Background:The academic community is increasingly interested in understanding the mechanisms through which gratitude influences coping strategies.In addition,the role of gratitude in fostering long-term resilience and...Background:The academic community is increasingly interested in understanding the mechanisms through which gratitude influences coping strategies.In addition,the role of gratitude in fostering long-term resilience and mental health outcomes has garnered significant attention.This study explores the mechanisms through which gratitude affects problem-focused coping strategies and emotion-focused coping strategies by constructing models involving gratitude,perceived social support,self-esteem,and problem-focused coping strategies,as well as models involving gratitude,perceived social support,self-esteem,and emotion-focused coping strategies.Methods:A longitudinal survey was conducted on 1666 Chinese university students using highly reliable and valid scales,including the Gratitude Scale,Perceived Social Support Scale,Self-Esteem Scale,and Brief Coping Strategies Scale.To examine whether perceived social support and self-esteem play a significant indirect role in the relationship between gratitude and problem-focused coping strategies,as well as between gratitude and emotion-focused coping strategies.Differences in variables based on demographic variables:We used one-way ANOVA to test the differences in gratitude,perceived social support,self-esteem,problem-focused coping strategies,and emotion-focused coping strategies among students of different grades and ages.Additionally,independent samples t-tests were used to examine the differences between students of different genders and household registrations.Results:The study found that(1)Gratitude significantly positively predicted perceived social support(β=0.661,p<0.001),self-esteem(β=0.234,p<0.001),and problemfocused coping strategies(β=0.130,p<0.001);(2)Perceived social support significantly positively predicted self-esteem(β=0.440,p<0.001;β=0.439,p<0.001),problem-focused coping strategies(β=0.443,p<0.001),and emotion-focused coping strategies(β=0.279,p<0.001);(3)Self-esteem significantly positively predicted problem-focused coping strategies(β=0.172,p<0.001)and significantly negatively predicted emotion-focused coping strategies(β=−0.205,p<0.001);(4)Gratitude can influence problem-focused coping strategies through the dual indirect effect of two mediating variables.After the inclusion of the mediating variables,the effect of problem-focused coping strategies in the indirect model was further strengthened.(5)Gratitude can influence emotion-focused coping strategies through a completely indirect effect on perceived social support and self-esteem.After inserting the mediating variables,the effect of emotionfocused coping strategies in the mediating model is enhanced.Conclusion:Gratitude can directly and positively predict problem-focused coping strategies,and it can also positively predict problem-focused coping strategies through the dual indirect effect of two mediating variables.Gratitude does not significantly predict emotion-focused coping strategies directly,but it can influence emotion-focused coping strategies via a double indirect pathway.展开更多
Clear aligner treatment is a novel technique in current orthodontic practice.Distinct from traditional fixed orthodontic appliances,clear aligners have different material features and biomechanical characteristics and...Clear aligner treatment is a novel technique in current orthodontic practice.Distinct from traditional fixed orthodontic appliances,clear aligners have different material features and biomechanical characteristics and treatment efficiencies,presenting new clinical challenges.Therefore,a comprehensive and systematic description of the key clinical aspects of clear aligner treatment is essential to enhance treatment efficacy and facilitate the advancement and wide adoption of this new technique.This expert consensus discusses case selection and grading of treatment difficulty,principle of clear aligner therapy,clinical procedures and potential complications,which are crucial to the clinical success of clear aligner treatment.展开更多
Ischemic stroke is a major cause of neurological deficits and high disability rate.As the primary immune cells of the central nervous system,microglia play dual roles in neuroinflammation and tissue repair following a...Ischemic stroke is a major cause of neurological deficits and high disability rate.As the primary immune cells of the central nervous system,microglia play dual roles in neuroinflammation and tissue repair following a stroke.Their dynamic activation and polarization states are key factors that influence the disease process and treatment outcomes.This review article investigates the role of microglia in ischemic stroke and explores potential intervention strategies.Microglia exhibit a dynamic functional state,transitioning between pro-inflammatory(M1)and anti-inflammatory(M2)phenotypes.This duality is crucial in ischemic stroke,as it maintains a balance between neuroinflammation and tissue repair.Activated microglia contribute to neuroinflammation through cytokine release and disruption of the blood-brain barrier,while simultaneously promoting tissue repair through anti-inflammatory responses and regeneration.Key pathways influencing microglial activation include Toll-like receptor 4/nuclear factor kappa B,mitogen-activated protein kinases,Janus kinase/signal transducer and activator of transcription,and phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin pathways.These pathways are targets for various experimental therapies aimed at promoting M2 polarization and mitigating damage.Potential therapeutic agents include natural compounds found in drugs such as minocycline,as well as traditional Chinese medicines.Drugs that target these regulatory mechanisms,such as small molecule inhibitors and components of traditional Chinese medicines,along with emerging technologies such as single-cell RNA sequencing and spatial transcriptomics,offer new therapeutic strategies and clinical translational potential for ischemic stroke.展开更多
Urbanization and industrialization have escalated water pollution,threatening ecosystems and human health.Water pollution not only degrades water quality but also poses long-term risks to human health through the food...Urbanization and industrialization have escalated water pollution,threatening ecosystems and human health.Water pollution not only degrades water quality but also poses long-term risks to human health through the food chain.The development of efficient wastewater detection and treatment methods is essential for mitigating this environmental hazard.Carbon dots(CDs),as emerging carbon-based nanomaterials,exhibit properties such as biocompatibility,photoluminescence(PL),water solubility,and strong adsorption,positioning them as promising candidates for environmental monitoring and management.Particularly in wastewater treatment,their optical and electron transfer properties make them ideal for pollutant detection and removal.Despite their potential,comprehensive reviews on CDs'role in wastewater treatment are scarce,often lacking detailed insights into their synthesis,PL mechanisms,and practical applications.This review systematically addresses the synthesis,PL mechanisms,and wastewater treatment applications of CDs,aiming to bridge existing research gaps.It begins with an overview of CDs structure and classification,essential for grasping their properties and uses.The paper then explores the pivotal PL mechanisms of CDs,crucial for their sensing capabilities.Next,comprehensive synthesis strategies are presented,encompassing both top-down and bottom-up strategies such as arc discharge,chemical oxidation,and hydrothermal/solvothermal synthesis.The diversity of these methods highlights the potential for tailored CDs production to suit specific environmental applications.Furthermore,the review systematically discusses the applications of CDs in wastewater treatment,including sensing,inorganic removal,and organic degradation.Finally,it delves into the research prospects and challenges of CDs,proposing future directions to enhance their role in wastewater treatment.展开更多
This study aims to explore the characteristics of novice teachers’inappropriate behaviors in classroom teaching and their intervention strategies.With the continuous improvement of education quality,novice teachers f...This study aims to explore the characteristics of novice teachers’inappropriate behaviors in classroom teaching and their intervention strategies.With the continuous improvement of education quality,novice teachers face increasing challenges in teaching practice.Their inappropriate behaviors not only affect the classroom atmosphere but may also negatively impact students’learning outcomes.Therefore,researching the characteristics of novice teachers’inappropriate behaviors and their intervention strategies holds significant scientific and social value.This study employs a combination of quantitative and qualitative methods to analyze the behavioral patterns of novice teachers in classroom teaching and proposes corresponding intervention strategies.The results indicate that novice teachers’inappropriate behaviors mainly manifest as poor classroom management,monotonous teaching methods,and insufficient interaction with students.Based on these findings,the study proposes a series of effective intervention strategies,including enhancing teacher training,optimizing teaching design,and promoting positive interactions between teachers and students.The conclusions of the study not only provide practical guidance for educational practice but also point out directions for future research,emphasizing the crucial role of teacher professional development in improving teaching quality.展开更多
The growing need for higher energy density in rechargeable batteries necessitates the exploration of cathode materials with enhanced specific energy for lithium-ion batteries.Due to their exceptional cost-effectivenes...The growing need for higher energy density in rechargeable batteries necessitates the exploration of cathode materials with enhanced specific energy for lithium-ion batteries.Due to their exceptional cost-effectiveness and specific capacity,lithium-rich manganese-based cathode materials(LRMs)obtain in-creasing attention in the pursuit of enhancing energy density and reducing costs.The implementation has faced obstacles in various applications due to substantial capacity and voltage degradation,insufficient safety performance,and restricted rate capability during cycling.These issues arise from the migration of transition metal,the release of oxygen,and structural transformation.In this review,we provide an integrated survey of the structure,lithium storage mechanism,challenges,and origins of LRMs,as well as recent advancements in various coating strategies.Particularly,the significance of optimizing the design of the cathode electrolyte interphase was emphasized to enhance electrode performance.Furthermore,future perspective was also addressed alongside in-situ measurements,advanced synthesis techniques,and the application of machine learning to overcome encountered challenges in LRMs.展开更多
Wire-arc directed energy deposition(wire-arc DED)enables the fabrication of large-scale metal components with rapid manufacturing ability and diverse material selection,making it a compelling technology in industries ...Wire-arc directed energy deposition(wire-arc DED)enables the fabrication of large-scale metal components with rapid manufacturing ability and diverse material selection,making it a compelling technology in industries and defenses.However,challenges in both macroscale and microscale defects still limit printed component widespread applications.Recent advances in automatic and intelligent technologies have brought a range of quality controllable strategies to the forefront.This review covers these new strategies for the printing component,including path planning,process monitoring,auxiliary processes,and post processing,while discussing the expectation for structure and quality improvement.In addition,the work brings new areas of intelligent wire-arc DED development,including advances in digital twin,visualization,and human-processing interaction to promote its performance.It is anticipated that a focus on intelligent system will be key to smart and high-quality manufacturing for future wire-arc DED.展开更多
Na_(3)V_(2)(PO_(4))_(3)(NVP)has garnered great attentions as a prospective cathode material for sodium-ion batteries(SIBs)by virtue of its decent theoretical capacity,superior ion conductivity and high structural stab...Na_(3)V_(2)(PO_(4))_(3)(NVP)has garnered great attentions as a prospective cathode material for sodium-ion batteries(SIBs)by virtue of its decent theoretical capacity,superior ion conductivity and high structural stability.However,the inherently poor electronic conductivity and sluggish sodium-ion diffusion kinetics of NVP material give rise to inferior rate performance and unsatisfactory energy density,which strictly confine its further application in SIBs.Thus,it is of significance to boost the sodium storage performance of NVP cathode material.Up to now,many methods have been developed to optimize the electrochemical performance of NVP cathode material.In this review,the latest advances in optimization strategies for improving the electrochemical performance of NVP cathode material are well summarized and discussed,including carbon coating or modification,foreign-ion doping or substitution and nanostructure and morphology design.The foreign-ion doping or substitution is highlighted,involving Na,V,and PO_(4)^(3−)sites,which include single-site doping,multiple-site doping,single-ion doping,multiple-ion doping and so on.Furthermore,the challenges and prospects of high-performance NVP cathode material are also put forward.It is believed that this review can provide a useful reference for designing and developing high-performance NVP cathode material toward the large-scale application in SIBs.展开更多
Pitch is a complex mixture of polycyclic aromatic hydrocarbons and their non-metal derivatives that has a high carbon content.Using pitch as a precursor for carbon materials in alkali metal ion(Li^(+)/Na^(+)/K^(+))bat...Pitch is a complex mixture of polycyclic aromatic hydrocarbons and their non-metal derivatives that has a high carbon content.Using pitch as a precursor for carbon materials in alkali metal ion(Li^(+)/Na^(+)/K^(+))batteries has become of great interest.However,its direct pyrolysis often leads to microstructures with a high orientation and small interlayer spacing due to uncontrolled liquid-phase carbonization,resulting in subpar electrochemical performance.It is therefore important to control the microstructures of pitch-derived carbon materials in order to improve their electrochemical properties.We evaluate the latest progress in the development of these materials using various microstructural engineering approaches,highlighting their use in metal-ion batteries and supercapacitors.The advantages and limitations of pitch molecules and their carbon derivatives are outlined,together with strategies for their modification in order to improve their properties for specific applications.Future research possibilities for structure optimization,scalable production,and waste pitch recycling are also considered.展开更多
We consider a single server constant retrial queue,in which a state-dependent service policy is used to control the service rate.Customer arrival follows Poisson process,while service time and retrial time are exponen...We consider a single server constant retrial queue,in which a state-dependent service policy is used to control the service rate.Customer arrival follows Poisson process,while service time and retrial time are exponential distributions.Whenever the server is available,it admits the retrial customers into service based on a first-come first-served rule.The service rate adjusts in real-time based on the retrial queue length.An iterative algorithm is proposed to numerically solve the personal optimal problem in the fully observable scenario.Furthermore,we investigate the impact of parameters on the social optimal threshold.The effectiveness of the results is illustrated by two examples.展开更多
Frailty has emerged as a pivotal determinant of post-liver transplant(LT)outcomes,yet its integration into clinical practice remains inconsistent.Defined by functional impairments and reduced physiologic reserve,frail...Frailty has emerged as a pivotal determinant of post-liver transplant(LT)outcomes,yet its integration into clinical practice remains inconsistent.Defined by functional impairments and reduced physiologic reserve,frailty transcends traditional metrics like the model for end-stage liver disease(MELD)score,demonstrating increasing predictive value for mortality beyond the immediate postoperative period.Recent findings suggest that frail recipients experience significantly higher mortality within the first 12 months following transplantation—a period when traditional monitoring often wanes.This raises critical questions about the adequacy of current assessment and follow-up protocols.The observed dissociation between MELD scores and long-term survival underscores the limitations of existing selection criteria.Frailty,as a dynamic and modifiable condition,represents an opportunity for targeted intervention.Prehabilitation programs focusing on nutritional optimization,physical rehabilitation,and psychosocial support could enhance resilience in transplant candidates,reducing their risk profile and improving post-transplant outcomes.Furthermore,these findings call for an expanded approach to post-transplant monitoring.Extending surveillance for frail recipients beyond standard timelines may facilitate early detection of complications,mitigating their impact on survival.Incorporating frailty into both pre-and post-transplant protocols could redefine how transplant centers evaluate and manage risk.This editorial advocates for a paradigm shift:Frailty must no longer be viewed as a secondary consideration but as a core element in LT care.By addressing frailty comprehensively,we can move toward more personalized,effective strategies that improve survival and quality of life for LT recipients.展开更多
Developing hydrogen energy is a key strategic pillar for global climate change mitigation and accelerating the energy transition.Currently,major economies globally are elevating hydrogen industry planning to national ...Developing hydrogen energy is a key strategic pillar for global climate change mitigation and accelerating the energy transition.Currently,major economies globally are elevating hydrogen industry planning to national energy strategy status,and international energy companies have begun to focus on developing hydrogen businesses.This study systematically reviews the development prospects,application fields,and strategic significance of hydrogen,summarizes the current status of the global hydrogen industry,analyzes the current development characteristics of the hydrogen industry,and reviews the hydrogen strategies of international energy companies.Finally,from a strategic,comprehensive,precise,and forward-looking perspective,it is suggested that China’s Energy enterprises promote the high-quality development of the hydrogen industry by overcoming bottlenecks across the entire hydrogen industry value chain,jointly driving industrial development from both the technology supply and demand sides,defining key development fields based on their respective strengths,and actively participating in international hydrogen energy trade.展开更多
Gastric cancer ranks fifth as the most common cancer and third as the leading cause of death worldwide.Risk factors include advancing age,low-fiber diets,high salt intake and Helicobacter pylori infection.Diagnosis re...Gastric cancer ranks fifth as the most common cancer and third as the leading cause of death worldwide.Risk factors include advancing age,low-fiber diets,high salt intake and Helicobacter pylori infection.Diagnosis relies on histological examination following endoscopic biopsy with staging accomplished through various imaging modalities.Early gastric cancer is primarily managed via endoscopic resection,while non-early operable cases typically undergo surgery.Advanced cases are addressed through sequential chemotherapy lines,with initial treatment usually comprising a platinum and fluoropyrimidine combination.Linitis plastica(LP)is a rare,aggressive form of gastric cancer characterized by diffuse infiltration of the gastric wall,resulting in poor outcomes even after curative resection.The absence of a standardized definition contributes to uncertainty regarding the precise incidence of these tumors.LP is often diagnosed at advanced stages,with a reported median survival rate of approximately 4%-29%,despite“curative resection”.Its distinctive biological behavior includes perineural invasion,nodal metastasis,and peritoneal dissemination.The bleak prognosis for LP patients partly stems from delayed diagnosis and its aggressive biological nature,posing significant challenges for clinical management.Currently,no specialized treatment strategy exists for LP,and clinical approaches typically align with those used for general gastric cancer treatment.Surgical resection is the primary treatment,but the optimal surgical approach remains contentious.Recent studies have investigated the efficacy of neoadjuvant chemotherapy and radiotherapy in improving survival outcomes for LP patients.However,controversies persist regarding the role of adjuvant chemotherapy and postoperative radiotherapy.LP requires a multidisciplinary approach and personalized treatment strategies tailored to each patient’s condition.Further research is needed to elucidate optimal therapeutic interventions and improve outcomes for LP patients.展开更多
As a novel two-dimensional(2D)material,MXenes are anticipated to have a significant impact on future aqueous energy storage and conversion technologies owing to their unique intrinsic laminar structure and exceptional...As a novel two-dimensional(2D)material,MXenes are anticipated to have a significant impact on future aqueous energy storage and conversion technologies owing to their unique intrinsic laminar structure and exceptional physicochemical properties.Nevertheless,the fabrication and utilization of functional MXenebased devices face formidable challenges due to their susceptibility to oxidative degradation in aqueous solutions.This review begins with an outline of various preparation techniques for MXenes and their implications for structure and surface chemistry.Subsequently,the controversial oxidation mechanisms are discussed,followed by a summary of currently employed oxidation characterization techniques.Additionally,the factors influencing MXene oxidation are then introduced,encompassing chemical composition(types of M,X elements,layer numbers,terminations,and defects)as well as environment(atmosphere,temperature,light,potential,solution pH,free water and O_(2)content).The review then shifts its focus to strategies aiming to prevent or delay MXene oxidation,thereby expanding the applicability of MXenes in complex environments.Finally,the challenges and prospects within this rapidly-growing research field are presented to promote further advancements of MXenes in aqueous storage systems.展开更多
The interplay of academic atmosphere,learning motivation,and strategies inherently influences English learning.Effective vocabulary acquisition strategies significantly influence the achievements of English acquisitio...The interplay of academic atmosphere,learning motivation,and strategies inherently influences English learning.Effective vocabulary acquisition strategies significantly influence the achievements of English acquisition.Vocabulary mastery,a cornerstone of middle school English education,raises a critical question:How can vocabulary strategies optimize students’memory,understanding,and vocabulary application?This article elaborates on the importance and characteristics of vocabulary learning in Chinese junior high schools,analyzes definitions and theories of learning strategies,and proposes specific vocabulary approaches tailored to junior high school students in rural-urban fringe areas.展开更多
Infrared optoelectronic sensing is the core of many critical applications such as night vision,health and medication,military,space exploration,etc.Further including mechanical flexibility as a new dimension enables n...Infrared optoelectronic sensing is the core of many critical applications such as night vision,health and medication,military,space exploration,etc.Further including mechanical flexibility as a new dimension enables novel features of adaptability and conformability,promising for developing next-generation optoelectronic sensory applications toward reduced size,weight,price,power consumption,and enhanced performance(SWaP^(3)).However,in this emerging research frontier,challenges persist in simultaneously achieving high infrared response and good mechanical deformability in devices and integrated systems.Therefore,we perform a comprehensive review of the design strategies and insights of flexible infrared optoelectronic sensors,including the fundamentals of infrared photodetectors,selection of materials and device architectures,fabrication techniques and design strategies,and the discussion of architectural and functional integration towards applications in wearable optoelectronics and advanced image sensing.Finally,this article offers insights into future directions to practically realize the ultra-high performance and smart sensors enabled by infrared-sensitive materials,covering challenges in materials development and device micro-/nanofabrication.Benchmarks for scaling these techniques across fabrication,performance,and integration are presented,alongside perspectives on potential applications in medication and health,biomimetic vision,and neuromorphic sensory systems,etc.展开更多
Enhancing neurological recovery and improving the prognosis of spinal cord injury have gained research attention recently.Spinal cord injury is associated with a complex molecular and cellular microenvironment.This co...Enhancing neurological recovery and improving the prognosis of spinal cord injury have gained research attention recently.Spinal cord injury is associated with a complex molecular and cellular microenvironment.This complexity has prompted researchers to elucidate the underlying pathophysiological mechanisms and changes and to identify effective treatment strategies.Traditional approaches for spinal cord injury repair include surgery,oral or intravenous medications,and administration of neurotrophic factors;however,the efficacy of these approaches remains inconclusive,and serious adverse reactions continue to be a concern.With advancements in tissue engineering and regenerative medicine,emerging strategies for spinal cord injury repair now involve nanoparticle-based nanodelivery systems,scaffolds,and functional recovery techniques that incorporate biomaterials,bioengineering,stem cell,and growth factors as well as three-dimensional bioprinting.Ideal biomaterial scaffolds should not only provide structural support for neuron migration,adhesion,proliferation,and differentiation but also mimic the mechanical properties of natural spinal cord tissue.Additionally,these scaffolds should facilitate axon growth and neurogenesis by offering adjustable topography and a range of physical and biochemical cues.The three-dimensionally interconnected porous structure and appropriate physicochemical properties enabled by three-dimensional biomimetic printing technology can maximize the potential of biomaterials used for treating spinal cord injury.Therefore,correct selection and application of scaffolds,coupled with successful clinical translation,represent promising clinical objectives to enhance the treatment efficacy for and prognosis of spinal cord injury.This review elucidates the key mechanisms underlying the occurrence of spinal cord injury and regeneration post-injury,including neuroinflammation,oxidative stress,axon regeneration,and angiogenesis.This review also briefly discusses the critical role of nanodelivery systems used for repair and regeneration of injured spinal cord,highlighting the influence of nanoparticles and the factors that affect delivery efficiency.Finally,this review highlights tissue engineering strategies and the application of biomaterial scaffolds for the treatment of spinal cord injury.It discusses various types of scaffolds,their integrations with stem cells or growth factors,and approaches for optimization of scaffold design.展开更多
The authors regret that the affiliation b and c are wrong.Affiliation b should be changed to“School of Civil and Environmental Engineering,Harbin Institute of Technology,Shenzhen,China;Department of Data Analysis and...The authors regret that the affiliation b and c are wrong.Affiliation b should be changed to“School of Civil and Environmental Engineering,Harbin Institute of Technology,Shenzhen,China;Department of Data Analysis and Mathematical Modelling,Ghent University,Belgium”.And affiliation c should be changed to“State Key Laboratory of Urban Water Resource and Environment(SKLUWRE),School of Environment,Harbin Institute of Technology,China”.展开更多
Autosamplers are indispensable key equipment in modern laboratories,playing a pivotal role in fields such as biomedicine,environmental monitoring,food safety,and materials science.However,domestic autosampler enterpri...Autosamplers are indispensable key equipment in modern laboratories,playing a pivotal role in fields such as biomedicine,environmental monitoring,food safety,and materials science.However,domestic autosampler enterprises are facing formidable challenges,confronted by the technological barriers and brand dominance of international giants,as well as increasingly fierce homogeneous competition in the domestic market.This article aims to thoroughly analyze the current market landscape and,based on seven key dimensions—strategic positioning,product technology,sales channels,brand building,service and support,supply chain optimization,and talent development—propose a series of effective market-winning strategies.This will provide theoretical guidance and practical reference for domestic autosampler enterprises to achieve breakthroughs and sustainable development amidst fierce market competition.展开更多
Thyroid cancer is a common endocrine malignancy with a rising incidence.Pa-tients often suffer from mental pain due to concerns about recurrence,treatment-related side-effect,and body image changes.Demographic factors...Thyroid cancer is a common endocrine malignancy with a rising incidence.Pa-tients often suffer from mental pain due to concerns about recurrence,treatment-related side-effect,and body image changes.Demographic factors like age,gender,physiological factors such as somatic symptoms and disease stage,co-gnitive-regulatory factors including negative and positive thinking,and social factors like work,economy,education level,and social support all influence their mental state.Existing interventions,including nursing,psychological,and tra-ditional Chinese medicine-based methods,have some benefits but face limitations like short-term effectiveness and lack of standardization.Future research should focus on creating better-defined,long-term,and widely applicable intervention programs and explore positive psychology-based approaches to improve patients'mental well-being and quality of life.展开更多
基金Tourism College of Zhejiang Fund provided financial support for this research(Project Number:2023CGYB05).
文摘Background:The academic community is increasingly interested in understanding the mechanisms through which gratitude influences coping strategies.In addition,the role of gratitude in fostering long-term resilience and mental health outcomes has garnered significant attention.This study explores the mechanisms through which gratitude affects problem-focused coping strategies and emotion-focused coping strategies by constructing models involving gratitude,perceived social support,self-esteem,and problem-focused coping strategies,as well as models involving gratitude,perceived social support,self-esteem,and emotion-focused coping strategies.Methods:A longitudinal survey was conducted on 1666 Chinese university students using highly reliable and valid scales,including the Gratitude Scale,Perceived Social Support Scale,Self-Esteem Scale,and Brief Coping Strategies Scale.To examine whether perceived social support and self-esteem play a significant indirect role in the relationship between gratitude and problem-focused coping strategies,as well as between gratitude and emotion-focused coping strategies.Differences in variables based on demographic variables:We used one-way ANOVA to test the differences in gratitude,perceived social support,self-esteem,problem-focused coping strategies,and emotion-focused coping strategies among students of different grades and ages.Additionally,independent samples t-tests were used to examine the differences between students of different genders and household registrations.Results:The study found that(1)Gratitude significantly positively predicted perceived social support(β=0.661,p<0.001),self-esteem(β=0.234,p<0.001),and problemfocused coping strategies(β=0.130,p<0.001);(2)Perceived social support significantly positively predicted self-esteem(β=0.440,p<0.001;β=0.439,p<0.001),problem-focused coping strategies(β=0.443,p<0.001),and emotion-focused coping strategies(β=0.279,p<0.001);(3)Self-esteem significantly positively predicted problem-focused coping strategies(β=0.172,p<0.001)and significantly negatively predicted emotion-focused coping strategies(β=−0.205,p<0.001);(4)Gratitude can influence problem-focused coping strategies through the dual indirect effect of two mediating variables.After the inclusion of the mediating variables,the effect of problem-focused coping strategies in the indirect model was further strengthened.(5)Gratitude can influence emotion-focused coping strategies through a completely indirect effect on perceived social support and self-esteem.After inserting the mediating variables,the effect of emotionfocused coping strategies in the mediating model is enhanced.Conclusion:Gratitude can directly and positively predict problem-focused coping strategies,and it can also positively predict problem-focused coping strategies through the dual indirect effect of two mediating variables.Gratitude does not significantly predict emotion-focused coping strategies directly,but it can influence emotion-focused coping strategies via a double indirect pathway.
文摘Clear aligner treatment is a novel technique in current orthodontic practice.Distinct from traditional fixed orthodontic appliances,clear aligners have different material features and biomechanical characteristics and treatment efficiencies,presenting new clinical challenges.Therefore,a comprehensive and systematic description of the key clinical aspects of clear aligner treatment is essential to enhance treatment efficacy and facilitate the advancement and wide adoption of this new technique.This expert consensus discusses case selection and grading of treatment difficulty,principle of clear aligner therapy,clinical procedures and potential complications,which are crucial to the clinical success of clear aligner treatment.
基金supported by the National Natural Science Foundation of China,82471345(to LC)the Key Research and Development Program for Social Development by the Jiangsu Provincial Department of Science and Technology.No.BE2022668(to LC).
文摘Ischemic stroke is a major cause of neurological deficits and high disability rate.As the primary immune cells of the central nervous system,microglia play dual roles in neuroinflammation and tissue repair following a stroke.Their dynamic activation and polarization states are key factors that influence the disease process and treatment outcomes.This review article investigates the role of microglia in ischemic stroke and explores potential intervention strategies.Microglia exhibit a dynamic functional state,transitioning between pro-inflammatory(M1)and anti-inflammatory(M2)phenotypes.This duality is crucial in ischemic stroke,as it maintains a balance between neuroinflammation and tissue repair.Activated microglia contribute to neuroinflammation through cytokine release and disruption of the blood-brain barrier,while simultaneously promoting tissue repair through anti-inflammatory responses and regeneration.Key pathways influencing microglial activation include Toll-like receptor 4/nuclear factor kappa B,mitogen-activated protein kinases,Janus kinase/signal transducer and activator of transcription,and phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin pathways.These pathways are targets for various experimental therapies aimed at promoting M2 polarization and mitigating damage.Potential therapeutic agents include natural compounds found in drugs such as minocycline,as well as traditional Chinese medicines.Drugs that target these regulatory mechanisms,such as small molecule inhibitors and components of traditional Chinese medicines,along with emerging technologies such as single-cell RNA sequencing and spatial transcriptomics,offer new therapeutic strategies and clinical translational potential for ischemic stroke.
基金supported by the Natural Science Foundation of Hebei Province(No.E2022208046)National Science Foundation of China(No.52004080)+2 种基金Key project of National Natural Science Foundation of China(No.U20A20130)Key research and development project of Hebei Province(No.22373704D)2023 Central Government Guide Local Science and Technology Development Fund Project(No.236Z1812 G)。
文摘Urbanization and industrialization have escalated water pollution,threatening ecosystems and human health.Water pollution not only degrades water quality but also poses long-term risks to human health through the food chain.The development of efficient wastewater detection and treatment methods is essential for mitigating this environmental hazard.Carbon dots(CDs),as emerging carbon-based nanomaterials,exhibit properties such as biocompatibility,photoluminescence(PL),water solubility,and strong adsorption,positioning them as promising candidates for environmental monitoring and management.Particularly in wastewater treatment,their optical and electron transfer properties make them ideal for pollutant detection and removal.Despite their potential,comprehensive reviews on CDs'role in wastewater treatment are scarce,often lacking detailed insights into their synthesis,PL mechanisms,and practical applications.This review systematically addresses the synthesis,PL mechanisms,and wastewater treatment applications of CDs,aiming to bridge existing research gaps.It begins with an overview of CDs structure and classification,essential for grasping their properties and uses.The paper then explores the pivotal PL mechanisms of CDs,crucial for their sensing capabilities.Next,comprehensive synthesis strategies are presented,encompassing both top-down and bottom-up strategies such as arc discharge,chemical oxidation,and hydrothermal/solvothermal synthesis.The diversity of these methods highlights the potential for tailored CDs production to suit specific environmental applications.Furthermore,the review systematically discusses the applications of CDs in wastewater treatment,including sensing,inorganic removal,and organic degradation.Finally,it delves into the research prospects and challenges of CDs,proposing future directions to enhance their role in wastewater treatment.
文摘This study aims to explore the characteristics of novice teachers’inappropriate behaviors in classroom teaching and their intervention strategies.With the continuous improvement of education quality,novice teachers face increasing challenges in teaching practice.Their inappropriate behaviors not only affect the classroom atmosphere but may also negatively impact students’learning outcomes.Therefore,researching the characteristics of novice teachers’inappropriate behaviors and their intervention strategies holds significant scientific and social value.This study employs a combination of quantitative and qualitative methods to analyze the behavioral patterns of novice teachers in classroom teaching and proposes corresponding intervention strategies.The results indicate that novice teachers’inappropriate behaviors mainly manifest as poor classroom management,monotonous teaching methods,and insufficient interaction with students.Based on these findings,the study proposes a series of effective intervention strategies,including enhancing teacher training,optimizing teaching design,and promoting positive interactions between teachers and students.The conclusions of the study not only provide practical guidance for educational practice but also point out directions for future research,emphasizing the crucial role of teacher professional development in improving teaching quality.
基金the support from the National Natural Science Foun-dation of China(Grant No.U21A20311)the Distinguished Scientist Fellowship Program(DSFP)at King Saud University,Riyadh,Saudi Arabia.
文摘The growing need for higher energy density in rechargeable batteries necessitates the exploration of cathode materials with enhanced specific energy for lithium-ion batteries.Due to their exceptional cost-effectiveness and specific capacity,lithium-rich manganese-based cathode materials(LRMs)obtain in-creasing attention in the pursuit of enhancing energy density and reducing costs.The implementation has faced obstacles in various applications due to substantial capacity and voltage degradation,insufficient safety performance,and restricted rate capability during cycling.These issues arise from the migration of transition metal,the release of oxygen,and structural transformation.In this review,we provide an integrated survey of the structure,lithium storage mechanism,challenges,and origins of LRMs,as well as recent advancements in various coating strategies.Particularly,the significance of optimizing the design of the cathode electrolyte interphase was emphasized to enhance electrode performance.Furthermore,future perspective was also addressed alongside in-situ measurements,advanced synthesis techniques,and the application of machine learning to overcome encountered challenges in LRMs.
基金fully appreciate financial support from NingXia Natural Science Foundation for Outstanding Young Scholar(No.2024AAC04002)CAS“Light of West China”Program,National Natural Science Foundation of China(Key Program,No.12232013)Natural Science Foundation of Ningxia(Key Program,No.2022AAC2003)。
文摘Wire-arc directed energy deposition(wire-arc DED)enables the fabrication of large-scale metal components with rapid manufacturing ability and diverse material selection,making it a compelling technology in industries and defenses.However,challenges in both macroscale and microscale defects still limit printed component widespread applications.Recent advances in automatic and intelligent technologies have brought a range of quality controllable strategies to the forefront.This review covers these new strategies for the printing component,including path planning,process monitoring,auxiliary processes,and post processing,while discussing the expectation for structure and quality improvement.In addition,the work brings new areas of intelligent wire-arc DED development,including advances in digital twin,visualization,and human-processing interaction to promote its performance.It is anticipated that a focus on intelligent system will be key to smart and high-quality manufacturing for future wire-arc DED.
基金partly supported by the National Natural Science Foundation of China(Grant No.52272225).
文摘Na_(3)V_(2)(PO_(4))_(3)(NVP)has garnered great attentions as a prospective cathode material for sodium-ion batteries(SIBs)by virtue of its decent theoretical capacity,superior ion conductivity and high structural stability.However,the inherently poor electronic conductivity and sluggish sodium-ion diffusion kinetics of NVP material give rise to inferior rate performance and unsatisfactory energy density,which strictly confine its further application in SIBs.Thus,it is of significance to boost the sodium storage performance of NVP cathode material.Up to now,many methods have been developed to optimize the electrochemical performance of NVP cathode material.In this review,the latest advances in optimization strategies for improving the electrochemical performance of NVP cathode material are well summarized and discussed,including carbon coating or modification,foreign-ion doping or substitution and nanostructure and morphology design.The foreign-ion doping or substitution is highlighted,involving Na,V,and PO_(4)^(3−)sites,which include single-site doping,multiple-site doping,single-ion doping,multiple-ion doping and so on.Furthermore,the challenges and prospects of high-performance NVP cathode material are also put forward.It is believed that this review can provide a useful reference for designing and developing high-performance NVP cathode material toward the large-scale application in SIBs.
文摘Pitch is a complex mixture of polycyclic aromatic hydrocarbons and their non-metal derivatives that has a high carbon content.Using pitch as a precursor for carbon materials in alkali metal ion(Li^(+)/Na^(+)/K^(+))batteries has become of great interest.However,its direct pyrolysis often leads to microstructures with a high orientation and small interlayer spacing due to uncontrolled liquid-phase carbonization,resulting in subpar electrochemical performance.It is therefore important to control the microstructures of pitch-derived carbon materials in order to improve their electrochemical properties.We evaluate the latest progress in the development of these materials using various microstructural engineering approaches,highlighting their use in metal-ion batteries and supercapacitors.The advantages and limitations of pitch molecules and their carbon derivatives are outlined,together with strategies for their modification in order to improve their properties for specific applications.Future research possibilities for structure optimization,scalable production,and waste pitch recycling are also considered.
基金supported by the National Natural Science Foundation of China(Grant No.11971486)。
文摘We consider a single server constant retrial queue,in which a state-dependent service policy is used to control the service rate.Customer arrival follows Poisson process,while service time and retrial time are exponential distributions.Whenever the server is available,it admits the retrial customers into service based on a first-come first-served rule.The service rate adjusts in real-time based on the retrial queue length.An iterative algorithm is proposed to numerically solve the personal optimal problem in the fully observable scenario.Furthermore,we investigate the impact of parameters on the social optimal threshold.The effectiveness of the results is illustrated by two examples.
文摘Frailty has emerged as a pivotal determinant of post-liver transplant(LT)outcomes,yet its integration into clinical practice remains inconsistent.Defined by functional impairments and reduced physiologic reserve,frailty transcends traditional metrics like the model for end-stage liver disease(MELD)score,demonstrating increasing predictive value for mortality beyond the immediate postoperative period.Recent findings suggest that frail recipients experience significantly higher mortality within the first 12 months following transplantation—a period when traditional monitoring often wanes.This raises critical questions about the adequacy of current assessment and follow-up protocols.The observed dissociation between MELD scores and long-term survival underscores the limitations of existing selection criteria.Frailty,as a dynamic and modifiable condition,represents an opportunity for targeted intervention.Prehabilitation programs focusing on nutritional optimization,physical rehabilitation,and psychosocial support could enhance resilience in transplant candidates,reducing their risk profile and improving post-transplant outcomes.Furthermore,these findings call for an expanded approach to post-transplant monitoring.Extending surveillance for frail recipients beyond standard timelines may facilitate early detection of complications,mitigating their impact on survival.Incorporating frailty into both pre-and post-transplant protocols could redefine how transplant centers evaluate and manage risk.This editorial advocates for a paradigm shift:Frailty must no longer be viewed as a secondary consideration but as a core element in LT care.By addressing frailty comprehensively,we can move toward more personalized,effective strategies that improve survival and quality of life for LT recipients.
文摘Developing hydrogen energy is a key strategic pillar for global climate change mitigation and accelerating the energy transition.Currently,major economies globally are elevating hydrogen industry planning to national energy strategy status,and international energy companies have begun to focus on developing hydrogen businesses.This study systematically reviews the development prospects,application fields,and strategic significance of hydrogen,summarizes the current status of the global hydrogen industry,analyzes the current development characteristics of the hydrogen industry,and reviews the hydrogen strategies of international energy companies.Finally,from a strategic,comprehensive,precise,and forward-looking perspective,it is suggested that China’s Energy enterprises promote the high-quality development of the hydrogen industry by overcoming bottlenecks across the entire hydrogen industry value chain,jointly driving industrial development from both the technology supply and demand sides,defining key development fields based on their respective strengths,and actively participating in international hydrogen energy trade.
文摘Gastric cancer ranks fifth as the most common cancer and third as the leading cause of death worldwide.Risk factors include advancing age,low-fiber diets,high salt intake and Helicobacter pylori infection.Diagnosis relies on histological examination following endoscopic biopsy with staging accomplished through various imaging modalities.Early gastric cancer is primarily managed via endoscopic resection,while non-early operable cases typically undergo surgery.Advanced cases are addressed through sequential chemotherapy lines,with initial treatment usually comprising a platinum and fluoropyrimidine combination.Linitis plastica(LP)is a rare,aggressive form of gastric cancer characterized by diffuse infiltration of the gastric wall,resulting in poor outcomes even after curative resection.The absence of a standardized definition contributes to uncertainty regarding the precise incidence of these tumors.LP is often diagnosed at advanced stages,with a reported median survival rate of approximately 4%-29%,despite“curative resection”.Its distinctive biological behavior includes perineural invasion,nodal metastasis,and peritoneal dissemination.The bleak prognosis for LP patients partly stems from delayed diagnosis and its aggressive biological nature,posing significant challenges for clinical management.Currently,no specialized treatment strategy exists for LP,and clinical approaches typically align with those used for general gastric cancer treatment.Surgical resection is the primary treatment,but the optimal surgical approach remains contentious.Recent studies have investigated the efficacy of neoadjuvant chemotherapy and radiotherapy in improving survival outcomes for LP patients.However,controversies persist regarding the role of adjuvant chemotherapy and postoperative radiotherapy.LP requires a multidisciplinary approach and personalized treatment strategies tailored to each patient’s condition.Further research is needed to elucidate optimal therapeutic interventions and improve outcomes for LP patients.
基金supported by the Fundamental Research Funds for the Central Universities(No.2042023kf0094)the National Key Research and Development Program of China(No.2022YFA1502902)the National Natural Science Foundation of China(No.22101217).
文摘As a novel two-dimensional(2D)material,MXenes are anticipated to have a significant impact on future aqueous energy storage and conversion technologies owing to their unique intrinsic laminar structure and exceptional physicochemical properties.Nevertheless,the fabrication and utilization of functional MXenebased devices face formidable challenges due to their susceptibility to oxidative degradation in aqueous solutions.This review begins with an outline of various preparation techniques for MXenes and their implications for structure and surface chemistry.Subsequently,the controversial oxidation mechanisms are discussed,followed by a summary of currently employed oxidation characterization techniques.Additionally,the factors influencing MXene oxidation are then introduced,encompassing chemical composition(types of M,X elements,layer numbers,terminations,and defects)as well as environment(atmosphere,temperature,light,potential,solution pH,free water and O_(2)content).The review then shifts its focus to strategies aiming to prevent or delay MXene oxidation,thereby expanding the applicability of MXenes in complex environments.Finally,the challenges and prospects within this rapidly-growing research field are presented to promote further advancements of MXenes in aqueous storage systems.
文摘The interplay of academic atmosphere,learning motivation,and strategies inherently influences English learning.Effective vocabulary acquisition strategies significantly influence the achievements of English acquisition.Vocabulary mastery,a cornerstone of middle school English education,raises a critical question:How can vocabulary strategies optimize students’memory,understanding,and vocabulary application?This article elaborates on the importance and characteristics of vocabulary learning in Chinese junior high schools,analyzes definitions and theories of learning strategies,and proposes specific vocabulary approaches tailored to junior high school students in rural-urban fringe areas.
基金support from the National Natural Science Foundation of China(62204015)the Beijing Natural Science Foundation(L223006).
文摘Infrared optoelectronic sensing is the core of many critical applications such as night vision,health and medication,military,space exploration,etc.Further including mechanical flexibility as a new dimension enables novel features of adaptability and conformability,promising for developing next-generation optoelectronic sensory applications toward reduced size,weight,price,power consumption,and enhanced performance(SWaP^(3)).However,in this emerging research frontier,challenges persist in simultaneously achieving high infrared response and good mechanical deformability in devices and integrated systems.Therefore,we perform a comprehensive review of the design strategies and insights of flexible infrared optoelectronic sensors,including the fundamentals of infrared photodetectors,selection of materials and device architectures,fabrication techniques and design strategies,and the discussion of architectural and functional integration towards applications in wearable optoelectronics and advanced image sensing.Finally,this article offers insights into future directions to practically realize the ultra-high performance and smart sensors enabled by infrared-sensitive materials,covering challenges in materials development and device micro-/nanofabrication.Benchmarks for scaling these techniques across fabrication,performance,and integration are presented,alongside perspectives on potential applications in medication and health,biomimetic vision,and neuromorphic sensory systems,etc.
基金supported by the Sichuan Science and Technology Program,No.2023YFS0164(to JC)the National Natural Science Foundation of China,No.82401629(to XL)+1 种基金the Natural Science Foundation of Sichuan Province,No.2024NSFSC1646(to XL)the China Postdoctoral Science Foundation,Nos.GZC20231811(to XL)and 2024T170601(to XL)。
文摘Enhancing neurological recovery and improving the prognosis of spinal cord injury have gained research attention recently.Spinal cord injury is associated with a complex molecular and cellular microenvironment.This complexity has prompted researchers to elucidate the underlying pathophysiological mechanisms and changes and to identify effective treatment strategies.Traditional approaches for spinal cord injury repair include surgery,oral or intravenous medications,and administration of neurotrophic factors;however,the efficacy of these approaches remains inconclusive,and serious adverse reactions continue to be a concern.With advancements in tissue engineering and regenerative medicine,emerging strategies for spinal cord injury repair now involve nanoparticle-based nanodelivery systems,scaffolds,and functional recovery techniques that incorporate biomaterials,bioengineering,stem cell,and growth factors as well as three-dimensional bioprinting.Ideal biomaterial scaffolds should not only provide structural support for neuron migration,adhesion,proliferation,and differentiation but also mimic the mechanical properties of natural spinal cord tissue.Additionally,these scaffolds should facilitate axon growth and neurogenesis by offering adjustable topography and a range of physical and biochemical cues.The three-dimensionally interconnected porous structure and appropriate physicochemical properties enabled by three-dimensional biomimetic printing technology can maximize the potential of biomaterials used for treating spinal cord injury.Therefore,correct selection and application of scaffolds,coupled with successful clinical translation,represent promising clinical objectives to enhance the treatment efficacy for and prognosis of spinal cord injury.This review elucidates the key mechanisms underlying the occurrence of spinal cord injury and regeneration post-injury,including neuroinflammation,oxidative stress,axon regeneration,and angiogenesis.This review also briefly discusses the critical role of nanodelivery systems used for repair and regeneration of injured spinal cord,highlighting the influence of nanoparticles and the factors that affect delivery efficiency.Finally,this review highlights tissue engineering strategies and the application of biomaterial scaffolds for the treatment of spinal cord injury.It discusses various types of scaffolds,their integrations with stem cells or growth factors,and approaches for optimization of scaffold design.
文摘The authors regret that the affiliation b and c are wrong.Affiliation b should be changed to“School of Civil and Environmental Engineering,Harbin Institute of Technology,Shenzhen,China;Department of Data Analysis and Mathematical Modelling,Ghent University,Belgium”.And affiliation c should be changed to“State Key Laboratory of Urban Water Resource and Environment(SKLUWRE),School of Environment,Harbin Institute of Technology,China”.
文摘Autosamplers are indispensable key equipment in modern laboratories,playing a pivotal role in fields such as biomedicine,environmental monitoring,food safety,and materials science.However,domestic autosampler enterprises are facing formidable challenges,confronted by the technological barriers and brand dominance of international giants,as well as increasingly fierce homogeneous competition in the domestic market.This article aims to thoroughly analyze the current market landscape and,based on seven key dimensions—strategic positioning,product technology,sales channels,brand building,service and support,supply chain optimization,and talent development—propose a series of effective market-winning strategies.This will provide theoretical guidance and practical reference for domestic autosampler enterprises to achieve breakthroughs and sustainable development amidst fierce market competition.
文摘Thyroid cancer is a common endocrine malignancy with a rising incidence.Pa-tients often suffer from mental pain due to concerns about recurrence,treatment-related side-effect,and body image changes.Demographic factors like age,gender,physiological factors such as somatic symptoms and disease stage,co-gnitive-regulatory factors including negative and positive thinking,and social factors like work,economy,education level,and social support all influence their mental state.Existing interventions,including nursing,psychological,and tra-ditional Chinese medicine-based methods,have some benefits but face limitations like short-term effectiveness and lack of standardization.Future research should focus on creating better-defined,long-term,and widely applicable intervention programs and explore positive psychology-based approaches to improve patients'mental well-being and quality of life.