期刊文献+
共找到3,967篇文章
< 1 2 199 >
每页显示 20 50 100
Straining流对柱状晶体在三元过冷熔体中生长的影响 被引量:1
1
作者 范海龙 陈明文 《物理学报》 SCIE EI CAS CSCD 北大核心 2020年第11期205-214,共10页
研究了三元过冷熔体中柱状晶体在非等温条件下受straining流作用的生长问题,给出了柱状晶体生长形态的近似解析表达式.发现流入的straining流加快了界面的生长速度,而流出的straining流减缓了界面的生长速度,即straining流使得柱状晶体... 研究了三元过冷熔体中柱状晶体在非等温条件下受straining流作用的生长问题,给出了柱状晶体生长形态的近似解析表达式.发现流入的straining流加快了界面的生长速度,而流出的straining流减缓了界面的生长速度,即straining流使得柱状晶体的界面发生变形.同时发现,随着流动速度的增大,界面变形也更为显著.通过比较straining流对纯熔体、二元熔体、三元熔体中柱状晶体界面的影响,发现相比于纯熔体,柱状晶体在稀合金熔体中的界面形态受straining流的影响更大. 展开更多
关键词 柱状晶体 三元熔体 straining 界面形态
在线阅读 下载PDF
Process parameter effects on microstructure and mechanical properties of tubes processed via friction assisted tube straining method
2
作者 S.H.HOSSEINI M.SEDIGHI 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第10期3008-3017,共10页
This paper investigates process parameter effects on microstructure and mechanical properties of the tubes processed via recently developed friction assisted tube straining(FATS)method.For this purpose,design of exper... This paper investigates process parameter effects on microstructure and mechanical properties of the tubes processed via recently developed friction assisted tube straining(FATS)method.For this purpose,design of experiment was used to arrange finite element analyses and experimental tests.Numerical and experimental tests were executed by changing rotary speed,feed rate and die angle.Taguchi design results show that increasing feed rate and decreasing rotary speed enhance Zener-Hollomon(Z)parameter and decrease average grain size,while die angle has no considerable effect.Increasing Z value reduces grain size and enhances flow stress of the processed samples,while the experiment with the highest Z value refines initial microstructure from 40 to 8μm and increases flow stress by 5 times. 展开更多
关键词 friction assisted tube straining process parameter MICROSTRUCTURE Taguchi method finite element simulation
在线阅读 下载PDF
Hot deformation behavior of microstructural constituents in a duplex stainless steel during high-temperature straining 被引量:12
3
作者 Amir Momeni Shahab Kazemi Ali Bahrani 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2013年第10期953-960,共8页
The hot deformation characteristics of 1.4462 duplex stainless steel (DSS) were analyzed by considering strain partitioning between austenite and ferrite constituents. The individual behavior of ferrite and austenit... The hot deformation characteristics of 1.4462 duplex stainless steel (DSS) were analyzed by considering strain partitioning between austenite and ferrite constituents. The individual behavior of ferrite and austenite in microstructure was studied in an iso-stress condition. Hot compression tests were performed at temperatures of 800-1100~C and strain rates of 0.001-1 s-1. The flow stress was modeled by a hyperbolic sine constitutive equation, the corresponding constants and apparent activation energies were determined for the studied alloys. The constitutive equation and law of mixture were used to measure the contribution factor of each phase at any given strain. It is found that the contribution factor of ferrite exponentially declines as the Zener-HoUomon parameter (Z) increases. On the contrary, the austenite contribution polynomially increases with the increase of Z. At low Z values below 2.6. x 1015 (lnZ---35.5), a negative contribution factor is determined for austenite that is attributed to dynamic recrystallization. At high Z values, the contribution factor of austenite is about two orders of magnitude greater than that of ferrite, and therefore, austenite can accommodate more strain. Microstructural characterization via electron back-scattered diffraction (EBSD) confirms the mechanical results and shows that austenite recrystallization is possible only at high temperature and low strain rate. 展开更多
关键词 duplex stainless steel compression testing strain partitioning high temperature operations DEFORMATION
在线阅读 下载PDF
A New Strategy for Restraining Dynamic Strain Aging in GH4169 Alloy During Tensile Deformation at High Temperature 被引量:2
4
作者 Xin-Tong Lian Jin-Lan An +1 位作者 Lei Wang Han Dong 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 2022年第11期1895-1902,共8页
The dynamic strain aging(DSA) behavior was investigated in GH4169 alloy during tensile deforming with electric-pulse current(EPC) at 750 ℃.The results show that DSA is restrained in the alloy when deformed with 40 Hz... The dynamic strain aging(DSA) behavior was investigated in GH4169 alloy during tensile deforming with electric-pulse current(EPC) at 750 ℃.The results show that DSA is restrained in the alloy when deformed with 40 Hz-EPC.The size ofγ " phase inner grains increases obviously and δ phase is facilitated to precipitate on grain boundary in the alloy applied with EPC,due to the promotion effect of EPC on the diffusion and segregation of atoms.Transmission electron microscopy(TEM)results indicate that dislocations can cut through small γ" precipitate with the size of less than 10 nm,while dislocations can only bypass dislocations when γ " precipitate grow up over 20 nm.The growth of precipitates consumes large amounts of atoms as well as the velocity of dislocation increase,which makes dislocations difficult to be pinned.Therefore,when γ" precipitates grow up to a large size more than the critical size of dislocation pinning,DSA is significantly restrained in the alloy after necking deformed with EPC. 展开更多
关键词 GH4169 alloy Electric-pulse current Dynamic strain aging MICROSTRUCTURE
原文传递
In-situ synchrotron X-ray diffraction investigation on deformation behavior of Nb/NiTi composite during pre-straining process 被引量:2
5
作者 Shun GUO Hui-hui ZHANG +6 位作者 Min-kyung KWAK Wang DING Guang-lei LIU Wen MA Hai-xia LIU Qing-kun MENG Xin-qing ZHAO 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2022年第8期2609-2619,共11页
The mechanisms responsible for deformation behavior in Nb/NiTi composite during pre-straining were investigated systematically using in-situ synchrotron X-ray diffraction, transmission electron microscopy and tensile ... The mechanisms responsible for deformation behavior in Nb/NiTi composite during pre-straining were investigated systematically using in-situ synchrotron X-ray diffraction, transmission electron microscopy and tensile test. It is shown that upon loading, the composite experiences elastic elongation and slight plastic deformation of B19′,B2 and β-Nb phases, together with the forward stress-induced martensitic(SIM) transformation from B2 to B19′. Upon unloading, the deformation mechanisms of the composite mainly involve elastic recovery of B19′, B2 and β-Nb phases,compression deformation of β-Nb phase and incomplete B19′→B2 reverse SIM transformation. In the tensile loading-unloading procedure, besides the inherent elastic deformation and SIM transformation, the(001) compound twins in B19′ martensite can also be conducive to the elastic deformation occurring in B19′-phase of the composite.Therefore, this composite can exhibit a large recoverable strain after unloading owing to the elastic deformation, and the partially reversible and consecutive SIM transformation together with the(001) compound twins. 展开更多
关键词 Nb/NiTi composite near-linear deformation behavior large recoverable strain martensitic transformation
在线阅读 下载PDF
Ultrafast Laser Shock Straining in Chiral Chain 2D Materials:Mold Topology‑Controlled Anisotropic Deformation
6
作者 Xingtao Liu Danilo de Camargo Branco +5 位作者 Licong An Mingyi Wang Haoqing Jiang Ruoxing Wang Wenzhuo Wu Gary J.Cheng 《Nano-Micro Letters》 2026年第3期274-289,共16页
Tellurene,a chiral chain semiconductor with a narrow bandgap and exceptional strain sensitivity,emerges as a pivotal material for tailoring electronic and optoelectronic properties via strain engineering.This study el... Tellurene,a chiral chain semiconductor with a narrow bandgap and exceptional strain sensitivity,emerges as a pivotal material for tailoring electronic and optoelectronic properties via strain engineering.This study elucidates the fundamental mechanisms of ultrafast laser shock imprinting(LSI)in two-dimensional tellurium(Te),establishing a direct relationship between strain field orientation,mold topology,and anisotropic structural evolution.This is the first demonstration of ultrafast LSI on chiral chain Te unveiling orientation-sensitive dislocation networks.By applying controlled strain fields parallel or transverse to Te’s helical chains,we uncover two distinct deformation regimes.Strain aligned parallel to the chain’s direction induces gliding and rotation governed by weak interchain interactions,preserving covalent intrachain bonds and vibrational modes.In contrast,transverse strain drives shear-mediated multimodal deformations—tensile stretching,compression,and bending—resulting in significant lattice distortions and electronic property modulation.We discovered the critical role of mold topology on deformation:sharp-edged gratings generate localized shear forces surpassing those from homogeneous strain fields via smooth CD molds,triggering dislocation tangle formation,lattice reorientation,and inhomogeneous plastic deformation.Asymmetrical strain configurations enable localized structural transformations while retaining single-crystal integrity in adjacent regions—a balance essential for functional device integration.These insights position LSI as a precision tool for nanoscale strain engineering,capable of sculpting 2D material morphologies without compromising crystallinity.By bridging ultrafast mechanics with chiral chain material science,this work advances the design of strain-tunable devices for next-generation electronics and optoelectronics,while establishing a universal framework for manipulating anisotropic 2D systems under extreme strain rates.This work discovered crystallographic orientation-dependent deformation mechanisms in 2D Te,linking parallel strain to chain gliding and transverse strain to shear-driven multimodal distortion.It demonstrates mold geometry as a critical lever for strain localization and dislocation dynamics,with sharp-edged gratings enabling unprecedented control over lattice reorientation.Crucially,the identification of strain field conditions that reconcile severe plastic deformation with single-crystal retention offers a pathway to functional nanostructure fabrication,redefining LSI’s potential in ultrafast strain engineering of chiral chain materials. 展开更多
关键词 Tellurene Laser shock imprinting Strain engineering Anisotropic deformation Chiral chain semiconductor Dislocation dynamics
在线阅读 下载PDF
Numerical Simulation of the Welding Deformation of Marine Thin Plates Based on a Temperature Gradient-thermal Strain Method
7
作者 Lin Wang Yugang Miao +3 位作者 Zhenjian Zhuo Chunxiang Lin Benshun Zhang Duanfeng Han 《哈尔滨工程大学学报(英文版)》 2026年第1期122-135,共14页
Marine thin plates are susceptible to welding deformation owing to their low structural stiffness.Therefore,the efficient and accurate prediction of welding deformation is essential for improving welding quality.The t... Marine thin plates are susceptible to welding deformation owing to their low structural stiffness.Therefore,the efficient and accurate prediction of welding deformation is essential for improving welding quality.The traditional thermal elastic-plastic finite element method(TEP-FEM)can accurately predict welding deformation.However,its efficiency is low because of the complex nonlinear transient computation,making it difficult to meet the needs of rapid engineering evaluation.To address this challenge,this study proposes an efficient prediction method for welding deformation in marine thin plate butt welds.This method is based on the coupled temperature gradient-thermal strain method(TG-TSM)that integrates inherent strain theory with a shell element finite element model.The proposed method first extracts the distribution pattern and characteristic value of welding-induced inherent strain through TEP-FEM analysis.This strain is then converted into the equivalent thermal load applied to the shell element model for rapid computation.The proposed method-particularly,the gradual temperature gradient-thermal strain method(GTG-TSM)-achieved improved computational efficiency and consistent precision.Furthermore,the proposed method required much less computation time than the traditional TEP-FEM.Thus,this study lays the foundation for future prediction of welding deformation in more complex marine thin plates. 展开更多
关键词 Marine thin plate Welding deformation Numerical simulation Temperature gradient-thermal strain method Shell element
在线阅读 下载PDF
Evolution of real area of contact due to combined normal load and sub-surface straining in sheet metal 被引量:1
8
作者 Meghshyam SHISODE Javad HAZRAT +2 位作者 Tanmaya MISHRA Matthijn DE ROOIJ Ton VAN DEN BOOGAAED 《Friction》 SCIE EI CAS CSCD 2021年第4期840-855,共16页
Understanding asperity flattening is vital for a reliable macro-scale modeling of friction and wear.In sheet metal forming processes,sheet surface asperities are deformed due to contact forces between the tools and th... Understanding asperity flattening is vital for a reliable macro-scale modeling of friction and wear.In sheet metal forming processes,sheet surface asperities are deformed due to contact forces between the tools and the workpiece.In addition,as the sheet metal is strained while retaining the normal load,the asperity deformation increases significantly.Deformation of the asperities determines the real area of contact which influences the friction and wear at the tool-sheet metal contact.The real area of contact between two contacting rough surfaces depends on type of loading,material behavior,and topography of the contacting surfaces.In this study,an experimental setup is developed to investigate the effect of a combined normal load and sub-surface strain on real area of contact.Uncoated and zinc coated steel sheets(GI)with different coating thicknesses,surface topographies,and substrate materials are used in the experimental study.Finite element(FE)analyses are performed on measured surface profiles to further analyze the behavior observed in the experiments and to understand the effect of surface topography,and coating thickness on the evolution of the real area of contact.Finally,an analytical model is presented to determine the real area contact under combined normal load and sub-surface strain.The results show that accounting for combined normal load and sub-surface straining effects is necessary for accurate predictions of the real area of contact. 展开更多
关键词 asperity flattening real area of contact sub-surface strain zinc coating sheet metal forming
原文传递
湖北省1株猪链球菌9型的分离鉴定及药敏试验
9
作者 郭锐 马锐 +10 位作者 袁芳艳 刘威 杨克礼 刘泽文 高婷 李畅 吴琼 朱佳佳 王冲 田永祥 周丹娜 《湖北农业科学》 2025年第12期166-169,共4页
从湖北省某猪场呈现链球菌急性死亡症状的保育猪中分离病原菌,通过细菌培养、形态学观察、生化鉴定及分子生物学分析进行鉴定。结果表明,病料接种含5%绵羊血的TSA培养基后,分离出革兰阳性链状排列球菌,经猪链球菌9型特异性引物PCR扩增... 从湖北省某猪场呈现链球菌急性死亡症状的保育猪中分离病原菌,通过细菌培养、形态学观察、生化鉴定及分子生物学分析进行鉴定。结果表明,病料接种含5%绵羊血的TSA培养基后,分离出革兰阳性链状排列球菌,经猪链球菌9型特异性引物PCR扩增及序列比对,确诊为猪链球菌9型,命名为XF-1菌株。毒力基因检测显示,该菌株携带fbps、orf、sly、gapdh 4种毒力基因,而epf与mrp基因为阴性。药敏试验表明,XF-1菌株对头孢呋辛、头孢噻呋、氨苄西林中度敏感,对头孢噻吩、庆大霉素等12种抗生素耐药。小鼠致病性试验证实其强毒力,以≥5×10^(8)CFU/只剂量攻毒后7 d内全部死亡(20×10^(8)、10×10^(8)、5×10^(8)CFU/只),1×10^(8)CFU组死亡率40%,死亡小鼠脏器分离菌经PCR复核与XF-1菌株一致。 展开更多
关键词 猪链球菌9型(Streptococcus suis strain 9) 分离鉴定 毒力基因 致病性 药敏试验
在线阅读 下载PDF
An Artificial Intelligence‑Assisted Flexible and Wearable Mechanoluminescent Strain Sensor System 被引量:1
10
作者 Yan Dong Wenzheng An +1 位作者 Zihu Wang Dongzhi Zhang 《Nano-Micro Letters》 SCIE EI CAS 2025年第3期217-231,共15页
The complex wiring,bulky data collection devices,and difficulty in fast and on-site data interpretation significantly limit the practical application of flexible strain sensors as wearable devices.To tackle these chal... The complex wiring,bulky data collection devices,and difficulty in fast and on-site data interpretation significantly limit the practical application of flexible strain sensors as wearable devices.To tackle these challenges,this work develops an artificial intelligenceassisted,wireless,flexible,and wearable mechanoluminescent strain sensor system(AIFWMLS)by integration of deep learning neural network-based color data processing system(CDPS)with a sandwich-structured flexible mechanoluminescent sensor(SFLC)film.The SFLC film shows remarkable and robust mechanoluminescent performance with a simple structure for easy fabrication.The CDPS system can rapidly and accurately extract and interpret the color of the SFLC film to strain values with auto-correction of errors caused by the varying color temperature,which significantly improves the accuracy of the predicted strain.A smart glove mechanoluminescent sensor system demonstrates the great potential of the AIFWMLS system in human gesture recognition.Moreover,the versatile SFLC film can also serve as a encryption device.The integration of deep learning neural network-based artificial intelligence and SFLC film provides a promising strategy to break the“color to strain value”bottleneck that hinders the practical application of flexible colorimetric strain sensors,which could promote the development of wearable and flexible strain sensors from laboratory research to consumer markets. 展开更多
关键词 Mechanoluminescent Strain sensor FLEXIBLE Deep learning WIRELESS
在线阅读 下载PDF
Microstructural evolution during the progressive transformation-induced plasticity effect in a Fe-0.1C-5Mnmedium manganese steel 被引量:1
11
作者 Mei Zhang Wenhao Li +3 位作者 Yangfei Chen Yang Jiang Xiaofei Guo Han Dong 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第2期369-379,共11页
The microstructural evolution of a cold-rolled and intercritical annealed medium-Mn steel(Fe-0.10C-5Mn)was investigated during uniaxial tensile testing.In-situ observations under scanning electron microscopy,transmiss... The microstructural evolution of a cold-rolled and intercritical annealed medium-Mn steel(Fe-0.10C-5Mn)was investigated during uniaxial tensile testing.In-situ observations under scanning electron microscopy,transmission electron microscopy,and X-ray diffraction analysis were conducted to characterize the progressive transformation-induced plasticity process and associated fracture initiation mechanisms.These findings were discussed with the local strain measurements via digital image correlation.The results indicated that Lüders band formation in the steel was limited to 1.5%strain,which was mainly due to the early-stage martensitic phase transformation of a very small amount of the less stable large-sized retained austenite(RA),which led to localized stress concentrations and strain hardening and further retardation of yielding.The small-sized RA exhibited high stability and progressively transformed into martensite and contributed to a stably extended Portevin-Le Chatelier effect.The volume fraction of RA gradually decreased from 26.8%to 8.2%prior to fracture.In the late deformation stage,fracture initiation primarily occurred at the austenite/martensite and ferrite/martensite interfaces and the ferrite phase. 展开更多
关键词 medium-Mn steel retained austenite progressive transformation-induced plasticity effect local strain fracture initiation
在线阅读 下载PDF
Data driven prediction of fragment velocity distribution under explosive loading conditions 被引量:4
12
作者 Donghwan Noh Piemaan Fazily +4 位作者 Songwon Seo Jaekun Lee Seungjae Seo Hoon Huh Jeong Whan Yoon 《Defence Technology(防务技术)》 2025年第1期109-119,共11页
This study presents a machine learning-based method for predicting fragment velocity distribution in warhead fragmentation under explosive loading condition.The fragment resultant velocities are correlated with key de... This study presents a machine learning-based method for predicting fragment velocity distribution in warhead fragmentation under explosive loading condition.The fragment resultant velocities are correlated with key design parameters including casing dimensions and detonation positions.The paper details the finite element analysis for fragmentation,the characterizations of the dynamic hardening and fracture models,the generation of comprehensive datasets,and the training of the ANN model.The results show the influence of casing dimensions on fragment velocity distributions,with the tendencies indicating increased resultant velocity with reduced thickness,increased length and diameter.The model's predictive capability is demonstrated through the accurate predictions for both training and testing datasets,showing its potential for the real-time prediction of fragmentation performance. 展开更多
关键词 Data driven prediction Dynamic fracture model Dynamic hardening model FRAGMENTATION Fragment velocity distribution High strain rate Machine learning
在线阅读 下载PDF
Hydrogen-Bonding-Crosslinked Polyzwitterionic Hydrogelswith Extreme Stretchability, Ultralow Hysteresis, Self-adhesion,and Antifreezing Performance as Flexible Self-powered ElectronicDevices 被引量:2
13
作者 Siyu Bao Hongying Wang +5 位作者 Baocheng Liu Chenhao Huang Jingguo Deng Wenjie Ren Yongmao Li Jianhai Yang 《Transactions of Tianjin University》 2025年第1期15-28,共14页
Flexible strain sensors have received tremendous attention because of their potential applications as wearable sensing devices.However, the integration of key functions into a single sensor, such as high stretchabilit... Flexible strain sensors have received tremendous attention because of their potential applications as wearable sensing devices.However, the integration of key functions into a single sensor, such as high stretchability, low hysteresis, self-adhesion, andexcellent antifreezing performance, remains an unmet challenge. In this respect, zwitterionic hydrogels have emerged asideal material candidates for breaking through the above dilemma. The mechanical properties of most reported zwitterionichydrogels, however, are relatively poor, significantly restricting their use under load-bearing conditions. Traditional improve-ment approaches often involve complex preparation processes, making large-scale production challenging. Additionally,zwitterionic hydrogels prepared with chemical crosslinkers are typically fragile and prone to irreversible deformation underlarge strains, resulting in the slow recovery of structure and function. To fundamentally enhance the mechanical properties ofpure zwitterionic hydrogels, the most effective approach is the regulation of the chemical structure of zwitterionic monomersthrough a targeted design strategy. This study employed a novel zwitterionic monomer carboxybetaine urethane acrylate(CBUTA), which contained one urethane group and one carboxybetaine group on its side chain. Through the direct polym-erization of ultrahigh concentration monomer solutions without adding any chemical crosslinker, we successfully developedpure zwitterionic supramolecular hydrogels with significantly enhanced mechanical properties, self-adhesive behavior, andantifreezing performance. Most importantly, the resultant zwitterionic hydrogels exhibited high tensile strength and tough-ness and displayed ultralow hysteresis under strain conditions up to 1100%. This outstanding performance was attributedto the unique liquid–liquid phase separation phenomenon induced by the ultrahigh concentration of CBUTA monomers inan aqueous solution, as well as the enhanced polymer chain entanglement and the strong hydrogen bonds between urethanegroups on the side chains. The potential application of hydrogels in strain sensors and high-performance triboelectric nano-generators was further explored. Overall, this work provides a promising strategy for developing pure zwitterionic hydrogelsfor flexible strain sensors and self-powered electronic devices. 展开更多
关键词 ZWITTERIONIC Hydrogen bonding Mechanical enhancement Strain sensor Triboelectric nanogenerator
在线阅读 下载PDF
Revealing the intrinsic connection between residual strain distribution and dissolution mode in Mg-Sc-Y-Ag anode for Mg-air battery 被引量:2
14
作者 Wei-li Cheng Xu-bang Hao +4 位作者 Jin-hui Wang Hui Yu Li-fei Wang Ze-qin Cui Cheng Chang 《Journal of Magnesium and Alloys》 2025年第3期1020-1033,共14页
The dominated contradiction in optimizing the performance of magnesium-air battery anode lies in the difficulty of achieving a good balance between activation and passivation during discharge process.To further reconci... The dominated contradiction in optimizing the performance of magnesium-air battery anode lies in the difficulty of achieving a good balance between activation and passivation during discharge process.To further reconcile this contradiction,two Mg-0.1Sc-0.1Y-0.1Ag anodes with different residual strain distribution through extrusion with/without annealing are fabricated.The results indicate that annealing can significantly lessen the“pseudo-anode”regions,thereby changing the dissolution mode of the matrix and achieving an effective dissolution during discharge.Additionally,p-type semiconductor characteristic of discharge productfilm could suppress the self-corrosion reaction without reducing the polarization of anode.The magnesium-air battery utilizing annealed Mg-0.1Sc-0.1Y-0.1Ag as anode achieves a synergistic improvement in specific capacity(1388.89 mA h g^(-1))and energy density(1960.42 mW h g^(-1)).This anode modification method accelerates the advancement of high efficiency and long lifespan magnesium-air batteries,offering renewable and cost-effective energy solutions for electronics and emergency equipment. 展开更多
关键词 Mg-air batteries ANODE Residual strain distribution Dissolution mode Discharge mechanism
在线阅读 下载PDF
Strain rate dependence of dynamic recrystallization and texture evolution in hot compressed Mg-Gd-Er-Zr alloy 被引量:1
15
作者 Ning Ding Wenbo Du +3 位作者 Shubo Li Ke Liu Xian Du Zijian Yu 《Journal of Magnesium and Alloys》 2025年第1期161-171,共11页
Hot deformation with high strain rate has been paid more attention due to its high efficiency and low cost,however,the strain rate dependent dynamic recrystallization(DRX)and texture evolution in hot deformation proce... Hot deformation with high strain rate has been paid more attention due to its high efficiency and low cost,however,the strain rate dependent dynamic recrystallization(DRX)and texture evolution in hot deformation process,which affect the formability of metals,are lack of study.In this work,the DRX behavior and texture evolution of Mg-8Gd-1Er-0.5Zr alloy hot compressed with strain rates of 0.1 s^(−1),1 s^(−1),10 s^(−1) and 50 s^(−1) are studied,and the corresponding dominant mechanisms for DRX and texture weakening are discussed.Results indicated the DRX fraction was 20%and the whole texture intensity was 16.89 MRD when the strain rate was 0.1 s^(−1),but they were 76%and 6.55 MRD,respectively,when the strain rate increased to 50 s^(−1).The increment of DRX fraction is suggested to result from the reduced DRX critical strain and the increased dislocation density as well as velocity,while the weakened whole texture is attributed to the increased DRX grains.At the low strain rate of 0.1 s^(−1),discontinuous DRX(DDRX)was the dominant,but the whole texture was controlled by the deformed grains with the preferred orientation of{0001}⊥CD,because the number of DDRX grains was limited.At the high strain rate of 50 s^(−1),continuous DRX(CDRX)and twin-induced DRX(TDRX)were promoted,and more DRX grains resulted in orientation randomization.The whole texture was mainly weakened by CDRX and TDRX grains,in which CDRX plays a major role.The results of present work are significant for understanding the hot workability of Mg-RE alloys with a high strain rate. 展开更多
关键词 Dynamic recrystallization Texture Hot compression Strain rate Mg-Gd-Er-Zr alloy
在线阅读 下载PDF
Progress in Flexoelectric Effect Research and Related Applications 被引量:1
16
作者 Pengwen Guo Mengmeng Jia +3 位作者 Di Guo Tianling Ren Zhong Lin Wang Junyi Zhai 《SmartSys》 2025年第1期39-46,共8页
The flexoelectric effect refers to the electromechanical coupling between electric polarization and mechanical strain gradient.It universally exists in a variety of materials in any space group,such as liquid crystals... The flexoelectric effect refers to the electromechanical coupling between electric polarization and mechanical strain gradient.It universally exists in a variety of materials in any space group,such as liquid crystals,dielectrics,biological materials,and semiconductors.Because of its unique size effect,nanoscale flexoelectricity has shown novel phenomena and promising applications in electronics,optronics,mechatronics,and photovoltaics.In this review,we provide a succinct report on the discovery and development of the flexoelectric effect,focusing on flexoelectric materials and related applications.Finally,we discuss recent flexoelectric research progress and still‐unsolved problems. 展开更多
关键词 electric polarization flexoelectric effect flexotronics size effect strain gradient
在线阅读 下载PDF
Geometric size and forming force prediction in incremental flanging:A new analytical model 被引量:1
17
作者 Chong TIAN Dawei ZHANG +1 位作者 Guangcan YANG Shengdun ZHAO 《Chinese Journal of Aeronautics》 2025年第2期519-540,共22页
A new analytical model for geometric size and forming force prediction in incremental flanging(IF)is presented in this work.The complex deformation characteristics of IF are considered in the modeling process,which ca... A new analytical model for geometric size and forming force prediction in incremental flanging(IF)is presented in this work.The complex deformation characteristics of IF are considered in the modeling process,which can accurately describe the strain and stress states in IF.Based on strain analysis,the model can predict the material thickness distribution and neck height after IF.By considering contact area,strain characteristics,material thickness changes,and friction,the model can predict specific moments and corresponding values of maximum axial forming force and maximum horizontal forming force during IF.In addition,an IF experiment involving different tool diameters,flanging diameters,and opening hole diameters is conducted.On the basis of the experimental strain paths,the strain characteristics of different deformation zones are studied,and the stable strain ratio is quantitatively described through two dimensionless parameters:relative tool diameter and relative hole diameter.Then,the changing of material thickness and forming force in IF,and the variation of minimum material thickness,neck height,maximum axial forming force,and maximum horizontal forming force with flanging parameters are studied,and the reliability of the analytical model is verified in this process.Finally,the influence of the horizontal forming force on the tool design and the fluctuation of the forming force are explained. 展开更多
关键词 Incremental flanging Analytical model Strain characteristic Geometric size Forming force
原文传递
Influences of strain rate on mechanical behaviors of unsaturated and quasi-saturated loess under varying drainage conditions 被引量:1
18
作者 Tongwei Zhang Sheng Li +2 位作者 Hengxing Lan Huyuan Zhang Fanyu Zhang 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第2期1163-1181,共19页
Although time-dependent deformation of geomaterials underpins slope-failure prediction models,the influence of strain rate on shearing strength and deformation behavior of loess remains unclear.The consolidated undrai... Although time-dependent deformation of geomaterials underpins slope-failure prediction models,the influence of strain rate on shearing strength and deformation behavior of loess remains unclear.The consolidated undrained(CU)and drained(CD)triaxial testing elucidated the impact of strain rate(0.005–0.3 mm/min)on strength envelopes,deformation moduli,pore pressures,and dilatancy characteristics of unsaturated and quasi-saturated loess.Under drained conditions with a controlled matric suction of 50 kPa,increasing strain rates from 0.005 mm/min to 0.011 mm/min induced decreases in failure deviatoric stress(qf),initial deformation modulus(Ei),and cohesion(c),while friction angles remained unaffected.Specimens displayed initial contractive volumetric strains transitioning to dilation across varying confining pressures.Higher rates diminished contractive volumetric strains and drainage volumes,indicating reduced densification and strength in the shear zone.Under undrained conditions,both unsaturated and quasi-saturated(pore pressure coefficient B=0.75)loess exhibited deteriorating mechanical properties with increasing rates from 0.03 mm/min to 0.3 mm/min.For unsaturated loess,reduced contractive volumetric strains at higher rates manifested relatively looser structures in the pre-peak stress phase.The strength decrement in quasi-saturated loess arose from elevated excess porewater pressures diminishing effective stresses.Negative porewater pressures emerged in quasi-saturated loess at lower confining pressures and strain rates.Compared to previous studies,the qf and Ei exhibited rate sensitivity below threshold values before attaining minima with marginal subsequent influence.The underlying mechanism mirrors the transition from creep to accelerated deformation phase of landslides. 展开更多
关键词 Unsaturated loess Strain rate Shearing strength Deformation modulus Drainage conditions
在线阅读 下载PDF
Coupling effect of size and strain rate on uniaxial compressive properties of coral reef limestone 被引量:1
19
作者 Hongya Li Linjian Ma +3 位作者 Mingyang Wang Jiawen Wu Jiajun Deng Zeng Li 《International Journal of Mining Science and Technology》 2025年第11期1905-1919,共15页
As the main geomaterials for coral reefs oil or gas extraction and underground infrastructure construction,coral reef limestone demonstrates significantly distinct mechanical responses compared to terrigenous rocks.To... As the main geomaterials for coral reefs oil or gas extraction and underground infrastructure construction,coral reef limestone demonstrates significantly distinct mechanical responses compared to terrigenous rocks.To investigate the mechanical behaviour of coral reef limestone under the coupling impact of size and strain rate,the uniaxial compression tests were conducted on reef limestone samples with length-to-diameter(L/D)ratio ranging from 0.5 to 2.0 at strain rate ranging from 10^(−5)·s^(−1)to 10^(−2)·s^(−1).It is revealed that the uniaxial compressive strength(UCS)and residual compressive strength(RCS)of coral reef limestone exhibits a decreasing trend with L/D ratio increasing.The dynamic increase factor(DIF)of UCS is linearly correlated with the logarithm of strain rate,while increasing the L/D ratio further enhances the DIF.The elastic modulus increases with strain rate or L/D ratio increasing,whereas the Poisson’s ratio approximates to a constant value of 0.24.The failure strain increases with strain rate increasing or L/D ratio decreasing,while the increase in L/D ratio will inhibit the enhancing effect of the strain rate.The high porosity and low mineral strength are the primary factors contributing to a high RCS of 16.7%–64.9%of UCS,a lower brittleness index and multiple irregular fracture planes.The failure pattern of coral reef limestone transits from the shear-dominated to the splitting-dominated failure with strain rate increasing or L/D ratio decreasing,which is mainly governed by the constrained zones induced by end friction and the strain rate-dependent crack propagation.Moreover,a predictive formula incorporating coupling effect of size and strain rate for the UCS of reef limestone was established and verified to effectively capture the trend of UCS. 展开更多
关键词 Coral reef limestone Strain rate SIZE Failure mode Coupling effect
在线阅读 下载PDF
Research on rock crack contact model considering linked substances based on particle flow method 被引量:1
20
作者 Fukun Xiao Kai Xie +3 位作者 Lei Shan Gang Liu Lianchong Li Fedotova Iuliia 《International Journal of Mining Science and Technology》 2025年第4期553-571,共19页
The models constructed by particle flow simulation method can effectively simulate the heterogeneous substance characteristics and failure behaviors of rocks.However,existing contact models overlook the rock cracks,an... The models constructed by particle flow simulation method can effectively simulate the heterogeneous substance characteristics and failure behaviors of rocks.However,existing contact models overlook the rock cracks,and the various simulation methods that do consider cracks still exhibit certain limitations.In this paper,based on Flat-Joint model and Linear Parallel Bond model,a crack contact model considering linked substance in the crack is proposed by splitting the crack contact into two portions:linked portion and unlinked portion for calculation.The new contact model considers the influence of crack closure on the contact force-displacement law.And a better compressive tensile strength ratio(UCS/T)was obtained by limiting the failure of the contact bond to be solely controlled by the contact force and moment of the linked portion.Then,by employing the FISH Model tool within the Particle Flow Code,the contact model was constructed and verified through contact force–displacement experiments and loading-unloading tests with cracked model.Finally,the contact model was tested through simulations of rock mechanics experiments.The results indicate that the contact model can effectively simulate the axial and lateral strain laws of rocks simultaneously and has a relatively good reproduction of the bi-modularity of rocks. 展开更多
关键词 Crack closure Contact model Compaction stage Initial effective modulus Lateral strain
在线阅读 下载PDF
上一页 1 2 199 下一页 到第
使用帮助 返回顶部