positive error in strip width prediction,an adaptive width error compensation algorithm is proposed.Finally,comparative simulation experiments are designed on the actual rolling dataset after completing data cleaning and feature engineering.The experimental results show that the hybrid prediction model proposed has superior precision and robustness compared with the improved mechanism model and the other eight common data-driven models and satisfies the needs of practical applications.Moreover,the hybrid model can realize the complementary advantages of the mechanism model and the data-driven model,effectively alleviating the problems of difficult to improve the accuracy of the mechanism model and poor interpretability of the data-driven model,which bears significant practical implications for the research of strip width control.展开更多
In hilly regions,the existence of surface cracks in rock mass induces a potential threat to structural stability.Thus,the present research aims to explore the impact of surface cracks on the loadbearing capacity of st...In hilly regions,the existence of surface cracks in rock mass induces a potential threat to structural stability.Thus,the present research aims to explore the impact of surface cracks on the loadbearing capacity of strip footing placed on the rock mass.By taking into account the various boundary constraints across the surface of crack edges,the study investigates the presence of two categories of surface cracks,namely(1)separated crack,and(2)fine crack.The lower bound limit analysis is employed in conjunction with the finite element method(LBFELA)to conduct the numerical analysis.In order to evaluate rock mass yielding,the power conic programming(PCP)method is utilized to implement the generalized Hoek-Brown(GHB)failure criterion.The stability of the strip footing is analyzed by determining the bearing capacity factor(Nσγ),which is presented in the form of design charts by varying the strength parameters of rock,including the Geological Strength Index(GSI),Hoek-Brown material parameter(mi),Disturbance factor(D),and Normalised Uniaxial Compressive Strength(σci/γB),whereγis the unit weight of rock mass,and B is the width of strip footing.The study also investigates the impact of cracks on strip footings,considering different positions of the crack(LC)and depths of the crack(DC).The results demonstrate that the influence of the fine crack is only noticeable until the LC/B ratio reaches 6.However,for the separated crack,its impact remains significant even when the LC/B ratio exceeds 16.The appearance of fine crack at the edge of the footing results in a decrease in the magnitude Nσγof up to 45%,indicating a substantial reduction in the stability of the footing.The failure patterns are presented and discussed in detail for various cases in this study to examine the effect of surface cracks on the strip footing and to address the extent of the plastic collapse.展开更多
To mitigate the sand burial of highways in sandy regions,a separated subgrade design was widely adopted in the embankments of high-grade highways,but the problem of sand deposition on subgrade slopes and pavements sti...To mitigate the sand burial of highways in sandy regions,a separated subgrade design was widely adopted in the embankments of high-grade highways,but the problem of sand deposition on subgrade slopes and pavements still happens frequently.Based on the theory of wind-sand two-phase flow,this paper constructed a three-dimensional model of the separated subgrade,the wind-sand flow transport law around the subgrade with varying median strip widths and concave depths was simulated by Fluent software.After comparison and analysis of seven subgrade models,the flow field distribution,wind speed horizontal variation,and erosion-deposition characteristics were investigated.The findings are as follows:(1)The width of the median strip in the separated subgrade had significant influences on the wind-sand flow.The smooth passage of wind-sand flow over the road surface was facilitated with the increase of the median strip width.However,sand deposition in the median strip happened.It can lead to secondary sand damage of downwind subgrade and increase the work load of road sand removal for subsequent maintenance.(2)The obstruction to airflow and sand accumulation was aggravated with greater concave depth of the median strip.Therefore,it is advisable to minimize the concave depth of the median strip in case of more sand damage.(3)A median strip width exceeding 12 m(possibly without guardrails)for an integral embankment without enough road land is recommended.Conversely,median strip width of over 40 m for separate subgrade with unrestricted land is suggested.(4)In the case of sand deposition in the existing separated subgrade,the median strip can be filled by sand deposition or other materials,then was covered with gravel to form a flat ground like Gobi smooth surface,which can let the wind-blown sand flow pass through the subgrade section without sand deposition.展开更多
The textured roll and polished roll were applied instead of the ground roll in a 20-high mill to conduct two-pass rolling of 316L stainless steel strip with thickness of 0.027 mm.After the two-pass rolling with the te...The textured roll and polished roll were applied instead of the ground roll in a 20-high mill to conduct two-pass rolling of 316L stainless steel strip with thickness of 0.027 mm.After the two-pass rolling with the textured roll and polished roll(TPR),the surface roughness of the strip is dramatically reduced,and the surface topographical anisotropy index is diminished to 30.9%of the initial strip.Comparing with the strip rolled using the ground roll in both passes(GGR),the elongation of TPR rolled strip is obviously improved,and the mechanical property anisotropy is greatly weakened.The anisotropy index of tensile strength and elongation are 42.58%and 52.59%of that of GGR rolled strip,which is mainly attributed to the significant decrease of the texture intensity of the strip by TPR process.The results indicate that TPR process can obtain the stainless steel ultra-thin strip with smooth and uniform surface topography and good mechanical properties.展开更多
The microstructure and mechanical properties of the compact strip production(CSP)processed quenching and partitioning(Q&P)steels were investigated through experimental methods to address the challenge of designing...The microstructure and mechanical properties of the compact strip production(CSP)processed quenching and partitioning(Q&P)steels were investigated through experimental methods to address the challenge of designing high-performance Q&P steels.Compared with the conventional process(CP)produced samples,with slightly reduced strength,the total elongation of the CSP produced samples was increased by nearly 7%.Microstructural analysis revealed that variations in austenite stability were not the primary cause for the differences in mechanical properties between the CSP and the CP.The CSP processed Q&P steel exhibited milder center segregation behavior in contrast to the CP processed Q&P steel.Consequently,in the CSP processed Q&P steel,a higher proportion of austenite and a lower proportion of martensite were observed at the center position,delaying the crack initiation in the central region and contributing to the enhanced ductility.The investigation into the CSP process reveals its effect on alleviation of segregation and enhancement of mechanical properties of the Q&P steel.展开更多
High-order asymmetric flatness defects resulting from the abnormal state of roll system are the main issue of precision rolling mill in the manufacturing process of high-strength thin strip.Due to the difficulty of mo...High-order asymmetric flatness defects resulting from the abnormal state of roll system are the main issue of precision rolling mill in the manufacturing process of high-strength thin strip.Due to the difficulty of monitoring and adjusting the abnormal state,the spatial state of roll system cannot be controlled by traditional methods.It is difficult to fundamentally improve these high-order asymmetric flatness defects.Therefore,a digital twin model of flatness control process for S6-high rolling mill was established,which could be used to analyze the influence of the abnormal state on the flatness control characteristic and propose improvement strategies.The internal relationship between the force state of side support roll system and the abnormal state of roll system was proposed.The XGBoost algorithm model was established to analyze the contribution degree of the side support roll system force to the flatness characteristic quantity.The abnormal state of roll system in the S6-high rolling mill can be diagnosed by analyzing the flatness characteristic difference between flatness value of the rolled strip and calculated characteristic value of finite element simulation.The flatness optimization model of the gray wolf optimization–long short-term memory non-dominated sorting whale optimization algorithm(GWO-LSTM-NSWOA)was established,and the decision-making selection was made from the Pareto frontier based on the flatness requirements of cold rolling to regulate the abnormal state of the roll system.The results indicate that the contribution degree of the force of the side support roll system to the flatness characteristics is more than 25%,which is the main influence of high-order asymmetric flatness defect.The performance of the GWO-LSTM flatness feature prediction model has clear advantages over back propagation and LSTM.The practical applications show that optimizing the force of side support roll system can reduce the high point of high-strength strip flatness from 13.2 to 6 IU and decrease the percentage of low-strength strip flatness defects from 1.6%to 1.2%.This optimization greatly reduced the proportion of flatness defects,improved the accuracy level of flatness control of precision rolling mill,and provided a guarantee for the stable production of thin strip.展开更多
The unclear interfacial characteristics of Ag/Cu interface during diffusion welding limit the improvement of mechanical properties of Ag/Cu bimetallic strips.The growth orientation and evolution of Ag and Cu crystals ...The unclear interfacial characteristics of Ag/Cu interface during diffusion welding limit the improvement of mechanical properties of Ag/Cu bimetallic strips.The growth orientation and evolution of Ag and Cu crystals between Ag and Cu strips were investigated by electron backscatter diffraction(EBSD)analysis,and the interfacial properties of various Ag/Cu interfacial configurations were calculated using first-principles calculations to elucidate the diversified interfacial characteristics.Three interface bonding states,including Ag(100)/Cu(100),Ag(110)/Cu(110)and Ag(111)/Cu(111),were preferentially formed in Ag/Cu bimetallic strips during roll bonding.The intensity of Ag(100)/Cu(100)interface increases with the increasing deformation amounts during cold rolling,accompanied by the decreased intensity of Ag(110)/Cu(110)and Ag(111)/Cu(111)interfaces.The largest adsorption work and lowest interface energy of Ag(100)/Cu(100)interface at the“center”position reveal the transition from Ag(110)/Cu(110)and Ag(111)/Cu(111)interfaces to Ag(100)/Cu(100)interface.展开更多
The strip casts of cobalt-free maraging steel were fabricated using a twin-roll strip casting simulator,and its characteristics of sub-rapid solidification were studied.Subsequently,the confocal laser scanning microsc...The strip casts of cobalt-free maraging steel were fabricated using a twin-roll strip casting simulator,and its characteristics of sub-rapid solidification were studied.Subsequently,the confocal laser scanning microscope(CLSM)was employed to in situ observe the phase transformation during the heat treatment of maraging steel strip cast such as austenitization,solution treatment,and aging processes.It was found that due to the high cooling rate during the twin-roll strip casting process,the sub-rapid solidified strip cast possessed a full lath martensitic structure,weak macrosegregation,and evident microsegregation with a dendritic morphology.During austenitization of strip cast,the austenite grain size increased with the austenitization temperature.After holding at 1250℃for 250 s,the austenite grain size at the high temperature owned a high similarity to the prior austenite grain size of the strip cast,which effectively duplicates the microstructure of the strip cast after sub-rapid solidification.During the solution treatment process,the martensitic structure of the strip cast also underwent austenitic transformation,subsequently transformed into martensite again after quenching.Due to the low reheating temperature during solution treatment,the austenite grain size was refined,resulting in the fine martensitic microstructure after quenching.During the aging process of strip cast,some of martensite transformed into fine austenite,which was located in the interdendritic region and remained stable after air cooling,resulting in the dual-phase microstructure of martensite and austenite.The solute segregation of Ni and Mo elements during the sub-rapid solidification of strip cast caused the enrichment of Ni and Mo elements in the interdendritic region,which can expand the austenite phase region and thus enhance the stability of austenite,leading to the formation of austenite in the interdendritic region after aging treatment.展开更多
Nowadays,wireless communication devices turn out to be transportable owing to the execution of the current technologies.The antenna is the most important component deployed for communication purposes.The antenna plays...Nowadays,wireless communication devices turn out to be transportable owing to the execution of the current technologies.The antenna is the most important component deployed for communication purposes.The antenna plays an imperative role in receiving and transmitting the signals for any sensor network.Among varied antennas,micro strip fractal antenna(MFA)significantly contributes to increasing antenna gain.This study employs a hybrid optimization method known as the elephant clan updated grey wolf algorithm to introduce an optimized MFA design.This method optimizes antenna characteristics,including directivity and gain.Here,the factors,including length,width,ground plane length,height,and feed offset-X and feed offset-Y,are taken into account to achieve the best performance of gain and directivity.Ultimately,the superiority of the suggested technique over state-of-the-art strategies is calculated for various metrics such as cost and gain.The adopted model converges to a minimal value of 0.2872.Further,the spider monkey optimization(SMO)model accomplishes the worst performance over all other existing models like elephant herding optimization(EHO),grey wolf optimization(GWO),lion algorithm(LA),support vector regressor(SVR),bacterial foraging-particle swarm optimization(BF-PSO)and shark smell optimization(SSO).Effective MFA design is obtained using the suggested strategy regarding various parameters.展开更多
ZnO with good lithiophilicity has widely been employed to modify the lithiophobic substrates and facilitate uniform lithium(Li)deposition.The overpotential of ZnO-derived Li anode during cycling depends on the lithiop...ZnO with good lithiophilicity has widely been employed to modify the lithiophobic substrates and facilitate uniform lithium(Li)deposition.The overpotential of ZnO-derived Li anode during cycling depends on the lithiophilicity of both LiZn and Li_(2)O products upon lithiation of ZnO.However,the striking differences in the lithiophilicity between Li_(2)O and LiZn would result in a high overpotential during cycling.In this research,the Al_(2)O_(3)/nZnO(n≥1)hybrid layers were precisely fabricated by atomic layer deposition(ALD)to regulate the lithiophilicity of ZnO phase and Li_(2)O/LiZn configuration—determining the actual Li loading amount and Li plating/stripping processes.Theoretically,the Li adsorption energy(E_(a))values of LiZn and Li_(2)O in the LiZn/Li_(2)O configuration are separately predicted as-2.789 and-3.447 eV.In comparison,the E_(a) values of LiZn,LiAlO_(2),and Li_(2)O in the LiZn/LiAlO_(2)/Li_(2)O configuration upon lithiation of Al_(2)O_(3)/8ZnO layer are calculated as-2.899,-3.089,and-3.208 eV,respectively.Importantly,a novel introduction of LiAlO_(2)into the LiZn/Li_(2)O configuration could enable the hierarchical Li plating/stripping and reduce the overpotentials during cycling.Consequently,the Al_(2)O_(3)/8ZnO-derived hybrid Li-metal anode could exhibit electrochemical performances superior to these of ZnO-derived Li anode in both symmetrical and full cells paired with a LiNi_(0.6)Co_(0.2)Mn_(0.2)O_(2)(NCM622)cathode.展开更多
To achieve stable rolling,the influence of a tension mechanism of a large diameter ratio roll system on the rolling process of a strip flatness electromagnetic control rolling mill is studied.Through the analysis of t...To achieve stable rolling,the influence of a tension mechanism of a large diameter ratio roll system on the rolling process of a strip flatness electromagnetic control rolling mill is studied.Through the analysis of the rolling deformation zone,the deformation zone composition form of a large diameter ratio roll system and a calculation formula of neutral angle under tension are proposed.To analyze the effect of front and post tensions on the rolling characteristic and the strip flatness control characteristic,a three-dimensional rolling finite element(FE)model of a large diameter ratio roll system with the function of roll profile electromagnetic control is established by FE software and verified by a strip flatness electromagnetic control rolling mill.Based on the model,the strip thickness characteristic,metal transverse flow,strip flatness state,and adjustment range of the loaded roll gap are analyzed for different front and post tensions setting values.The results show that changing the front or post tension setting values can improve the single-pass reduction rate of a large diameter ratio roll system and have little effect on the flatness control ability of the strip flatness electromagnetic control rolling mill.展开更多
基金financially supported by the National Key Research and Development Program of China(Grant No.2023YFB3710204)Guangxi Science and Technology Major Program(Grant No.AA23023028-1)+1 种基金Natural Science Foundation of Heilongjiang Province of China for Distinguished Young Scientists(Grant No.JQ2022E007)Xinjiang Production and Construction Corps Science and Technology Plan(Grant No.2023AA003).
文摘Accurate crown control is paramount for ensuring the quality of hot-rolled strip products.Given the multitude of influencing parameters and the intricate coupling and genetic relationships among them,the conventional crown control method is no longer sufficient to meet the precision requirements of schedule-free rolling.To address this limitation,an optimization framework for hot-rolled strip crown control was developed based on model-driven digital twin(MDDT).This framework enhances the strip crown control precision by facilitating collaborative operations among physical entities,virtual models,and functional application layers.In virtual modeling,a data-driven approach that integrates the extreme gradient boosting and the improved Harris hawk optimization algorithm was firstly proposed to fit the relationship between key process parameters and strip crown,and a global-local collaborative training strategy was proposed to enhance the model adaptability to diverse working conditions.Subsequently,the influence of crucial process factors on the virtual model was examined through model responses.Furthermore,a novel optimization mode for crown control based on MDDT was established by aligning and reconstructing both the physical and virtual models,thereby enhancing the crown control precision.Finally,data trials were conducted to validate the effectiveness of the proposed framework.The results indicated that the proposed method exhibited satisfactory performance and could be effectively utilized to improve the crown control precision.
文摘[Objectives]To address the weeding challenges within the corn and soybean strip intercropping field and identify appropriate herbicide types and application methods suitable for the corn and soybean strip intercropping fields in Siyang County.[Methods]The trial comprised six herbicide treatments and one blank control,with investigations conducted to assess efficacy,safety,and yield.[Results]Each herbicide treatment effectively controlled weeds,demonstrated high safety,and enhanced the yields of both soybeans and corn.The combined application of soil sealing with stem and leaf spray exhibited superior overall weed control compared to soil sealing alone.At 28 d following stem and leaf spray,the plant control effect and fresh weight control effect against weeds in the combined treatment of soil sealing with stem and leaf spray all exceeded 89%.[Conclusions]This study offers technical support for advancing the practice of strip intercropping between corn and soybeans.
基金Supported by Special Project for the Construction of the National Modern Agricultural Industry Technology System(CARS-04-CES16).
文摘The soybean and corn strip compound planting technology is a crucial measure for improving land use efficiency and ensuring food security.This paper deeply analyzed the principles,advantages,and key technical aspects of this technology,including variety selection,planting pattern,sowing management,and field management.It also illustrated its application effectiveness through practical cases and proposed corresponding solutions to existing challenges in its promotion.This study provides theoretical support and practical reference for the widespread adoption and efficient application of this technology.
文摘Stripping injection overcomes the limitations of Liouville's theorem and is widely used for beam injection and accumulation in high-intensity synchrotrons.The interaction between the stripping foil and beam is crucial in the study of stripping injection,particularly in low-energy stripping injection synchrotrons,such as the XiPAF synchrotron.The foil thickness is the main parameter that affects the properties of the beam after injection.The thin stripping foil is reinforced with collodion during its installation.However,the collodion on the foil surface makes it difficult to determine its equivalent thickness,because the mechanical measurements are not sufficiently reliable or convenient for continuously determining foil thickness.We propose an online stripping foil thickness measurement method based on the ionization energy loss effect,which is suitable for any foil thickness and does not require additional equipment.Experimental studies were conducted using the XiPAF synchrotron.The limitation of this method was examined,and the results were verified by comparing the experimentally obtained beam current accumulation curves with the simulation results.This confirms the accuracy and reliability of the proposed method for measuring the stripping foil thickness.
基金supported by the earmarked fund for the China Agriculture Research System(CARS-04-PS21)National Key Research and Development Program of China(2024YFD2300401)a recipient of a joint Ph.D.scholarship supported by the China Scholarship Council(CSC)(202306910067)。
文摘The exogenous plant growth regulator,diethyl aminoethyl hexanoate(DA-6),in combination with suitable varieties and planting densities,is important to increase yield in the maize-soybean strip intercropping system.To identify the role of DA-6 in mitigating high-density stress and increasing yield,we conducted a two-year field experiment examining changes in branching architecture and other yield traits of soybeans in maize-soybean strip intercropping systems.In the planting system,two soybean cultivars(ND:Nandou 25 and QH:Qihuang 34)were grown under three planting densities(D1:102,000 plants ha^(-1),D2:130,000 plants ha^(-1),D3:158,000 plants ha^(-1))with DA-6 treatments(DA0:water control;DA60:60 mg L^(-1);DA100:100 mg L^(-1)).Applying DA-6 at 60 mg L^(-1)at the fourth trifoliolate leaf stage increased soybean yield,with QH yield rising by 22.4% and 29.5% at D3 density,and ND yield by 29.5% and 30.0% at D2 density in 2022 and 2023,respectively,compared with D1 under DA0.DA-6improved photosynthesis in both varieties under D2 density,with DA60 increasing ND canopy photosynthetic rate by 15.1%-16.4% and QG by 9.1%-20.6% over two years.In ND,DA-6 enhanced branching,raising the leaf area index by 37%,branch number from 3.6 to 4.7 per plant,and total pod number by 19.7%.In QH,yield grains were mainly due to a 17% increase in the number of stem pods and a 6.5% improvement in hundred-grain weight.In the maize-soybean strip intercropping system,QH achieved a high yield by forming a high-density(D2 to D3)main stem pod,and ND by combining moderate density(D1 to D2)with DA-6-induced branching.
基金financially supported by China Postdoctoral Science Foundation(No.2022T150708)National Key Research and Development Program of China(No.2023YFF1104600)National Natural Science Foundation of China(Nos.32072305,32102089)。
文摘Aflatoxins B1(AFB1)contamination in agro-food holds great threaten to human and animal health.Conventional test strips for rapid AFB1 visualized monitoring remains challenged by improvement of sensitivity and matrix interference resistance.In this case,we developed a portable electrochemiluminescence(ECL)imaging test strip with dual-signal outputs for AFB1 quantification in corn samples.RuPEI@SiO_(2)@Au nanospheres were synthesized for bonding with anti-AFB1 antibody and then colorimetrical signal-reported on test line through the capillary flow at strips.Meanwhile,ECL imaging signal of the constructed carbon-ink-based working electrode on polyvinyl chloride substrate of strips was exported under an applied potential of 1.25 V.The whole ECL test strips not only endowed convenient colorimetric responses but guaranteed quick-witted ECL image distinguishment even at extremely low AFB1 content.The detection limit of this ECL imaging-integrated mode was 10-fold lower than that of only colorimetric mode.Furthermore,satisfactory selectivity,reliability and practicability of the as-proposed ECL test strips were demonstrated.This work offered a promising platform for on-site,accurate and sensitive detection of pollutants in foods.
基金supported by the National Key Research and Development Program of China(No.2020YFC1908702)the National Natural Science Foundation of China(No.52131002)+1 种基金the Science and Technology Commission of Shanghai Municipality(No.22dz1209200)China Three Gorges Corporation(No.202403018).
文摘High ammonia-nitrogen digestate has become a key bottleneck limiting the anaerobic digestion of organic solid waste.Vacuum ammonia stripping can simultaneously remove and recover ammonia nitrogen,which has attracted a lot of attention in recent years.To investigate the parameter effects on the efficiency and mass transfer,five combination conditions(53℃ 15 kPa,60°C 20 kPa,65°C 25 kPa,72°C 35 kPa,and 81°C 50 kPa)were conducted for ammonia stripping of sludge digestate.The results showed that 80%of ammonia nitrogen was stripped in 45 min for all experimental groups,but the ammonia transfer coefficient varied under different conditions,which increased with the rising of boiling point temperature,and reached the maximum value(39.0 mm/hr)at 81°C 50 kPa.The ammonia nitrogen removal efficiency was more than 80%for 30 min vacuum stripping after adjusting the initial pH to above 9.5,and adjustment of the initial alkalinity also affects the pH value of liquid digestate.It was found that pH and alkalinity are the key factors influencing the ammonia nitrogen dissociation and removal efficiency,while temperature and vacuum mainly affect the ammonia nitrogen mass transfer and removal velocity.In terms of the mechanism of vacuum ammonia stripping,it underwent alkalinity destruction,pH enhancement,ammonia nitrogen dissociation,and free ammonia removal.In this study,two-stage experiments of alkalinity destruction and ammonia removal were also carried out,which showed that the two-stage configuration was beneficial for ammonia removal.It provides a theoretical basis and practical technology for the vacuum ammonia stripping from liquid digestate of organic solid waste.
基金supported by the National Natural Science Foundation of China(NNSFC)(Nos.12375123,12205160,and 12335008)the Natural Science Foundation of Henan Province,China(No.242300421048)the postgraduate research and practice innovation project of Henan Normal University(No.YB202402).
文摘We developed a dedicated data analysis framework for silicon strip detector telescopes(SSDTs)of the Compact Spectrometer for Heavy-IoN Experiments(CSHINE)that addresses the challenges of processing complex signals.The framework integrates advanced algorithms for precise calibration,accurate particle identification,and efficient event reconstruction,aiming to account for critical experimental factors such as charge-sharing effects,multi-hit event resolution,and detector response nonuniformity.Its robust performance was demonstrated through the successful analysis of light-charged particles in the 25 MeV/u^(86)Kr+^(124)Sn experiment conducted at the first Radioactive Ion Beam Line in Lanzhou,allowing for precise extraction of physical observables,including energy,momentum,and particle type.Furthermore,utilizing the reconstructed physical information,such as the number of effective physical events and energy spectra to optimize the track recognition algorithm,the final track recognition efficiencies of approximately 90%were achieved.This framework establishes a valuable reference methodology for SSDT-based detector systems in heavy-ion reaction experiments,thereby significantly enhancing the accuracy and efficiency of data analysis in nuclear physics research.
基金supported by the National Key Research and Development Program of China(Grant No.2017YFB0305701)Henan Provincial Science and Technology Research Project(Grant No.182102210138)Science and Technology Openness and Cooperation Projects of Henan Province(Grant No.162106000002).
文摘The interfacial structure and its effect on the resistivity of cross-layered silver-copper composite strip fabricated by hot-roll bonding and diffusion welding processes with the same specification were studied.Through optical and scanning electron microscope analysis of metallographic structure of the diffusion region of interface,it is found that the thickness of the interfacial diffusion layer is related to the composite conditions.Under the condition of sufficient diffusion,the interface of silver-copper composite strip produced by diffusion welding process has a wider interfacial transition region and fine grain area.Due to the higher diffusion rate of copper atoms than that of silver atoms,copper atoms tend to aggregate at the silver boundaries to form a copper-rich second solid solution,which has a fixing and expanding effect during annealing.The fine grain area at the interface of the composite strip produced by diffusion welding process still exists after annealing treatment and reaches a width of 55-97μm.While the fine grain region at the interface of hot-rolled composite strips is mainly formed by crushing the surface under rolling pressure with less diffusion effect,it almost disappears after annealing.The resistivity of silver-copper composite strip increases with the extension of the interfacial diffusion region.The resistivity of hot-roll bonding composite strip is increased by about 4%higher than that of the theoretical calculation,while the resistivity of diffusion welding composite strip is increased by 6%.
基金supported by the National Natural Science Foundation of China(No.62273234)Key Research and Development Program of Shaanxi(Program No.2022GY-306)Technology Innovation Leading Program of Shaanxi(Program No.2022QFY01-16).
文摘Accurate prediction of strip width is a key factor related to the quality of hot rolling manufacture.Firstly,based on strip width formation mechanism model within strip rolling process,an improved width mechanism calculation model is delineated for the optimization of process parameters via the particle swarm optimization algorithm.Subsequently,a hybrid strip width prediction model is proposed by effectively combining the respective advantages of the improved mechanism model and the data-driven model.In acknowledgment of prerequisite for positive error in strip width prediction,an adaptive width error compensation algorithm is proposed.Finally,comparative simulation experiments are designed on the actual rolling dataset after completing data cleaning and feature engineering.The experimental results show that the hybrid prediction model proposed has superior precision and robustness compared with the improved mechanism model and the other eight common data-driven models and satisfies the needs of practical applications.Moreover,the hybrid model can realize the complementary advantages of the mechanism model and the data-driven model,effectively alleviating the problems of difficult to improve the accuracy of the mechanism model and poor interpretability of the data-driven model,which bears significant practical implications for the research of strip width control.
基金supported by the Centre for Development of Advanced Computing (CDAC), Pune
文摘In hilly regions,the existence of surface cracks in rock mass induces a potential threat to structural stability.Thus,the present research aims to explore the impact of surface cracks on the loadbearing capacity of strip footing placed on the rock mass.By taking into account the various boundary constraints across the surface of crack edges,the study investigates the presence of two categories of surface cracks,namely(1)separated crack,and(2)fine crack.The lower bound limit analysis is employed in conjunction with the finite element method(LBFELA)to conduct the numerical analysis.In order to evaluate rock mass yielding,the power conic programming(PCP)method is utilized to implement the generalized Hoek-Brown(GHB)failure criterion.The stability of the strip footing is analyzed by determining the bearing capacity factor(Nσγ),which is presented in the form of design charts by varying the strength parameters of rock,including the Geological Strength Index(GSI),Hoek-Brown material parameter(mi),Disturbance factor(D),and Normalised Uniaxial Compressive Strength(σci/γB),whereγis the unit weight of rock mass,and B is the width of strip footing.The study also investigates the impact of cracks on strip footings,considering different positions of the crack(LC)and depths of the crack(DC).The results demonstrate that the influence of the fine crack is only noticeable until the LC/B ratio reaches 6.However,for the separated crack,its impact remains significant even when the LC/B ratio exceeds 16.The appearance of fine crack at the edge of the footing results in a decrease in the magnitude Nσγof up to 45%,indicating a substantial reduction in the stability of the footing.The failure patterns are presented and discussed in detail for various cases in this study to examine the effect of surface cracks on the strip footing and to address the extent of the plastic collapse.
基金supported by the Third Xinjiang Scientific Expedition and Research Program-Investigation and Risk Assessment of Drought and Aeolian Disasters in Tarim River Basin(No.2021xjkk0300)the National Natural Science Foundation of China(No.62466056)the subject of'the technical scheme and application demonstration of sand disaster prevention and control of Xinjiang expressway to engineering practice,Xinjiang Transportation Investment(Group)Co.,Ltd.(No.XJJTZKX-FWCG-202401-0043).
文摘To mitigate the sand burial of highways in sandy regions,a separated subgrade design was widely adopted in the embankments of high-grade highways,but the problem of sand deposition on subgrade slopes and pavements still happens frequently.Based on the theory of wind-sand two-phase flow,this paper constructed a three-dimensional model of the separated subgrade,the wind-sand flow transport law around the subgrade with varying median strip widths and concave depths was simulated by Fluent software.After comparison and analysis of seven subgrade models,the flow field distribution,wind speed horizontal variation,and erosion-deposition characteristics were investigated.The findings are as follows:(1)The width of the median strip in the separated subgrade had significant influences on the wind-sand flow.The smooth passage of wind-sand flow over the road surface was facilitated with the increase of the median strip width.However,sand deposition in the median strip happened.It can lead to secondary sand damage of downwind subgrade and increase the work load of road sand removal for subsequent maintenance.(2)The obstruction to airflow and sand accumulation was aggravated with greater concave depth of the median strip.Therefore,it is advisable to minimize the concave depth of the median strip in case of more sand damage.(3)A median strip width exceeding 12 m(possibly without guardrails)for an integral embankment without enough road land is recommended.Conversely,median strip width of over 40 m for separate subgrade with unrestricted land is suggested.(4)In the case of sand deposition in the existing separated subgrade,the median strip can be filled by sand deposition or other materials,then was covered with gravel to form a flat ground like Gobi smooth surface,which can let the wind-blown sand flow pass through the subgrade section without sand deposition.
基金supported by the National Natural Science Foundation of China(Nos.51974196,52275361,and 52305406)the Key Projects of the National Natural Science Foundation of China(No.U22A20188)the Special Projects of the Central Government in Guidance of Local Science and Technology Development(YDZX20191400002149).
文摘The textured roll and polished roll were applied instead of the ground roll in a 20-high mill to conduct two-pass rolling of 316L stainless steel strip with thickness of 0.027 mm.After the two-pass rolling with the textured roll and polished roll(TPR),the surface roughness of the strip is dramatically reduced,and the surface topographical anisotropy index is diminished to 30.9%of the initial strip.Comparing with the strip rolled using the ground roll in both passes(GGR),the elongation of TPR rolled strip is obviously improved,and the mechanical property anisotropy is greatly weakened.The anisotropy index of tensile strength and elongation are 42.58%and 52.59%of that of GGR rolled strip,which is mainly attributed to the significant decrease of the texture intensity of the strip by TPR process.The results indicate that TPR process can obtain the stainless steel ultra-thin strip with smooth and uniform surface topography and good mechanical properties.
基金support from the National Key R&D Program of China(No.2021YFB3702403).
文摘The microstructure and mechanical properties of the compact strip production(CSP)processed quenching and partitioning(Q&P)steels were investigated through experimental methods to address the challenge of designing high-performance Q&P steels.Compared with the conventional process(CP)produced samples,with slightly reduced strength,the total elongation of the CSP produced samples was increased by nearly 7%.Microstructural analysis revealed that variations in austenite stability were not the primary cause for the differences in mechanical properties between the CSP and the CP.The CSP processed Q&P steel exhibited milder center segregation behavior in contrast to the CP processed Q&P steel.Consequently,in the CSP processed Q&P steel,a higher proportion of austenite and a lower proportion of martensite were observed at the center position,delaying the crack initiation in the central region and contributing to the enhanced ductility.The investigation into the CSP process reveals its effect on alleviation of segregation and enhancement of mechanical properties of the Q&P steel.
基金financially supported by the National Key Research and Development Program of China(Grant No.2023YFB3812602).
文摘High-order asymmetric flatness defects resulting from the abnormal state of roll system are the main issue of precision rolling mill in the manufacturing process of high-strength thin strip.Due to the difficulty of monitoring and adjusting the abnormal state,the spatial state of roll system cannot be controlled by traditional methods.It is difficult to fundamentally improve these high-order asymmetric flatness defects.Therefore,a digital twin model of flatness control process for S6-high rolling mill was established,which could be used to analyze the influence of the abnormal state on the flatness control characteristic and propose improvement strategies.The internal relationship between the force state of side support roll system and the abnormal state of roll system was proposed.The XGBoost algorithm model was established to analyze the contribution degree of the side support roll system force to the flatness characteristic quantity.The abnormal state of roll system in the S6-high rolling mill can be diagnosed by analyzing the flatness characteristic difference between flatness value of the rolled strip and calculated characteristic value of finite element simulation.The flatness optimization model of the gray wolf optimization–long short-term memory non-dominated sorting whale optimization algorithm(GWO-LSTM-NSWOA)was established,and the decision-making selection was made from the Pareto frontier based on the flatness requirements of cold rolling to regulate the abnormal state of the roll system.The results indicate that the contribution degree of the force of the side support roll system to the flatness characteristics is more than 25%,which is the main influence of high-order asymmetric flatness defect.The performance of the GWO-LSTM flatness feature prediction model has clear advantages over back propagation and LSTM.The practical applications show that optimizing the force of side support roll system can reduce the high point of high-strength strip flatness from 13.2 to 6 IU and decrease the percentage of low-strength strip flatness defects from 1.6%to 1.2%.This optimization greatly reduced the proportion of flatness defects,improved the accuracy level of flatness control of precision rolling mill,and provided a guarantee for the stable production of thin strip.
基金supported by the National Natural Science Foundation of China(No.52474401)the Project funded by the China Postdoctoral Science Foundation(No.2022M712919)+1 种基金Open Project of State Key Laboratory of Advanced Brazing Filler Metals and Technology(SKLABFMT-2021-03)Guangdong Basic and Applied Basic Research Foundation(2023A1515140124).
文摘The unclear interfacial characteristics of Ag/Cu interface during diffusion welding limit the improvement of mechanical properties of Ag/Cu bimetallic strips.The growth orientation and evolution of Ag and Cu crystals between Ag and Cu strips were investigated by electron backscatter diffraction(EBSD)analysis,and the interfacial properties of various Ag/Cu interfacial configurations were calculated using first-principles calculations to elucidate the diversified interfacial characteristics.Three interface bonding states,including Ag(100)/Cu(100),Ag(110)/Cu(110)and Ag(111)/Cu(111),were preferentially formed in Ag/Cu bimetallic strips during roll bonding.The intensity of Ag(100)/Cu(100)interface increases with the increasing deformation amounts during cold rolling,accompanied by the decreased intensity of Ag(110)/Cu(110)and Ag(111)/Cu(111)interfaces.The largest adsorption work and lowest interface energy of Ag(100)/Cu(100)interface at the“center”position reveal the transition from Ag(110)/Cu(110)and Ag(111)/Cu(111)interfaces to Ag(100)/Cu(100)interface.
基金supported by National Natural Science Foundation of China(Nos.52130408 and 52304361)Natural Science Foundation of Hunan Province(No.2023JJ40737)the Open Project Program of Anhui Province Key Laboratory of Metallurgical Engineering&Resources Recycling(No.SKF23-02).
文摘The strip casts of cobalt-free maraging steel were fabricated using a twin-roll strip casting simulator,and its characteristics of sub-rapid solidification were studied.Subsequently,the confocal laser scanning microscope(CLSM)was employed to in situ observe the phase transformation during the heat treatment of maraging steel strip cast such as austenitization,solution treatment,and aging processes.It was found that due to the high cooling rate during the twin-roll strip casting process,the sub-rapid solidified strip cast possessed a full lath martensitic structure,weak macrosegregation,and evident microsegregation with a dendritic morphology.During austenitization of strip cast,the austenite grain size increased with the austenitization temperature.After holding at 1250℃for 250 s,the austenite grain size at the high temperature owned a high similarity to the prior austenite grain size of the strip cast,which effectively duplicates the microstructure of the strip cast after sub-rapid solidification.During the solution treatment process,the martensitic structure of the strip cast also underwent austenitic transformation,subsequently transformed into martensite again after quenching.Due to the low reheating temperature during solution treatment,the austenite grain size was refined,resulting in the fine martensitic microstructure after quenching.During the aging process of strip cast,some of martensite transformed into fine austenite,which was located in the interdendritic region and remained stable after air cooling,resulting in the dual-phase microstructure of martensite and austenite.The solute segregation of Ni and Mo elements during the sub-rapid solidification of strip cast caused the enrichment of Ni and Mo elements in the interdendritic region,which can expand the austenite phase region and thus enhance the stability of austenite,leading to the formation of austenite in the interdendritic region after aging treatment.
文摘Nowadays,wireless communication devices turn out to be transportable owing to the execution of the current technologies.The antenna is the most important component deployed for communication purposes.The antenna plays an imperative role in receiving and transmitting the signals for any sensor network.Among varied antennas,micro strip fractal antenna(MFA)significantly contributes to increasing antenna gain.This study employs a hybrid optimization method known as the elephant clan updated grey wolf algorithm to introduce an optimized MFA design.This method optimizes antenna characteristics,including directivity and gain.Here,the factors,including length,width,ground plane length,height,and feed offset-X and feed offset-Y,are taken into account to achieve the best performance of gain and directivity.Ultimately,the superiority of the suggested technique over state-of-the-art strategies is calculated for various metrics such as cost and gain.The adopted model converges to a minimal value of 0.2872.Further,the spider monkey optimization(SMO)model accomplishes the worst performance over all other existing models like elephant herding optimization(EHO),grey wolf optimization(GWO),lion algorithm(LA),support vector regressor(SVR),bacterial foraging-particle swarm optimization(BF-PSO)and shark smell optimization(SSO).Effective MFA design is obtained using the suggested strategy regarding various parameters.
基金supported by the National Key Research and Development Program of China(2021YFB2400202)the National Natural Science Foundation of China(52104313)+1 种基金the Key Research and Development Plan of Shaanxi(2024GH-YBXM-11)the Foshan Science and Technology Innovation Team Project(1920001004098).
文摘ZnO with good lithiophilicity has widely been employed to modify the lithiophobic substrates and facilitate uniform lithium(Li)deposition.The overpotential of ZnO-derived Li anode during cycling depends on the lithiophilicity of both LiZn and Li_(2)O products upon lithiation of ZnO.However,the striking differences in the lithiophilicity between Li_(2)O and LiZn would result in a high overpotential during cycling.In this research,the Al_(2)O_(3)/nZnO(n≥1)hybrid layers were precisely fabricated by atomic layer deposition(ALD)to regulate the lithiophilicity of ZnO phase and Li_(2)O/LiZn configuration—determining the actual Li loading amount and Li plating/stripping processes.Theoretically,the Li adsorption energy(E_(a))values of LiZn and Li_(2)O in the LiZn/Li_(2)O configuration are separately predicted as-2.789 and-3.447 eV.In comparison,the E_(a) values of LiZn,LiAlO_(2),and Li_(2)O in the LiZn/LiAlO_(2)/Li_(2)O configuration upon lithiation of Al_(2)O_(3)/8ZnO layer are calculated as-2.899,-3.089,and-3.208 eV,respectively.Importantly,a novel introduction of LiAlO_(2)into the LiZn/Li_(2)O configuration could enable the hierarchical Li plating/stripping and reduce the overpotentials during cycling.Consequently,the Al_(2)O_(3)/8ZnO-derived hybrid Li-metal anode could exhibit electrochemical performances superior to these of ZnO-derived Li anode in both symmetrical and full cells paired with a LiNi_(0.6)Co_(0.2)Mn_(0.2)O_(2)(NCM622)cathode.
基金supported by the Natural Science Foundation of Hebei Province of China(Grant No.E2021203129).
文摘To achieve stable rolling,the influence of a tension mechanism of a large diameter ratio roll system on the rolling process of a strip flatness electromagnetic control rolling mill is studied.Through the analysis of the rolling deformation zone,the deformation zone composition form of a large diameter ratio roll system and a calculation formula of neutral angle under tension are proposed.To analyze the effect of front and post tensions on the rolling characteristic and the strip flatness control characteristic,a three-dimensional rolling finite element(FE)model of a large diameter ratio roll system with the function of roll profile electromagnetic control is established by FE software and verified by a strip flatness electromagnetic control rolling mill.Based on the model,the strip thickness characteristic,metal transverse flow,strip flatness state,and adjustment range of the loaded roll gap are analyzed for different front and post tensions setting values.The results show that changing the front or post tension setting values can improve the single-pass reduction rate of a large diameter ratio roll system and have little effect on the flatness control ability of the strip flatness electromagnetic control rolling mill.