Konjac is an ideal candidate for edible coatings on fruits due to its hydrophilic properties,film-forming ability,barrier properties,safety,and biodegradability.Meanwhile,the high market demand for strawberries necessi...Konjac is an ideal candidate for edible coatings on fruits due to its hydrophilic properties,film-forming ability,barrier properties,safety,and biodegradability.Meanwhile,the high market demand for strawberries necessitates post-harvest treatment to extend their shelf life and preserve their quality,as strawberries are known for their fragile skin and soft texture.To fully utilize konjac and develop high-quality coatingfilms,native konjacflour(NKF)and konjac glucomannan(KGM)were extracted from its corm and used as a coatingfilm for strawberries in the present study.Therefore,this study aimed to compare the physical properties of thefilm coatings between NKF and KGM,and evaluate their effects on strawberries preservation over 7 days of storage.A multistage extrac-tion process was employed to isolate NKF and KGM,after which the glucomannan content was measured.NKF yield was 31.81%,exceeding KGM yield of 26.42%,and the glucomannan content obtained of NKF(25.93%)was higher than KGM(21.41%).Nuclear magnetic resonance spectroscopy confirmed that both NKF and KGM con-tain glucomannan in their structure.Furthermore,both NKF and KGM were combined with carboxymethyl cel-lulose(CMC)and glycerol to produce eight thin-layerfilms to assess their physical and mechanical properties.Compared to the KGM variant,the NKF variant generally exhibited higher moisture content,water vapor trans-mission rate,and tensile strength.However,NKF was less effective than KGM in extending strawberry storage life,leading to faster color changes and greater weight loss,despite maintaining similar hardness values.Nonetheless,konjac-based coatings were generally effective at maintaining the freshness and quality of strawberries compared to uncoated samples.Konjac shows promise as an edible coating,improving fresh produce shelf life and appeal,aligning with consumer preferences for natural and sustainable products.展开更多
In this work,nine different types of edible coating based on pectin,cellulose nanocrystals,glycerol,and essential oil of lemongrass were prepared and used to coat strawberries with a film formed directly on the surfac...In this work,nine different types of edible coating based on pectin,cellulose nanocrystals,glycerol,and essential oil of lemongrass were prepared and used to coat strawberries with a film formed directly on the surface of the coated fruit.The effects of the different edible coatings on refrigerated fruits in terms of weight loss,titratable acidity,total soluble solids,pH,and anthocyanin content was evaluated after 2 days,4 days,6 days,and 8 days of storage.Application of the edible coatings reduced the weight loss of the coated strawberries and the anthocyanin content.The total soluble solids content of or uncoated fruit increase more markedly than that of coated fruit.In contrast,pH was maintained for both coated and uncoated strawberries.The edible coatings were effective in minimizing of the weight loss,without worsening the physical chemistry attributes.The treatments T5 and T9 presented the best results.展开更多
Soilless (hydroponic) vegetables and fruits grown in greenhouses are gaining popularity and potentially represent a compliment toward sustainable food sources. Only a few studies have looked at the nutrient quality of...Soilless (hydroponic) vegetables and fruits grown in greenhouses are gaining popularity and potentially represent a compliment toward sustainable food sources. Only a few studies have looked at the nutrient quality of strawberries (Fragaria × ananassa) and raspberries (Rubus idaeus) grown in soilless systems. Dry weights, content of ascorbic acid, tocopherol, total polyphenolic compounds, glucose, fructose, and soluble solids (BRIX) of strawberries and raspberries grown in soilless systems were compared to their counterpart grown in soil. There was no change in dry weights but BRIX values (28% - 31%), glucose (158% - 175%), and fructose (75% - 102%) content for strawberries and raspberries respectively were significantly higher for the soil grown berries compared to soilless grown berries. Contents of ascorbic acid, tocopherol and total polyphenolic compounds were significantly higher in soilless grown strawberries compared to soil grown strawberries by 74%, 53%, and 22% respectively, and contents of ascorbic acid and total polyphenolic compounds were significantly higher in soil grown raspberries by 83% and 67% respectively compared to soilless grown raspberries. Soilless grown produce warrants future research to strive toward the potential to provide nutrient dense crops and opportunities toward optimized sustainable production.展开更多
Hydroponic growing methods are growing in popularity and seem to have numerous benefits (i.e., environmental, increased product yields, year round growing) compared to soil grown crops. Although these advantages are a...Hydroponic growing methods are growing in popularity and seem to have numerous benefits (i.e., environmental, increased product yields, year round growing) compared to soil grown crops. Although these advantages are attractive, they do not guarantee a high quality product. Taste is a driver of consumer acceptance;therefore, sensory analysis of the hydroponic product will be an important indicator in its success. In this study, we evaluated the sensory differences and preferences in hydroponically grown and soil-grown strawberries (Fragaria x ananassa) using unspecified discriminatory and preference analyses, and descriptive testing correlated with nutrition content data. Most (87%) of participants could identify differences between hydroponically and soil grown strawberries and 70% preferred the hydroponically grown strawberry (p = 0.06). The nutrient composition of the strawberries significantly influenced several sensory analysis categories (sweetness, overall flavor and overall taste (p < 0.05)). The use of sensory studies in relation to consumer acceptance and nutrient quality will be an important factor to consider for exploring growing methods and techniques in hydroponic technology.展开更多
[Objectives]This study aimed to explore the effect of different processing methods on the storage quality of strawberries.[Methods]Strawberries purchased from Xintongtian Supermarket in Cangzhou City were used as the ...[Objectives]This study aimed to explore the effect of different processing methods on the storage quality of strawberries.[Methods]Strawberries purchased from Xintongtian Supermarket in Cangzhou City were used as the experimental material,and they were subjected to different processing methods:45℃hot air for 30 min,45℃hot water for 10 min and 3%calcium chloride for 1 min.[Results]The processing effect of 45℃hot water for 10 min was better than that of 45℃hot air for 30 min.The processing effect of 3%calcium chloride for 1 min was good.Hot water processing could prolong the time to begin to rot,obviously alleviate the increase in weight loss rate,and obviously alleviate the decrease of soluble solids and Vc contents of strawberry fruit.However,the ability of hot water to delay the decrease of strawberry fruit hardness was not as good as that of calcium chloride.[Conclusions]The strawberries processed with 45℃hot water for 10 min showed the best storage quality.展开更多
Harvested strawberry fruit is highly perishable because of its soft texture and microbial infestation during postharvest handling. The applications of carbon dioxide (CO2) gas on the quality parameters of strawberry h...Harvested strawberry fruit is highly perishable because of its soft texture and microbial infestation during postharvest handling. The applications of carbon dioxide (CO2) gas on the quality parameters of strawberry harvested in winter season have shown better effects in several studies. However, very little information is available for the same in summer harvested strawberry. This study was aimed at finding an optimum concentration and duration of CO2 treatment in strawberry fruit var. “Goha” harvested in summer season to increase or maintain postharvest qualities. Fresh strawberries were treated with 15%, 30% and 50% CO2 for 1 or 3 h and then stored at 4?C for up to 13 days along with untreated control. Strawberry samples treated with 50% CO2 for 1 or 3 h and both 15% and 30% for 3 h had higher firmness than samples treated with both 15% and 30% for 1 h and control. In general, total soluble solids (TSS) slightly increased or maintained during storage in all samples except control. The values of pH slightly declined whereas titratable acidity showed opposite trends. However, there was no significant difference found among CO2 treated samples. Lightness (L*) of “Goha” samples with no CO2 treatment decreased gradually while it was almost maintained in CO2 treated strawberries. Strawberry samples treated with 15% CO2 for 3 h maintained better quality with higher scores of overall quality and visual texture until 9 days of storage. Samples treated with 15% CO2 for 3 h also received lower softening scores until 9 days of storage compared to other CO2 treated samples. These results showed that 15% CO2 for 3 h condition could be an effective postharvest treatment for maintaining quality of “Goha” strawberry.展开更多
A diploid strawberry (Fragaria vesca L.) which can naturally produce unreduced gametes (2n pollen) and doubled-unreduced gametes (4n pollen) was used to study the cytological mechanism of 2n and 4n gamete formation. T...A diploid strawberry (Fragaria vesca L.) which can naturally produce unreduced gametes (2n pollen) and doubled-unreduced gametes (4n pollen) was used to study the cytological mechanism of 2n and 4n gamete formation. The result showed that the formation of 2n gamete was mainly due to the abnormal orientation of spindles at metaphase II. The normal orientation of two spindles at metaphase I was perpendicular to each other, which led to tetrad formation at the end of meiosis. Two kinds of abnormal orientation of metaphase II spindles, i. e. parallel spindles and triangle spindles, were observed. Of the parallel spindles, the 4 group chromosomes were distributed to 2 poles and formed a dyad which formed two 2n pollen grains further-ly. Of the triangle spindles, the 4 group chromosomes were distributed to 3 poles and formed a triad which formed one 2n pollen grain and two n pollen grains. In addition, a few very big pollen grains (4n pollen) which probably due to the fusion of the tetrad were found.展开更多
Post-harvest precooling of strawberries can reduce fruit decay and tissue damage during post-harvest storage.To determine the most suitable precooling method,cold room precooling(CRPC),cold-water precooling(CWPC),elec...Post-harvest precooling of strawberries can reduce fruit decay and tissue damage during post-harvest storage.To determine the most suitable precooling method,cold room precooling(CRPC),cold-water precooling(CWPC),electrolyzed water precooling(EWPC),fluidized-ice precooling(FIPC),forced air precooling(FAPC),and vacuum precooling(VPC)were used to precool the strawberries.After per-cooling,strawberries were stored at 4℃ cold storage for 15 d.Compared with CRPC,CWPC,EWPC,FIPC,and VPC,FAPC can rapidly reduce the temperature of strawberries while maintaining clean fruit skin,effectively inhibiting microbial growth and consequently minimizing strawberry spoilage during storage.The FAPC treatments reduced weight loss during storage,maintained color and fruit hardness,inhibited browning,decreased the total viable count,preserved soluble solid and ascorbic acid contents,inhibited the increase in MDA,increased SOD and CAT activities,and delayed POD and PPO activities.Strawberries treated with CRPC and FAPC had a shelf life of 15 d,which was 3 d longer than those treated with CWPC,EWPC,FIPC,and VPC.Therefore,FAPC treatment is the most suitable method for maintaining strawberry quality and extending its post-harvest shelf life.展开更多
Supplemental lighting is critical to the growth of greenhouse crops under the environmental conditions of low temperatures combined with weak radiation during the winter and spring seasons.To achieve the essential dai...Supplemental lighting is critical to the growth of greenhouse crops under the environmental conditions of low temperatures combined with weak radiation during the winter and spring seasons.To achieve the essential daily light integral(DLI)for greenhouse crop growth,a supplemental light strategy was proposed based on hourly light integral(HLI).The target HLI was calculated by dividing the target DLI by the duration of light exposure,while the actual HLI was obtained by accumulating the Photosynthetic Photon Flux Density(PPFD)based on real-time monitoring.Subsequently,the supplemental lighting duration for the next hour was determined by the difference between the target HLI and the actual HLI from all previous periods.Furthermore,the supplementary lighting strategy incorporated maximum values for both PPFD and temperature,and the supplemental light was withheld whenever the actual PPFD or temperature exceeded these values.An experiment was conducted on strawberries in a commercial greenhouse,targeting a DLI of 12.6 mol/(m2∙d),with no supplemental lighting as the control.The results indicated that LED supplemental lighting based on HLI increased the DLI to approximately10 mol/(m2∙d)and raised the strawberry canopy temperature by 1°C-2°C.Compared to the control treatment,the LED supplemental lighting based on HLI significantly improved the net photosynthetic rate,stem thickness,number of leaves,leaf length,and leaf width of the strawberry plants.Additionally,the fruit yield per plant,soluble solids content,and sugar-acid ratio in the supplemental lighting treatment increased by 32%,21%,and 33%,respectively.Thus,LED supplemental lighting based on HLI is an effective strategy for improving the yield and quality of greenhouse crop production.展开更多
The carmine spider mite, Tetranychus cinnabarinus (Boisduval) and the twospotted spider mite, Tetranychus urticae Koch, are serious pests of strawberries and many other horticultural crops. Control of these pests ha...The carmine spider mite, Tetranychus cinnabarinus (Boisduval) and the twospotted spider mite, Tetranychus urticae Koch, are serious pests of strawberries and many other horticultural crops. Control of these pests has been heavily dependent upon chemical acaricides. Objectives of this study were to determine the resistance status of these two pest species to commonly used acaricides on strawberries in a year-round inten- sive horticultural production region. LC90 of abamectin for adult carmine spider mites was 4% whereas that for adult twospotted spider mites was 24% of the top label rate. LC90s of spiromesifen, etoxazole, hexythiazox and bifenazate were 0.5%, 0.5%, 1.4% and 83% of their respective highest label rates for carmine spider mite eggs, 0.7%, 2.7%, 12.1% and 347% of their respective highest label rates for the nymphs. LC90s of spiromesifen, etoxazole, hexythiazox and bifenazate were 4.6%, 11.1%, 310% and 62% of their respec- tive highest label rates for twospotted spider mite eggs, 3%, 13%, 432,214% and 15% of their respective highest label rates for the nymphs. Our results suggest that T. cinnabarinus have developed resistance to bifenazate and that the T. urticae have developed resistance to hexythiazox. These results strongly emphasize the need to develop resistance management strategies in the region.展开更多
Strawberry (Fragaria ananassa) is well known among consumers because of its attractive color, delicious taste, and nutritional benefits. It is widely grown worldwide, but its production has become a significant challe...Strawberry (Fragaria ananassa) is well known among consumers because of its attractive color, delicious taste, and nutritional benefits. It is widely grown worldwide, but its production has become a significant challenge due to changing climatic conditions that lead to abiotic stresses in plants, which results in poor root development, nutrient deficiency, and poor plant health. In this context, the major abiotic stresses are temperature fluctuations, water shortages, and high levels of soil salinity. The accumulation of salts in excessive amounts disrupts the osmotic balance and impairs physiological processes. However, drought reduces fruit size, yield, and quality. Similarly, heat and cold stresses directly affect the rate of photosynthesis. Plants respond to these changes by producing growth-promoting hormones to ensure their survival. In the context of these abiotic stresses, beneficial microbes support plant growth. Among these fungi, the most extensively studied are plant growth-promoting rhizobacteria (PGPR) and arbuscular mycorrhizal fungi (AMF). When applied as bioinoculants, they are associated with roots and subsequently improve soil health, fruit quality, and overall crop yield. This review highlights the impacts of abiotic stresses on strawberry roots, growth, and hormonal pathways. Moreover, it focuses on the role of beneficial soil microbes in the mitigation of these responses.展开更多
Anthocyanins are the flavonoid pigments responsible for vibrant fruit and flower colors,and they also play key roles in both plant physiology and human health.MYB transcription factors are crucial regulators of anthoc...Anthocyanins are the flavonoid pigments responsible for vibrant fruit and flower colors,and they also play key roles in both plant physiology and human health.MYB transcription factors are crucial regulators of anthocyanin biosynthesis and accumulation,but the functional differences of homologous MYB transcription factors in regulating anthocyanin content are still unclear.In strawberry(Fragaria×ananassa),FaMYB44.1 and FaMYB44.3 are highly homologous MYB transcription factors localized in the nucleus and can be significantly induced by weak light.However,they differ in their effects on anthocyanin accumulation in the fruits.FaMYB44.1 inhibits anthocyanin synthesis by transcriptionally suppressing FaF3H,which is essential for anthocyanin regulation,in the‘BeniHoppe'and‘JianDe-Hong'strawberry varieties.In contrast,FaMYB44.3 does not affect anthocyanin levels.This study provides a comprehensive overview of the roles of FaMYB44.1 and FaMYB44.3 in anthocyanin regulation in strawberry fruits.By elucidating the molecular mechanisms underlying their regulation,this study enhances our understanding of how the interactions between genetic and environmental factors control fruit pigmentation and enhance the nutritional value of the fruit.展开更多
To solve the problem of high labour costs in the strawberry picking process,the approach of a strawberry picking robot to identify and find strawberries is suggested in this study.First,1000 images including mature,im...To solve the problem of high labour costs in the strawberry picking process,the approach of a strawberry picking robot to identify and find strawberries is suggested in this study.First,1000 images including mature,immature,single,multiple,and occluded strawberries were collected,and a two-stage detection Mask R-CNN instance segmentation network and a one-stage detection YOLOv3 target detection network were used to train a strawberry identification model which classified strawberries into two categories:mature and immature.The accuracy ratings for YOLOv3 and Mask R-CNN were 93.4%and 94.5%,respectively.Second,the ZED stereo camera,triangulation,and a neural network were used to locate the strawberry in three dimensions.YOLOv3 identification accuracy was 3.1 mm,compared to Mask R-CNN of 3.9 mm.The strawberry detection and positioning method proposed in this study may effectively be used to supply the picking robot with a precise location of the ripe strawberry.展开更多
Objectives: This study evaluated the potential of using electronic nose (e-nose) technology to non- destructively detect strawberry fruits with vibrational damage based on their volatile substances (VOCs). Materials a...Objectives: This study evaluated the potential of using electronic nose (e-nose) technology to non- destructively detect strawberry fruits with vibrational damage based on their volatile substances (VOCs). Materials and methods: Four groups of strawberries with different durations of vibrations (0, 0.5, 1, and 2 h) were prepared, and their e-nose signals were collected at 0, 1, 2, and 3 days after vibration treatment. Results: The results showed that when the samples from all four sampling days during storage were used for modelling, both the levels of vibrational damage and the day after the damage happened were accurately predicted. The best models had residual prediction deviation values of 2.984 and 5.478. The discrimination models for damaged strawberries also obtained good classification results, with an average correct answer rate of calibration and prediction of 99.24%. When the samples from each sampling day or vibration time were used for modelling, better results were obtained, but these models were not suitable for an actual situation. The gas chromatography-mass spectrophotometry results showed that the VOCs of the strawberries varied after experiencing vibrations, which was the basis for e-nose detection. Limitations: The changes in VOCs released by other forces should be studied in the future. Conclusions: The above results showed the potential use of e-nose technology to detect strawberries that have suffered vibrational damage.展开更多
Strawberry is a major fruit crop worldwide because its nutritional and health benefits to human health,but its productivity is limited by Botrytis cinerea.Sucrose nonfermentation 1-related protein kinase 1(SnRK1)has a...Strawberry is a major fruit crop worldwide because its nutritional and health benefits to human health,but its productivity is limited by Botrytis cinerea.Sucrose nonfermentation 1-related protein kinase 1(SnRK1)has a defense function against pathogens,but the function of SnRK1 in the defense response to B.cinerea in plants is still unclear.In this study,FaSnRK1a-OE and RNAi fruits were constructed and then inoculated with B.cinerea.The result reveals a positive role of Fa SnRK1a in the regulation of resistance to gray mold.FaSnRK1a affects SA content by regulating FaPAL1 and FaPAL2 expressions.The genes related to the SA signaling pathway(FaTGA1 and FaTGA2.1)were significantly increased/decreased in FaSnRK1a-OE or FaSnRK1a-RNAi fruit,respectively.FaSnRK1a interacted with the FaWRKY33.2 protein and negatively regulated FaWRKY33.2 expression,and FaWRKY33.2 acts as a repressor of disease resistance to B.cinerea.Finally,FaSnRK1a regulates the expression of six PR genes and the activities of antioxidant enzymes to boost defense response after B.cinerea inoculation.Our findings showed that FaSnRK1a increases the resistance of strawberry fruit to B.cinerea via SA signaling pathway and interaction with the FaWRKY33.2 transcription factor.展开更多
Strawberry (Fragaria × ananassa Duch.) is a significant global soft fruit crop, prized for its nutrient content and pleasant flavor. However, diseases, particularly grey mold caused by Botrytis cinerea Pers. Fr. ...Strawberry (Fragaria × ananassa Duch.) is a significant global soft fruit crop, prized for its nutrient content and pleasant flavor. However, diseases, particularly grey mold caused by Botrytis cinerea Pers. Fr. poses major constraints to strawberry production and productivity. Grey mold severely impacts fruit quality and quantity, diminishing market value. This study evaluated five B. cinerea isolates from various locations in the Ri-Bhoi district of Meghalaya. All isolates were pathogenic, with isolate SGM 2 identified as highly virulent. Host range studies showed the pathogen-producing symptoms in the fava bean pods, marigold, gerbera, and chrysanthemum flowers and in the fava bean, gerbera, and lettuce leaves. In vitro tests revealed that neem extract (15% w/v) achieved the highest mycelial growth inhibition at 76.66%, while black turmeric extract (5% w/v) had the lowest inhibition at 9.62%. Dual culture methods with bio-control agents indicated that Bacillus subtilis recorded the highest mean inhibition at 77.03%, while Pseudomonas fluorescens had the lowest at 20.36% against the two virulent isolates. Pot evaluations demonstrated that B. subtilis resulted in the lowest percent disease index at 20.59%, followed by neem extract at 23.31%, with the highest disease index in the control group at 42.51%. Additionally, B. subtilis significantly improved plant growth, yielding an average of 0.32 kg compared to 0.14 kg in the control. The promising results of B. subtilis and neem leaf extract from this study suggest their potential for eco-friendly managing grey mold in strawberries under field conditions.展开更多
The real-time detection and instance segmentation of strawberries constitute fundamental components in the development of strawberry harvesting robots.Real-time identification of strawberries in an unstructured envi-r...The real-time detection and instance segmentation of strawberries constitute fundamental components in the development of strawberry harvesting robots.Real-time identification of strawberries in an unstructured envi-ronment is a challenging task.Current instance segmentation algorithms for strawberries suffer from issues such as poor real-time performance and low accuracy.To this end,the present study proposes an Efficient YOLACT(E-YOLACT)algorithm for strawberry detection and segmentation based on the YOLACT framework.The key enhancements of the E-YOLACT encompass the development of a lightweight attention mechanism,pyramid squeeze shuffle attention(PSSA),for efficient feature extraction.Additionally,an attention-guided context-feature pyramid network(AC-FPN)is employed instead of FPN to optimize the architecture’s performance.Furthermore,a feature-enhanced model(FEM)is introduced to enhance the prediction head’s capabilities,while efficient fast non-maximum suppression(EF-NMS)is devised to improve non-maximum suppression.The experimental results demonstrate that the E-YOLACT achieves a Box-mAP and Mask-mAP of 77.9 and 76.6,respectively,on the custom dataset.Moreover,it exhibits an impressive category accuracy of 93.5%.Notably,the E-YOLACT also demonstrates a remarkable real-time detection capability with a speed of 34.8 FPS.The method proposed in this article presents an efficient approach for the vision system of a strawberry-picking robot.展开更多
Ellagic acid(EA)is a natural antioxidant,widely present in a lot of forms’soft fruits,nuts,and other plant tissues,and helpful for promoting human health;however,its protective effect on postharvest fruit and improvi...Ellagic acid(EA)is a natural antioxidant,widely present in a lot of forms’soft fruits,nuts,and other plant tissues,and helpful for promoting human health;however,its protective effect on postharvest fruit and improving the quality index of postharvest fruit have rarely been studied.In this experiment,the strawberries were soaked in 0,100,200,300,400,and 500 mg L^(−1) EA,respectively,and the influential EA on fruit quality and the antioxidant system of strawberries were studied.Compared with the control,EA treatment can reduce the browning degree and rotting rate of strawberry fruit during storage and augment the soluble solid content(SSC).EA treatment can also increase the content of related stuff and enzyme activity in antioxidant systems;the gene expression level of polyphenol oxidase(PPO)in strawberries treated with EA was always down-regulated,correspondingly,the expression of other antioxidant enzyme genes was enhanced.Among the strawberry fruits treated with EA of different concentrations,300 mg L^(−1) EA had the best effect in the process of strawberry preservation.The results suggested that the proper concentration of exogenous EA at 300 mg L−1 could maintain strawberries’quality and enhance the antioxidant system by improving the activities of antioxidative enzymes and the ascorbateglutathione(AsA-GSH)cycle during storage.展开更多
Strawberry Fusarium wilt (SFW) is a systematic soil-borne disease caused by Fusarium oxysporum f.sp.fragaria (Fof),which infects the vascular bundles,blocking water and nutrient transport from roots to the aboveground...Strawberry Fusarium wilt (SFW) is a systematic soil-borne disease caused by Fusarium oxysporum f.sp.fragaria (Fof),which infects the vascular bundles,blocking water and nutrient transport from roots to the aboveground.It is a severe pathogen which spreads rapidly and destroys strawberry production.Finding a way to control this disease is of great scientific value and practical importance.In this study,three fungi were isolated from the vascular tissues of sick strawberries in the field.After DNA sequencing,they were identified as Fof,Aspergillus fumigatus and Trichoderma harzianum,respectively,among which the first two are pathogens and the third is a probiotic.All fungi were controlled by thiophanate-methyl (TM),a commercial fungicide.On PDA medium,20 mg·L^(-1)5-aminolevulinic acid (ALA),a natural non-protein amino acid,promoted T.harzianum proliferation,but inhibited Fof and A.fumigatus.In confrontation test,the growth of Fof or A.fumigatus was inhibited by T.harzianum and exogenous ALA promoted T.harzianum growth but significantly inhibited the pathogen growth.When three species of fungi were separately or combinedly inoculated on healthy strawberry plants,T.harzianum promoted plant growth and development while Fof or A.fumigatus caused growth retardation,where Fof directly caused leaf yellowing and plant wilting.When the plants inoculated with different fungus were treated with ALA,the results turned out that ALA alleviated SFW symptoms by bidirectionally promoting T.harzianum proliferation and inhibiting Fof and A.fumigatus.Thus,ALA might be used in comprehensively controlling SFW in strawberry industry.展开更多
基金funded by the Academic Leadership Grant of Universitas Padjadjaran,Bandung,Indonesia,with grant number 1540/UN6.3.1/PT.00/2024the Research Collaboration Center for Biomass and Biorefinery,Bandung,Indonesia,with grant number B-1723/II.7/HK.01.00/4/2024.
文摘Konjac is an ideal candidate for edible coatings on fruits due to its hydrophilic properties,film-forming ability,barrier properties,safety,and biodegradability.Meanwhile,the high market demand for strawberries necessitates post-harvest treatment to extend their shelf life and preserve their quality,as strawberries are known for their fragile skin and soft texture.To fully utilize konjac and develop high-quality coatingfilms,native konjacflour(NKF)and konjac glucomannan(KGM)were extracted from its corm and used as a coatingfilm for strawberries in the present study.Therefore,this study aimed to compare the physical properties of thefilm coatings between NKF and KGM,and evaluate their effects on strawberries preservation over 7 days of storage.A multistage extrac-tion process was employed to isolate NKF and KGM,after which the glucomannan content was measured.NKF yield was 31.81%,exceeding KGM yield of 26.42%,and the glucomannan content obtained of NKF(25.93%)was higher than KGM(21.41%).Nuclear magnetic resonance spectroscopy confirmed that both NKF and KGM con-tain glucomannan in their structure.Furthermore,both NKF and KGM were combined with carboxymethyl cel-lulose(CMC)and glycerol to produce eight thin-layerfilms to assess their physical and mechanical properties.Compared to the KGM variant,the NKF variant generally exhibited higher moisture content,water vapor trans-mission rate,and tensile strength.However,NKF was less effective than KGM in extending strawberry storage life,leading to faster color changes and greater weight loss,despite maintaining similar hardness values.Nonetheless,konjac-based coatings were generally effective at maintaining the freshness and quality of strawberries compared to uncoated samples.Konjac shows promise as an edible coating,improving fresh produce shelf life and appeal,aligning with consumer preferences for natural and sustainable products.
文摘In this work,nine different types of edible coating based on pectin,cellulose nanocrystals,glycerol,and essential oil of lemongrass were prepared and used to coat strawberries with a film formed directly on the surface of the coated fruit.The effects of the different edible coatings on refrigerated fruits in terms of weight loss,titratable acidity,total soluble solids,pH,and anthocyanin content was evaluated after 2 days,4 days,6 days,and 8 days of storage.Application of the edible coatings reduced the weight loss of the coated strawberries and the anthocyanin content.The total soluble solids content of or uncoated fruit increase more markedly than that of coated fruit.In contrast,pH was maintained for both coated and uncoated strawberries.The edible coatings were effective in minimizing of the weight loss,without worsening the physical chemistry attributes.The treatments T5 and T9 presented the best results.
文摘Soilless (hydroponic) vegetables and fruits grown in greenhouses are gaining popularity and potentially represent a compliment toward sustainable food sources. Only a few studies have looked at the nutrient quality of strawberries (Fragaria × ananassa) and raspberries (Rubus idaeus) grown in soilless systems. Dry weights, content of ascorbic acid, tocopherol, total polyphenolic compounds, glucose, fructose, and soluble solids (BRIX) of strawberries and raspberries grown in soilless systems were compared to their counterpart grown in soil. There was no change in dry weights but BRIX values (28% - 31%), glucose (158% - 175%), and fructose (75% - 102%) content for strawberries and raspberries respectively were significantly higher for the soil grown berries compared to soilless grown berries. Contents of ascorbic acid, tocopherol and total polyphenolic compounds were significantly higher in soilless grown strawberries compared to soil grown strawberries by 74%, 53%, and 22% respectively, and contents of ascorbic acid and total polyphenolic compounds were significantly higher in soil grown raspberries by 83% and 67% respectively compared to soilless grown raspberries. Soilless grown produce warrants future research to strive toward the potential to provide nutrient dense crops and opportunities toward optimized sustainable production.
文摘Hydroponic growing methods are growing in popularity and seem to have numerous benefits (i.e., environmental, increased product yields, year round growing) compared to soil grown crops. Although these advantages are attractive, they do not guarantee a high quality product. Taste is a driver of consumer acceptance;therefore, sensory analysis of the hydroponic product will be an important indicator in its success. In this study, we evaluated the sensory differences and preferences in hydroponically grown and soil-grown strawberries (Fragaria x ananassa) using unspecified discriminatory and preference analyses, and descriptive testing correlated with nutrition content data. Most (87%) of participants could identify differences between hydroponically and soil grown strawberries and 70% preferred the hydroponically grown strawberry (p = 0.06). The nutrient composition of the strawberries significantly influenced several sensory analysis categories (sweetness, overall flavor and overall taste (p < 0.05)). The use of sensory studies in relation to consumer acceptance and nutrient quality will be an important factor to consider for exploring growing methods and techniques in hydroponic technology.
基金Scientific Research Project of Colleges and Universities in Hebei Province(Z2020248)Coastal Environmental Ecological Innovation Team of Cangzhou Normal University(cxtdl1904).
文摘[Objectives]This study aimed to explore the effect of different processing methods on the storage quality of strawberries.[Methods]Strawberries purchased from Xintongtian Supermarket in Cangzhou City were used as the experimental material,and they were subjected to different processing methods:45℃hot air for 30 min,45℃hot water for 10 min and 3%calcium chloride for 1 min.[Results]The processing effect of 45℃hot water for 10 min was better than that of 45℃hot air for 30 min.The processing effect of 3%calcium chloride for 1 min was good.Hot water processing could prolong the time to begin to rot,obviously alleviate the increase in weight loss rate,and obviously alleviate the decrease of soluble solids and Vc contents of strawberry fruit.However,the ability of hot water to delay the decrease of strawberry fruit hardness was not as good as that of calcium chloride.[Conclusions]The strawberries processed with 45℃hot water for 10 min showed the best storage quality.
文摘Harvested strawberry fruit is highly perishable because of its soft texture and microbial infestation during postharvest handling. The applications of carbon dioxide (CO2) gas on the quality parameters of strawberry harvested in winter season have shown better effects in several studies. However, very little information is available for the same in summer harvested strawberry. This study was aimed at finding an optimum concentration and duration of CO2 treatment in strawberry fruit var. “Goha” harvested in summer season to increase or maintain postharvest qualities. Fresh strawberries were treated with 15%, 30% and 50% CO2 for 1 or 3 h and then stored at 4?C for up to 13 days along with untreated control. Strawberry samples treated with 50% CO2 for 1 or 3 h and both 15% and 30% for 3 h had higher firmness than samples treated with both 15% and 30% for 1 h and control. In general, total soluble solids (TSS) slightly increased or maintained during storage in all samples except control. The values of pH slightly declined whereas titratable acidity showed opposite trends. However, there was no significant difference found among CO2 treated samples. Lightness (L*) of “Goha” samples with no CO2 treatment decreased gradually while it was almost maintained in CO2 treated strawberries. Strawberry samples treated with 15% CO2 for 3 h maintained better quality with higher scores of overall quality and visual texture until 9 days of storage. Samples treated with 15% CO2 for 3 h also received lower softening scores until 9 days of storage compared to other CO2 treated samples. These results showed that 15% CO2 for 3 h condition could be an effective postharvest treatment for maintaining quality of “Goha” strawberry.
文摘A diploid strawberry (Fragaria vesca L.) which can naturally produce unreduced gametes (2n pollen) and doubled-unreduced gametes (4n pollen) was used to study the cytological mechanism of 2n and 4n gamete formation. The result showed that the formation of 2n gamete was mainly due to the abnormal orientation of spindles at metaphase II. The normal orientation of two spindles at metaphase I was perpendicular to each other, which led to tetrad formation at the end of meiosis. Two kinds of abnormal orientation of metaphase II spindles, i. e. parallel spindles and triangle spindles, were observed. Of the parallel spindles, the 4 group chromosomes were distributed to 2 poles and formed a dyad which formed two 2n pollen grains further-ly. Of the triangle spindles, the 4 group chromosomes were distributed to 3 poles and formed a triad which formed one 2n pollen grain and two n pollen grains. In addition, a few very big pollen grains (4n pollen) which probably due to the fusion of the tetrad were found.
基金supported by key projects in the field of agriculture by the Shanghai Municipal Commission of Science and Technology(No.23N31900100)the Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation(No.19DZ2284000),China.
文摘Post-harvest precooling of strawberries can reduce fruit decay and tissue damage during post-harvest storage.To determine the most suitable precooling method,cold room precooling(CRPC),cold-water precooling(CWPC),electrolyzed water precooling(EWPC),fluidized-ice precooling(FIPC),forced air precooling(FAPC),and vacuum precooling(VPC)were used to precool the strawberries.After per-cooling,strawberries were stored at 4℃ cold storage for 15 d.Compared with CRPC,CWPC,EWPC,FIPC,and VPC,FAPC can rapidly reduce the temperature of strawberries while maintaining clean fruit skin,effectively inhibiting microbial growth and consequently minimizing strawberry spoilage during storage.The FAPC treatments reduced weight loss during storage,maintained color and fruit hardness,inhibited browning,decreased the total viable count,preserved soluble solid and ascorbic acid contents,inhibited the increase in MDA,increased SOD and CAT activities,and delayed POD and PPO activities.Strawberries treated with CRPC and FAPC had a shelf life of 15 d,which was 3 d longer than those treated with CWPC,EWPC,FIPC,and VPC.Therefore,FAPC treatment is the most suitable method for maintaining strawberry quality and extending its post-harvest shelf life.
基金funded by the Key Research and Development Project of Shandong Province(Grant No.2022CXGC020708)China Agriculture Research System(Grant No.CARS-21).
文摘Supplemental lighting is critical to the growth of greenhouse crops under the environmental conditions of low temperatures combined with weak radiation during the winter and spring seasons.To achieve the essential daily light integral(DLI)for greenhouse crop growth,a supplemental light strategy was proposed based on hourly light integral(HLI).The target HLI was calculated by dividing the target DLI by the duration of light exposure,while the actual HLI was obtained by accumulating the Photosynthetic Photon Flux Density(PPFD)based on real-time monitoring.Subsequently,the supplemental lighting duration for the next hour was determined by the difference between the target HLI and the actual HLI from all previous periods.Furthermore,the supplementary lighting strategy incorporated maximum values for both PPFD and temperature,and the supplemental light was withheld whenever the actual PPFD or temperature exceeded these values.An experiment was conducted on strawberries in a commercial greenhouse,targeting a DLI of 12.6 mol/(m2∙d),with no supplemental lighting as the control.The results indicated that LED supplemental lighting based on HLI increased the DLI to approximately10 mol/(m2∙d)and raised the strawberry canopy temperature by 1°C-2°C.Compared to the control treatment,the LED supplemental lighting based on HLI significantly improved the net photosynthetic rate,stem thickness,number of leaves,leaf length,and leaf width of the strawberry plants.Additionally,the fruit yield per plant,soluble solids content,and sugar-acid ratio in the supplemental lighting treatment increased by 32%,21%,and 33%,respectively.Thus,LED supplemental lighting based on HLI is an effective strategy for improving the yield and quality of greenhouse crop production.
文摘The carmine spider mite, Tetranychus cinnabarinus (Boisduval) and the twospotted spider mite, Tetranychus urticae Koch, are serious pests of strawberries and many other horticultural crops. Control of these pests has been heavily dependent upon chemical acaricides. Objectives of this study were to determine the resistance status of these two pest species to commonly used acaricides on strawberries in a year-round inten- sive horticultural production region. LC90 of abamectin for adult carmine spider mites was 4% whereas that for adult twospotted spider mites was 24% of the top label rate. LC90s of spiromesifen, etoxazole, hexythiazox and bifenazate were 0.5%, 0.5%, 1.4% and 83% of their respective highest label rates for carmine spider mite eggs, 0.7%, 2.7%, 12.1% and 347% of their respective highest label rates for the nymphs. LC90s of spiromesifen, etoxazole, hexythiazox and bifenazate were 4.6%, 11.1%, 310% and 62% of their respec- tive highest label rates for twospotted spider mite eggs, 3%, 13%, 432,214% and 15% of their respective highest label rates for the nymphs. Our results suggest that T. cinnabarinus have developed resistance to bifenazate and that the T. urticae have developed resistance to hexythiazox. These results strongly emphasize the need to develop resistance management strategies in the region.
文摘Strawberry (Fragaria ananassa) is well known among consumers because of its attractive color, delicious taste, and nutritional benefits. It is widely grown worldwide, but its production has become a significant challenge due to changing climatic conditions that lead to abiotic stresses in plants, which results in poor root development, nutrient deficiency, and poor plant health. In this context, the major abiotic stresses are temperature fluctuations, water shortages, and high levels of soil salinity. The accumulation of salts in excessive amounts disrupts the osmotic balance and impairs physiological processes. However, drought reduces fruit size, yield, and quality. Similarly, heat and cold stresses directly affect the rate of photosynthesis. Plants respond to these changes by producing growth-promoting hormones to ensure their survival. In the context of these abiotic stresses, beneficial microbes support plant growth. Among these fungi, the most extensively studied are plant growth-promoting rhizobacteria (PGPR) and arbuscular mycorrhizal fungi (AMF). When applied as bioinoculants, they are associated with roots and subsequently improve soil health, fruit quality, and overall crop yield. This review highlights the impacts of abiotic stresses on strawberry roots, growth, and hormonal pathways. Moreover, it focuses on the role of beneficial soil microbes in the mitigation of these responses.
基金sponsored by the Zhongshan Biological Breeding Laboratory Grant,China(ZSBBL-KY2023-08)the Natural Science Foundation of Jiangsu Province,China(BK20230572)the Basic Sciences(Natural Sciences)Research Project in Universities of Jiangsu Province,China(23KJB210015)。
文摘Anthocyanins are the flavonoid pigments responsible for vibrant fruit and flower colors,and they also play key roles in both plant physiology and human health.MYB transcription factors are crucial regulators of anthocyanin biosynthesis and accumulation,but the functional differences of homologous MYB transcription factors in regulating anthocyanin content are still unclear.In strawberry(Fragaria×ananassa),FaMYB44.1 and FaMYB44.3 are highly homologous MYB transcription factors localized in the nucleus and can be significantly induced by weak light.However,they differ in their effects on anthocyanin accumulation in the fruits.FaMYB44.1 inhibits anthocyanin synthesis by transcriptionally suppressing FaF3H,which is essential for anthocyanin regulation,in the‘BeniHoppe'and‘JianDe-Hong'strawberry varieties.In contrast,FaMYB44.3 does not affect anthocyanin levels.This study provides a comprehensive overview of the roles of FaMYB44.1 and FaMYB44.3 in anthocyanin regulation in strawberry fruits.By elucidating the molecular mechanisms underlying their regulation,this study enhances our understanding of how the interactions between genetic and environmental factors control fruit pigmentation and enhance the nutritional value of the fruit.
文摘To solve the problem of high labour costs in the strawberry picking process,the approach of a strawberry picking robot to identify and find strawberries is suggested in this study.First,1000 images including mature,immature,single,multiple,and occluded strawberries were collected,and a two-stage detection Mask R-CNN instance segmentation network and a one-stage detection YOLOv3 target detection network were used to train a strawberry identification model which classified strawberries into two categories:mature and immature.The accuracy ratings for YOLOv3 and Mask R-CNN were 93.4%and 94.5%,respectively.Second,the ZED stereo camera,triangulation,and a neural network were used to locate the strawberry in three dimensions.YOLOv3 identification accuracy was 3.1 mm,compared to Mask R-CNN of 3.9 mm.The strawberry detection and positioning method proposed in this study may effectively be used to supply the picking robot with a precise location of the ripe strawberry.
基金This research was funded by the National Key Research and Development Program of China(2017YFD0401302)Zhejiang Provincial Key Research and Development Program of China(2019C02074)Talent Project of Zhejiang Association for Science and Technology,China(2018YCGC006).
文摘Objectives: This study evaluated the potential of using electronic nose (e-nose) technology to non- destructively detect strawberry fruits with vibrational damage based on their volatile substances (VOCs). Materials and methods: Four groups of strawberries with different durations of vibrations (0, 0.5, 1, and 2 h) were prepared, and their e-nose signals were collected at 0, 1, 2, and 3 days after vibration treatment. Results: The results showed that when the samples from all four sampling days during storage were used for modelling, both the levels of vibrational damage and the day after the damage happened were accurately predicted. The best models had residual prediction deviation values of 2.984 and 5.478. The discrimination models for damaged strawberries also obtained good classification results, with an average correct answer rate of calibration and prediction of 99.24%. When the samples from each sampling day or vibration time were used for modelling, better results were obtained, but these models were not suitable for an actual situation. The gas chromatography-mass spectrophotometry results showed that the VOCs of the strawberries varied after experiencing vibrations, which was the basis for e-nose detection. Limitations: The changes in VOCs released by other forces should be studied in the future. Conclusions: The above results showed the potential use of e-nose technology to detect strawberries that have suffered vibrational damage.
基金supported by National Natural Science Foundation of China(Grant Nos.31672099,31801812)the National Modern Agroindustry Technology Research System Fund(Grant No.CARS-30-2-02)。
文摘Strawberry is a major fruit crop worldwide because its nutritional and health benefits to human health,but its productivity is limited by Botrytis cinerea.Sucrose nonfermentation 1-related protein kinase 1(SnRK1)has a defense function against pathogens,but the function of SnRK1 in the defense response to B.cinerea in plants is still unclear.In this study,FaSnRK1a-OE and RNAi fruits were constructed and then inoculated with B.cinerea.The result reveals a positive role of Fa SnRK1a in the regulation of resistance to gray mold.FaSnRK1a affects SA content by regulating FaPAL1 and FaPAL2 expressions.The genes related to the SA signaling pathway(FaTGA1 and FaTGA2.1)were significantly increased/decreased in FaSnRK1a-OE or FaSnRK1a-RNAi fruit,respectively.FaSnRK1a interacted with the FaWRKY33.2 protein and negatively regulated FaWRKY33.2 expression,and FaWRKY33.2 acts as a repressor of disease resistance to B.cinerea.Finally,FaSnRK1a regulates the expression of six PR genes and the activities of antioxidant enzymes to boost defense response after B.cinerea inoculation.Our findings showed that FaSnRK1a increases the resistance of strawberry fruit to B.cinerea via SA signaling pathway and interaction with the FaWRKY33.2 transcription factor.
文摘Strawberry (Fragaria × ananassa Duch.) is a significant global soft fruit crop, prized for its nutrient content and pleasant flavor. However, diseases, particularly grey mold caused by Botrytis cinerea Pers. Fr. poses major constraints to strawberry production and productivity. Grey mold severely impacts fruit quality and quantity, diminishing market value. This study evaluated five B. cinerea isolates from various locations in the Ri-Bhoi district of Meghalaya. All isolates were pathogenic, with isolate SGM 2 identified as highly virulent. Host range studies showed the pathogen-producing symptoms in the fava bean pods, marigold, gerbera, and chrysanthemum flowers and in the fava bean, gerbera, and lettuce leaves. In vitro tests revealed that neem extract (15% w/v) achieved the highest mycelial growth inhibition at 76.66%, while black turmeric extract (5% w/v) had the lowest inhibition at 9.62%. Dual culture methods with bio-control agents indicated that Bacillus subtilis recorded the highest mean inhibition at 77.03%, while Pseudomonas fluorescens had the lowest at 20.36% against the two virulent isolates. Pot evaluations demonstrated that B. subtilis resulted in the lowest percent disease index at 20.59%, followed by neem extract at 23.31%, with the highest disease index in the control group at 42.51%. Additionally, B. subtilis significantly improved plant growth, yielding an average of 0.32 kg compared to 0.14 kg in the control. The promising results of B. subtilis and neem leaf extract from this study suggest their potential for eco-friendly managing grey mold in strawberries under field conditions.
基金funded by Anhui Provincial Natural Science Foundation(No.2208085ME128)the Anhui University-Level Special Project of Anhui University of Science and Technology(No.XCZX2021-01)+1 种基金the Research and the Development Fund of the Institute of Environmental Friendly Materials and Occupational Health,Anhui University of Science and Technology(No.ALW2022YF06)Anhui Province New Era Education Quality Project(Graduate Education)(No.2022xscx073).
文摘The real-time detection and instance segmentation of strawberries constitute fundamental components in the development of strawberry harvesting robots.Real-time identification of strawberries in an unstructured envi-ronment is a challenging task.Current instance segmentation algorithms for strawberries suffer from issues such as poor real-time performance and low accuracy.To this end,the present study proposes an Efficient YOLACT(E-YOLACT)algorithm for strawberry detection and segmentation based on the YOLACT framework.The key enhancements of the E-YOLACT encompass the development of a lightweight attention mechanism,pyramid squeeze shuffle attention(PSSA),for efficient feature extraction.Additionally,an attention-guided context-feature pyramid network(AC-FPN)is employed instead of FPN to optimize the architecture’s performance.Furthermore,a feature-enhanced model(FEM)is introduced to enhance the prediction head’s capabilities,while efficient fast non-maximum suppression(EF-NMS)is devised to improve non-maximum suppression.The experimental results demonstrate that the E-YOLACT achieves a Box-mAP and Mask-mAP of 77.9 and 76.6,respectively,on the custom dataset.Moreover,it exhibits an impressive category accuracy of 93.5%.Notably,the E-YOLACT also demonstrates a remarkable real-time detection capability with a speed of 34.8 FPS.The method proposed in this article presents an efficient approach for the vision system of a strawberry-picking robot.
基金the National Natural Science Foundation of China,Grant Number 31800581.
文摘Ellagic acid(EA)is a natural antioxidant,widely present in a lot of forms’soft fruits,nuts,and other plant tissues,and helpful for promoting human health;however,its protective effect on postharvest fruit and improving the quality index of postharvest fruit have rarely been studied.In this experiment,the strawberries were soaked in 0,100,200,300,400,and 500 mg L^(−1) EA,respectively,and the influential EA on fruit quality and the antioxidant system of strawberries were studied.Compared with the control,EA treatment can reduce the browning degree and rotting rate of strawberry fruit during storage and augment the soluble solid content(SSC).EA treatment can also increase the content of related stuff and enzyme activity in antioxidant systems;the gene expression level of polyphenol oxidase(PPO)in strawberries treated with EA was always down-regulated,correspondingly,the expression of other antioxidant enzyme genes was enhanced.Among the strawberry fruits treated with EA of different concentrations,300 mg L^(−1) EA had the best effect in the process of strawberry preservation.The results suggested that the proper concentration of exogenous EA at 300 mg L−1 could maintain strawberries’quality and enhance the antioxidant system by improving the activities of antioxidative enzymes and the ascorbateglutathione(AsA-GSH)cycle during storage.
基金funded by the Natural Science Foundation of China (Grant No.32172512)the Jiangsu Agricultural Science and Technology Innovation Fund[Grant No.CX(20)2023]+1 种基金the Jiangsu Special Fund for Frontier Foundation Research of Carbon Peaking and Carbon Neutralization (Grant No.BK20220005)a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions。
文摘Strawberry Fusarium wilt (SFW) is a systematic soil-borne disease caused by Fusarium oxysporum f.sp.fragaria (Fof),which infects the vascular bundles,blocking water and nutrient transport from roots to the aboveground.It is a severe pathogen which spreads rapidly and destroys strawberry production.Finding a way to control this disease is of great scientific value and practical importance.In this study,three fungi were isolated from the vascular tissues of sick strawberries in the field.After DNA sequencing,they were identified as Fof,Aspergillus fumigatus and Trichoderma harzianum,respectively,among which the first two are pathogens and the third is a probiotic.All fungi were controlled by thiophanate-methyl (TM),a commercial fungicide.On PDA medium,20 mg·L^(-1)5-aminolevulinic acid (ALA),a natural non-protein amino acid,promoted T.harzianum proliferation,but inhibited Fof and A.fumigatus.In confrontation test,the growth of Fof or A.fumigatus was inhibited by T.harzianum and exogenous ALA promoted T.harzianum growth but significantly inhibited the pathogen growth.When three species of fungi were separately or combinedly inoculated on healthy strawberry plants,T.harzianum promoted plant growth and development while Fof or A.fumigatus caused growth retardation,where Fof directly caused leaf yellowing and plant wilting.When the plants inoculated with different fungus were treated with ALA,the results turned out that ALA alleviated SFW symptoms by bidirectionally promoting T.harzianum proliferation and inhibiting Fof and A.fumigatus.Thus,ALA might be used in comprehensively controlling SFW in strawberry industry.