期刊文献+
共找到14,573篇文章
< 1 2 250 >
每页显示 20 50 100
Mycorrhizal fungi enhance plant resistance to environmental stresses:from mechanisms to applications
1
作者 Jing Wang Mengwei Wei Ertao Wang 《Journal of Genetics and Genomics》 2025年第3期273-275,共3页
Plantshave evolvedvariousmechanismsto interact withmicroorganisms,which help them acquire nutrients from the soil and enhance their tolerance to environmental stresses.One of the most widespread mutualistic interactio... Plantshave evolvedvariousmechanismsto interact withmicroorganisms,which help them acquire nutrients from the soil and enhance their tolerance to environmental stresses.One of the most widespread mutualistic interactions is arbuscular mycorrhizal(AM)symbiosis,which is formed by 80%-90%of terrestrial plants in association with AM fungi.In AM symbiosis,plants acquire mineral nutrients from the fungi in exchange for fatty acids and sugars that are produced during photosynthesis(Jiang et al.,2017). 展开更多
关键词 acquire nutrients mineral nutrients environmental stresses fatty acids mutualistic interactions arbuscular mycorrhizal am symbiosiswhich mycorrhizal fungi enhance their tolerance environmental stressesone
原文传递
Calibration of relative density for dense sand using CPTs under high stresses
2
作者 HAN Feng WANG Dong SHI Zhongguo 《土木与环境工程学报(中英文)》 北大核心 2025年第6期106-113,共8页
Currently,there is a lack of in-situ or model test results for cone penetration tests(CPTs)conducted in deep,dense sand layers under high overburden stresses,restricting the development of empirical relationships betw... Currently,there is a lack of in-situ or model test results for cone penetration tests(CPTs)conducted in deep,dense sand layers under high overburden stresses,restricting the development of empirical relationships between CPT results and the characteristics of such deep,dense sand layers.This study addresses this gap by proposing an empirical relationship to predict the relative density of dense silica sand based on stress level and cone tip resistance.The relationship was developed through CPTs performed in a calibration chamber using dense sand specimens(with relative densities of 74%-91%)subjected to high stresses(under overburden stresses of 0.5-2.0 MPa)and numerical simulations employing the large deformation finite element method.The Arbitrary Lagrangian Eulerian method was used to regularly regenerate the mesh to prevent soil element distortion around the cone tip.Additionally,the modified Mohr-Coulomb model was integrated to capture the stress-strain behavior of dense silica sand under high stresses.A reasonable agreement was achieved between the numerical and experimental penetration profiles,which verifies the reliability of the numerical model.A sufficient number of parametric analyses were carried out,and then an empirical equation was proposed to establish the relationship between the relative density of dense sand,stress level and cone resistance.The empirical equation provides predictions with acceptable accuracy,as the discrepancies between the predicted and measured relative density values fall within±30%. 展开更多
关键词 deep silica sand dense sand cone penetration tests high stresses calibration chamber large deformation finite element
在线阅读 下载PDF
Enhancing Plant Resilience to Biotic and Abiotic Stresses through Exogenously Applied Nanoparticles:A Comprehensive Review of Effects and Mechanism 被引量:1
3
作者 Jalil Ahmad Muhammad Munir +6 位作者 Nashi Alqahtani Tahira Alyas Muhammad Ahmad Sadia Bashir Fasiha Qurashi Abdul Ghafoor Hassan Ali–Dinar 《Phyton-International Journal of Experimental Botany》 2025年第2期281-302,共22页
A steady rise in the overall population is creating an overburden on crops due to their global demand.On the other hand,given the current climate change and population growth,agricultural practices established during ... A steady rise in the overall population is creating an overburden on crops due to their global demand.On the other hand,given the current climate change and population growth,agricultural practices established during the Green Revolution are no longer viable.Consequently,innovative practices are the prerequisite of the time struggle with the rising global food demand.The potential of nanotechnology to reduce the phytotoxic effects of these ecological restrictions has shown significant promise.Nanoparticles(NPs)typically enhance plant resilience to stressors by fortifying the physical barrier,optimizing photosynthesis,stimulating enzymatic activity for defense,elevating the concentration of stress-resistant compounds,and activating the expression of genes associated with defense mechanisms.In this review,we thoroughly cover the uptake and translocations of NPs crops and their potential valuable functions in enhancing plant growth and development at different growth stages.Additionally,we addressed how NPs improve plant resistance to biotic and abiotic stress.Generally,this review presents a thorough understanding of the significance of NPs in plants and their prospective value for plant antioxidant and crop development. 展开更多
关键词 CROP abiotic stress ANTIOXIDANT biotic stress NANOPARTICLES
在线阅读 下载PDF
Numerical simulation of residual stresses in hybrid welding for dissimilar girth welds of cast steel joints
4
作者 JIAO Haihan JIN Hui +1 位作者 FAN Yongchun XU Lu 《Journal of Southeast University(English Edition)》 2025年第3期305-313,共9页
The study aimed to address the issue of elevated residual stress levels in dissimilar girth welds of cast steel joints.To achieve this,the hybrid welding technology,which yields high welding speeds while simultaneousl... The study aimed to address the issue of elevated residual stress levels in dissimilar girth welds of cast steel joints.To achieve this,the hybrid welding technology,which yields high welding speeds while simultaneously reducing residual stresses,has been introduced.This study utilizes a numerical simulation method to investigate the temperature and residual stress field in the hybrid welding of G20Mn5 casting-Q355 low-alloy steel welded pipe.A com-parison of the findings of this study with those of other welding processes revealed the technological advantages of hybrid welding.The research outcomes show that due to geometric discontinuities and material differences,the temperature field of the joint exhibits uneven distribution characteristics,and the peak temperatures on the Q355 steel side exceeds those on the G20Mn5 steel side.An evident stress gra-dient is present in the residual stress field of the joint post-welding,with peak stress located at the weld root on the Q355 steel.Compared with arc welding,the hybrid welding leads to decreased residual stresses and deformation,with high stress outside the heat-affected zone diminishing rapidly.Furthermore,it significantly improves the welding efficiency.This study elucidates the distribution and underlying causes of thermal and residual stress fields in dissimilar girth welds.This serves as a foundation for the application of hybrid welding technology in welded cast steel joints. 展开更多
关键词 hybrid welding cast steel dissimilar girth weld residual stress numerical simulation
在线阅读 下载PDF
Macroscopic and Microscopic Residual Stresses in Nickel-Aluminum Bronze Matrix Composite Surface Deposits Manufactured via Laser Melt Injection
5
作者 X.X.Zhang E.Walz +6 位作者 A.Langebeck J.Rebelo Kornmeier A.Kriele V.Luzin M.Adveev A.Bohlen M.Hofmann 《Acta Metallurgica Sinica(English Letters)》 2025年第4期570-586,共17页
Wear is a prevalent issue across various industries. Spherical fused tungsten carbide (sFTC) reinforced nickel-aluminum bronze (NAB) matrix composite surface deposits have shown remarkable potential in mitigating wear... Wear is a prevalent issue across various industries. Spherical fused tungsten carbide (sFTC) reinforced nickel-aluminum bronze (NAB) matrix composite surface deposits have shown remarkable potential in mitigating wear by approximately 80%. However, the performance of these sFTC/NAB composite surface deposits is determined by their residual stress state, and the precise macroscopic and microscopic residual stresses within these composites have yet to be clearly established. To address this gap, we employed neutron diffraction to measure the residual stresses in the sFTC/NAB composite surface deposits and re-melted NAB samples produced via laser melt injection. Significant residual stresses were determined. The maximum tensile macro residual stress appears approximately 1-1.5 mm below the composite layer. Residual stresses accumulate with an increasing number of laser process tracks. The maximum tensile macro residual stress in the three-track samples reaches about 350 MPa. Preheating the base plate significantly reduces the levels of macroscopic residual stress. The WC phase displayed significant compressive thermal misfit residual stress magnitude, while the Cu matrix exhibited tensile thermal misfit residual stress. Preheating the base plate does not reduce microscopic thermal misfit residual stress levels. In addition, a finite element model was built to investigate temperature and residual stresses in the re-melted NAB samples. The predicted temperature history and residual stress agree with the experimental results. 展开更多
关键词 Residual stress Neutron diffraction Laser melt injection Nickel-aluminum bronze Spherical fused tungsten carbide
原文传递
The Role of Glutathione S-Transferase in the Regulation of Plant Growth, and Responses to Environmental Stresses
6
作者 Chen Lin Zidan Zhang +4 位作者 Zhao Zhang Yuxiang Long Xuwen Shen Jinghao Zhang Youping Wang 《Phyton-International Journal of Experimental Botany》 2025年第3期583-601,共19页
Glutathione S-transferases (GSTs) represent a large and diverse enzyme family ubiquitously distributed across the plant kingdom. These proteins catalyze the conjugation of glutathione (GSH) with electrophilic substrat... Glutathione S-transferases (GSTs) represent a large and diverse enzyme family ubiquitously distributed across the plant kingdom. These proteins catalyze the conjugation of glutathione (GSH) with electrophilic substrates in response to various stress conditions. Beyond their role in stress adaptation, certain GSTs are integral regulators of plant growth and development, contributing to a range of physiological processes. Most GST proteins exhibit dual enzymatic activities, functioning as both transferases and peroxidases, which enables their involvement in diverse cellular processes, including detoxification and stress responses. Recent advancements, particularly in X-ray crystallography, have enabled detailed structural analysis of GST proteins, significantly enhancing our understanding of their biological functions. This review offers a comprehensive overview of the classification and structural characteristics of GSTs in plants. It also highlights recent findings on their roles in plant growth and development, cell signaling, catalytic transport, and stress tolerance. Furthermore, key scientific challenges related to GSTs are discussed, focusing on their potential applications in agriculture. These insights aim to facilitate the screening of functional GST genes and support molecular breeding efforts across diverse crop species. 展开更多
关键词 Glutathione S-transferase biotic and abiotic stress plant growth and development signal transduction biological functions
在线阅读 下载PDF
Shearing Characteristics of Jurassic Silty Mudstone Slip Zone under Different Water Contents and Normal Stresses Based on Ring Shear Tests
7
作者 Nang Mon Mon Thaw Changdong Li +4 位作者 Zongxing Zou Wenqiang Chen Jingjing Long Aung Min Oo Dafalla Wadi 《Journal of Earth Science》 2025年第2期654-667,共14页
Landslides frequently occurred in Jurassic red strata in the Three Gorges Reservoir(TGR)region in China.The Jurassic strata consist of low mechanical strength and poor permeability of weak silty mudstone layer,which m... Landslides frequently occurred in Jurassic red strata in the Three Gorges Reservoir(TGR)region in China.The Jurassic strata consist of low mechanical strength and poor permeability of weak silty mudstone layer,which may cause slope instability during rainfall.In order to understand the strength behavior of Jurassic silty mudstone shear zone,the so-called Shizibao landslide located in Guojiaba Town,Zigui County,Three Gorges Reservoir(TGR)in China is selected as a case study.The shear strength of the silty mudstone shear zone is strongly influenced by both the water content and the normal stress.Therefore,a series of drained ring shear tests were carried out by varying the water contents(7%,12%,17%,and 20%,respectively)and normal stresses(200,300,400,and 500 kPa,respectively).The result revealed that the residual friction coefficient and residual friction angle were power function relationships with water content and normal stress.The peak cohesion of the silty mudstone slip zone increased with water content to a certain limit,above which the cohesion decreased.In contrast,the residual cohesion showed the opposite trend,indicating the cohesion recovery above a certain limit of water content.However,both the peak and residual friction angle of the silty mudstone slip zone were observed to decrease steadily with increased water content.Furthermore,the macroscopic morphological features of the shear surface showed that the sliding failure was developed under high normal stress at low water content,while discontinuous sliding surface and soil extrusion were occurred when the water content increased to a saturated degree.The localized liquefaction developed by excess pore water pressure reduced the frictional force within the shear zone.Finally,the combined effects of the slope excavation and precipitation ultimately lead to the failure of the silty mudstone slope;however,continuous rainfall is the main factor triggering sliding. 展开更多
关键词 silty mudstone slip zone water content normal stress drained ring shear test residual shear strength engineering geolgoy
原文传递
Rolling Deformations and Residual Stresses of Large Circular Saw Body 被引量:1
8
作者 Boleslaw Porankiewicz Jari Parantainen Karolina Ostrowska 《Engineering(科研)》 2010年第9期727-732,共6页
Rolling path squeezes and rolling residual stresses of large diameter circular saw body for wood, generated by rolling pressure from 10 up to 120 bar were examined. X-ray diffraction, Barkhausen noise (BN) and Full Wi... Rolling path squeezes and rolling residual stresses of large diameter circular saw body for wood, generated by rolling pressure from 10 up to 120 bar were examined. X-ray diffraction, Barkhausen noise (BN) and Full Width of the peak at a Half Maximum (FWHM) (o) methods for evaluation of residual stresses were used. Dependencies of a tangential rolling residual stresses inside rolling paths upon rolling pressure p (bar) and rolling area A (mm2) were evaluated. The rolling pressure, as large as 60 bar, resulting in the rolling squeeze as high as 0.04 mm2, and, tangential residual compression stresses inside a rolling path, as large as ?TI = ?822 MPa, was considered to be the largest for the practical application. 展开更多
关键词 Circular Saw Rolling Squeeze Area Rolling Squeeze Width Rolling Squeeze Depth Rolling Pressure Tangential Rolling Residual stresses Radial Rolling Residual stresses X-Ray Diffraction Barkhausen Noise FWHM
在线阅读 下载PDF
ELASTIC CALCULATION OF STRESSES IN RINGS USING AIRY STRESS FUNCTION
9
作者 Yicai Sun 1 (Hebei University of Technology, Tianjin 300130) 《Acta Mechanica Solida Sinica》 SCIE EI 2011年第S1期95-106,共12页
Stress calculation formulae for a ring have been obtained by using Airy stress function of the plane strain field with the decomposition of the solutions for normal stresses of Airy biharmonic equation into two parts ... Stress calculation formulae for a ring have been obtained by using Airy stress function of the plane strain field with the decomposition of the solutions for normal stresses of Airy biharmonic equation into two parts when it is loaded under two opposite inside forces along a diameter. One part should fulfill a constraint condition about normal stress distribution along the circumference at an energy valley to do the minimum work. Other part is a stress residue constant. In order to verify these formulae and the computed results, the computed contour lines of equi-maximal shear stresses were plotted and quite compared with that of photo-elasticity test results. This constraint condition about normal stress distribution along circumference is confirmed by using Greens’ theorem. An additional compression exists along the circumference of the loaded ring, explaining the divorcement and displacement of singularity points at inner and outer boundaries. 展开更多
关键词 elastic circular ring calculation of stresses Airy stress function solving the biharmonic equation plane strain field contour lines of equi-maximal shear stresses a constraint condition about normal stress distribution along circumference
原文传递
Effects of Different Water Stresses on Eco-physiological Characteristics of Hippophae rhamnoides Seedlings 被引量:37
10
作者 郭卫华 李波 +2 位作者 黄永梅 赵海霞 张新时 《Acta Botanica Sinica》 CSCD 2003年第10期1238-1244,共7页
In order to examine the effects of the decrease of future precipitation on the eco-physiological characteristics of sea buckthorn (Hippophae rhamnoides Linn.) in Huangfuchuan Watershed in Nei Mongol, a water gradient ... In order to examine the effects of the decrease of future precipitation on the eco-physiological characteristics of sea buckthorn (Hippophae rhamnoides Linn.) in Huangfuchuan Watershed in Nei Mongol, a water gradient experiment was conducted based on the four specially designed water supply levels, including normal precipitation, slight drought, drought and extreme drought. Results of ANOVE showed that different water gradients had a significant effect on (1) microhabitat factors, such as soil water content and soil temperature; (2) gas exchange, such as net photosynthetic rate, stomatal conductance and transpiration rate; (3) resource use efficiency; and (4) leaf water potential. Water use efficiency of H rhamnoides could increase under moderate water stress, i.e. drought condition, while its net photosynthetic rate and transpiration rate decreased. All kinds of eco-physiological characteristics proved H. rhamnoides seedlings under all water supplies were affected by water stress more or less and that mechanism of intrinsic physiological regulation in seedlings under the extreme drought conditions had the appearance of turbulence to a certain extent. Therefore, H rhamnoides seedlings in Huangfuchuan Watershed could not acclimate to extreme drought conditions. 展开更多
关键词 water stress Hippophae rhamnoides Huangfuchuan Watershed gas exchange water potential resource use efficiency DROUGHT
在线阅读 下载PDF
Evaluation on residual stresses of silicon-doped CVD diamond films using X-ray diffraction and Raman spectroscopy 被引量:13
11
作者 陈苏琳 沈彬 +2 位作者 张建国 王亮 孙方宏 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第12期3021-3026,共6页
The effect of silicon doping on the residual stress of CVD diamond films is examined using both X-ray diffraction (XRD) analysis and Raman spectroscopy measurements. The examined Si-doped diamond films are deposited o... The effect of silicon doping on the residual stress of CVD diamond films is examined using both X-ray diffraction (XRD) analysis and Raman spectroscopy measurements. The examined Si-doped diamond films are deposited on WC-Co substrates in a home-made bias-enhanced HFCVD apparatus. Ethyl silicate (Si(OC2H5)4) is dissolved in acetone to obtain various Si/C mole ratio ranging from 0.1% to 1.4% in the reaction gas. Characterizations with SEM and XRD indicate increasing silicon concentration may result in grain size decreasing and diamond [110] texture becoming dominant. The residual stress values of as-deposited Si-doped diamond films are evaluated by both sin2ψ method, which measures the (220) diamond Bragg diffraction peaks using XRD, with ψ-values ranging from 0° to 45°, and Raman spectroscopy, which detects the diamond Raman peak shift from the natural diamond line at 1332 cm-1. The residual stress evolution on the silicon doping level estimated from the above two methods presents rather good agreements, exhibiting that all deposited Si-doped diamond films present compressive stress and the sample with Si/C mole ratio of 0.1% possesses the largest residual stress of ~1.75 GPa (Raman) or ~2.3 GPa (XRD). As the silicon doping level is up further, the residual stress reduces to a relative stable value around 1.3 GPa. 展开更多
关键词 silicon-doped diamond films silicon doping residual stress X-ray diffraction Raman spectroscopy
在线阅读 下载PDF
Thermal Stresses and Cracks During the Growth of Large-sized Sapphire with SAPMAC Method 被引量:2
12
作者 许承海 孟松鹤 +2 位作者 张明福 左洪波 汪桂根 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2007年第5期475-480,共6页
The finite-element method has been used to study the thermal stress distribution in large-sized sapphire crystals grown with the sapphire growth technique with micro-pulling and shoulder-expanding at cooled center (S... The finite-element method has been used to study the thermal stress distribution in large-sized sapphire crystals grown with the sapphire growth technique with micro-pulling and shoulder-expanding at cooled center (SAPMAC) method. A critical defect model has been established to explain the growth and propagation of cracks during the sapphire growing process. It is demonstrated that the stress field depends on the growth rate, the ambient temperature and the crystallizing direction. High stresses always exist near the growth interfaces, at the shoulder-expanding locations, the tailing locations and the sites where the diameters undergo sharp changes. The maximum stresses always occur at the interface of seeds and crystals. Cracks often form in the critical defect region and spread in the m-planes and a-planes under applied tensile stresses during crystal growth. The experimental results have verified that with the improved system of crystal growth and well-controlled techniques, the large-sized sapphire crystals of high quality can be grown due to absence of cracks. 展开更多
关键词 thermal stress CRACK SAPPHIRE SAPMAC method
在线阅读 下载PDF
Behavior of interfacial stresses between RC beams and GFRP sheets 被引量:3
13
作者 王文炜 李果 《Journal of Southeast University(English Edition)》 EI CAS 2007年第1期105-111,共7页
Seven reinforced concrete (RC) beams with epoxy-bonded glass fiber reinforced plastic (GFRP) sheets and two control RC beams were experimentally tested to investigate the bond behavior of the interfaces between RC... Seven reinforced concrete (RC) beams with epoxy-bonded glass fiber reinforced plastic (GFRP) sheets and two control RC beams were experimentally tested to investigate the bond behavior of the interfaces between RC beams and GFRP sheets. The variable parameters considered in test beams are the layers of GFRP sheets, the bond lengths and the reinforcement ratios. The results indicate that the flexural strength of the repaired beams is increased, but the ultimate load of beams with GFRP sheets debonding failure is reduced relatively. The bond length is the main factor that results in bonding failure of the strengthened beams. An experimental method of interfacial shear stress is proposed to analyze the distribution of shear stress according to experimental results. The analytical method of shear and normal stresses and a simple equation are proposed to predict the peeling loads. The proposed model is applied to experimental beams. The analytical results show a good agreement with the experimental results. 展开更多
关键词 glass fiber reinforced plastic (GFRP) strengthening reinforced concrete beam shear stress normal stress
在线阅读 下载PDF
Microstructure and property of stress aged Al-Cu single crystal under various applied stresses 被引量:1
14
作者 陈继强 陈志国 +2 位作者 郭晓斌 任杰克 邓运来 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2016年第11期2838-2845,共8页
The stress aging behavior of Al-Cu alloy under various applied stresses, i.e., elastic stress, yield stress and plasticdeformation stress, was investigated using single crystals. The resulting microstructures and the ... The stress aging behavior of Al-Cu alloy under various applied stresses, i.e., elastic stress, yield stress and plasticdeformation stress, was investigated using single crystals. The resulting microstructures and the yield strength were examined bytransmission electron microscopy (TEM) and compression tests, respectively. The results indicate that an elastic stress of 15 MPa ishigh enough to influence the precipitation distribution of θ′ during aging at 180℃. The applied stress loading along [116]Aldirection results in increased number density of θ′ on (001)Al habit planes. This result becomes more significant with increasingapplied stress and leads to lower yield strength of Al-Cu single crystals during aging. Moreover, the generation of the preferentialorientation of θ′ was discussed by the effect of the dislocation induced by applied stress as well as the role of the misfit between theθ′-precipitate and Al matrix. The results are in agreement with the effect of the latter one. 展开更多
关键词 Al alloy single crystal stress aging θ′ phase microstructure PROPERTY
在线阅读 下载PDF
Study of residual stresses in tailor rolled blanked Al5J32-T4 sheets 被引量:10
15
作者 KIM Dongok KIM Jinpyeong +3 位作者 LEE Yong KWAK Heeman RYU Yongmun HAN Beomsuck 《Rare Metals》 SCIE EI CAS CSCD 2006年第z2期111-117,共7页
Several automotive parts such as door panels have been manufactured by using load-adapted blanks for crash optimization and weight minimization. Recently, Tailor Rolled Blanks (TRB) has been introduced to remove the d... Several automotive parts such as door panels have been manufactured by using load-adapted blanks for crash optimization and weight minimization. Recently, Tailor Rolled Blanks (TRB) has been introduced to remove the disadvantages of a welding process which was used in joining panel components. TRB offers better structural design capabilities due to the seamless transitions on the panels with different thicknesses. In spite of the advantages of the process, TRB leaves internal stresses in the panel. This residual stresses lower the formability of Tailor Rolled Blanked (TRBed) parts and cause cracks near severe curvature during subsequent forming processes. In this research, the residual stresses of TRBed Al5J32-T4 sheets were studied by X-ray stress analysis, and also microstructure was observed along the rolling direction. In addition, heat treatment was done after TRB process in order to compare the residual stresses to that of the TRBed sheets before the heat treatment. 展开更多
关键词 tailor rolled blanks residual stresses deformation microstructure
在线阅读 下载PDF
Analysis and formulation of spur gear stresses with different tip modifications 被引量:7
16
作者 A.MAPER S.KARUPPANAN S.S.PATIL 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第9期2368-2378,共11页
Spur gears are widely used in the power transmission mechanism of several machines.Due to the transmitted torque,spur gears experience high stresses which could cause gear tooth failure by surface pitting or root frac... Spur gears are widely used in the power transmission mechanism of several machines.Due to the transmitted torque,spur gears experience high stresses which could cause gear tooth failure by surface pitting or root fracture.Tip relief and other gear profile modification have been considered for reducing the induced stresses in the gear tooth.In this work,the influence of tip relief on stresses on a pair of identical spur gear was analyzed using commercial FEA software ANSYS,and formulae for estimating contact and bending stresses were derived.Three cases of gear sets were analyzed;a non-modified pair and another two sets with linear and parabolic tip relief profiles.The non-modified gear set frictionless contact stress was validated against the calculated AGMA pitting resistance,Hertzian contact stress and a reported contact stress value in the literature.The four methods agreed well with each other.Similarly,bending stress was also compared with the AGMA bending strength and Lewis bending stress for validation.Then,friction coefficient was varied from 0.0 to 0.3 with increment of 0.1.The gear contact stress increased up to 11%relative to the frictionless case,whereas bending stress decreased by 6%.Linear tip relief modification was carried out for increasing normalised tip relief values of 0.25 to 1.0 with increment of 0.25.The gear frictionless contact and bending stresses decreased by a maximum of 4%and 2%,respectively.Frictional contact stress increased by up to 7.1%and the bending stress is almost identical with the frictionless case.Parabolic tip relief was also carried out with similar normalised tip relief values.Frictionless contact stress decreased by 5%while frictional contact stress increased by up to 11.5%and the bending stress is also almost identical with the frictionless case.Finally,four formulae were introduced for estimating the contact and bending stresses for a tip modified spur gear. 展开更多
关键词 gear stresses FRICTION linear tip relief parabolic tip relief
在线阅读 下载PDF
Wave-current bottom shear stresses and sediment re-suspension in the mouth bar of the Modaomen Estuary during the dry season 被引量:6
17
作者 JIA Liangwen REN Jie +2 位作者 NIE Dan CHEN Benzhong LV Xiaoying 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2014年第7期107-115,共9页
On the basis of the measurement data pertaining to waves, current, and sediment in February 2012 in the mouth bar of the Modaomen Estuary, the Soulsby formulae with an iterative method are applied to calculating botto... On the basis of the measurement data pertaining to waves, current, and sediment in February 2012 in the mouth bar of the Modaomen Estuary, the Soulsby formulae with an iterative method are applied to calculating bottom shear stresses (BSS) and their effect on a sediment resuspension. Swell induced BSS have been found to be the most important part of the BSS. In this study, the correlation coefficient between a wavecurrent shear stress and SSC is 0.86, and that between current shear stresses and SSC is only 0.40. The peaks of the SSC are consistent with the height and the BSS of the swell. The swell is the main mechanism for the sediment re-suspension, and the tidal current effect on sediment re-suspension is small. The peaks of the SSC are centered on the high tidal level, and the flood tide enhances the wave shear stresses and the SSC near the bottom. The critical shear stress for sediment re-suspension at the observation station is between 0.20 and 0.30 N/m2. Tidal currents are too weak to stir up the bottom sediment into the flow, but a WCI (wave-current interaction) is strong enough to re-suspend the coarse sediment. 展开更多
关键词 Modaomen Estuary WAVE-CURRENT bottom shear stresses SEDIMENT
在线阅读 下载PDF
Abiotic Stresses and Phytohormones Regulate Expression of FAD2 Gene in Arabidopsis thaliana 被引量:5
18
作者 YUAN Si-wei WU Xue-long +2 位作者 LIU Zhi-hong LUO Hong-bing HUANG Rui-zhi 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2012年第1期62-72,共11页
Modification of unsaturated fatty acid (FA) levels has been found to accompany multiple abiotic stress acclimations in many plants. Delta 12 fatty acid desaturase (FAD2) plays a critical role in the synthesis of p... Modification of unsaturated fatty acid (FA) levels has been found to accompany multiple abiotic stress acclimations in many plants. Delta 12 fatty acid desaturase (FAD2) plays a critical role in the synthesis of polyunsaturated FAs in plant cells by converting oleic acid (18:1) to linoleic acid (18:2). To better understand the relationship between polyunsaturated FAs metabolism and stress adaptation, the expression of FAD2 gene and changes in the FA compositions under various abiotic stresses and phytohormone treatments in Arabidopsis thaliana was investigated in this study. A 1 423-bp promoter of the FAD2 gene was cloned and characterized from Arabidopsis. Several putative hormone- and stress- inducible cis-elements were identified in the cloned promoter, which include salt- and pathogen-inducible GT-1 motifs, low-temperature-responsive MYC element, dehydration-responsive MYB element, and GA signaling related WRKY71OS element. To investigate the fine regulation of FAD2 gene, a recombinant FAD2 promoter-GUS construct was introduced into Arabidopsis plants. Histochemical study showed that the promoter was ubiquitously active and responsive not only to exogenous phytohormones including ABA, 24-eBL, and SA but also to darkness, temperature, salt, and sucrose stresses in Arabidopsis seedlings. Consistent with the expression change, treatments with exogenous 24-eBL, ABA, SA, and NaCl resulted in reduction in polyunsaturated FAs in Arabidopsis seedlings. These findings suggest that the FAD2 gene with a wide variety of putative response elements in its promoter is responsive to multiple phytohormones and abiotic stresses and therefore may play an important role in stress responses of Arabidopsis during plant growth and seed development. 展开更多
关键词 FAD2 abiotic stresses PHYTOHORMONES fatty acid (FA) Arabidopsis thaliana
在线阅读 下载PDF
Computer Predictions and Experimental Verification of Residual Stresses and Distortion in Carburizing-Quenching of Steel 被引量:4
19
作者 Dong- Ying Ju, Michiharu Narazaki , Hirofumi Kamisugi , Haruyoshi Hirano 1 . Department of Mechanical Engineering, Saitama Institute of Technology, Saitama, Japan 2 . Department of Mechanical Systems Engineering, Utsunomiya University, Utsunomiya, Japan 3 《Journal of Shanghai Jiaotong university(Science)》 EI 2000年第1期165-172,共8页
In this paper, the carburizing-quenching process of carbon steel is analyzed with computer simulation which is based on the metallo-thermo-mechanical theory and finite element analysis coupled temperature, phase trans... In this paper, the carburizing-quenching process of carbon steel is analyzed with computer simulation which is based on the metallo-thermo-mechanical theory and finite element analysis coupled temperature, phase transformation and stress/strain fields. The residual stresses and distortion of a steel cylinder during carburizing quenching process were predicted and compared with experimental data. From the prediction results, improvement of hardness and strength of the cylinder component in carburizing-quenching process was verified. 展开更多
关键词 Carburizing-quenching process Carbon diffusion RESIDUAL stresses and DISTORTION
在线阅读 下载PDF
THERMAL STRESSES RELAXATION DESIGN OF Ni/NiFe_(2)O_(4) SYSTEM FUNCTIONALLY GRADED CERMET INERT ANODE 被引量:5
20
作者 J. Li Q.S. Zhang Y.Q. Lai S.L. Ye Y.X. Liu 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2005年第5期635-641,共7页
The thermal stresses relaxation of Ni/NiFe2O4 system functionally graded cermet inert anode for aluminum electrolysis was optimally designed. The transient thermal stresses of the inert anode under complex boundary co... The thermal stresses relaxation of Ni/NiFe2O4 system functionally graded cermet inert anode for aluminum electrolysis was optimally designed. The transient thermal stresses of the inert anode under complex boundary condition during high-temp (955℃) electrolysis were calculated using the finite-element software ANSYS, the influence of different parameters on the distribution of the thermal stresses were analyzed. The results showed that, during the process of thermal shock, the thermal hoop tensile stress on the surface of the anode is very large, which is possibly the major cause of anode crack; when the radius of the anode is between 0.05-0.15m, a range that can be realized by recent manufacturing technology, the optimum composition distribution exponent p is 0.25; The hoop tensile stresses reduce with the decrease of anode scale and also decrease with the decrease of the convection coefficient between the electrolyte and the anode. 展开更多
关键词 functionally graded material (FGM) transient thermal stresses ANSYS inert anode aluminum electrolysis
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部