期刊文献+
共找到256篇文章
< 1 2 13 >
每页显示 20 50 100
Impacts of short-term rainfall and snowfall exclusions on hydraulic,economic and stomatal traits of Larix gmelinii in northeastern China
1
作者 Yaxin Zhang Xiaochun Wang +3 位作者 Rui Zhang Aolin Niu Chuankuan Wang Ying Jin 《Journal of Forestry Research》 2025年第1期245-257,共13页
Ongoing climate change has a considerable influence on the seasonality,timing,and intensity of rainfall worldwide,and is also predicted to decrease snow cover in cold ecosystems.Larch is a widely distributed tree spec... Ongoing climate change has a considerable influence on the seasonality,timing,and intensity of rainfall worldwide,and is also predicted to decrease snow cover in cold ecosystems.Larch is a widely distributed tree species in boreal Eurasia,calling for a comprehensive understanding of how larch adapts to changes in both rainfall and snowfall by adjusting carbon-water physiology.Here,we conducted a short-term rainfall(−60% ambient rainfall;three-year)and snowfall(−73% ambient snowfall;two-year)exclusions experiment in Larix gmelinii forest in northeastern China,and aimed to explore the responses of hydraulic(leaf pressure-volume traits,leaf and branch hydraulic conductivity and embolism resistance),stomatal(stomatal closure point and stomatal safety margin),and economic(photosynthetic rate,nutrient and non-structural carbohydrates contents)traits to rainfall and snowfall reductions.Despite the weak alternation of leaf and branch hydraulic traits,both rainfall and snowfall reductions significantly led to early stomatal closure and increased stomatal safety margins(the difference between stomatal closure point and xylem embolism threshold,describing drought resistance by merging both hydraulic and stomatal strategies).Reductions in rainfall and snowfall induced water or/and low-temperature stress,resulting in more conservative leaf economic traits,including a reduced photosynthetic rate,lower leaf nitrogen concentration,and higher leaf density.In addition,larch responded to reductions in rainfall and snowfall by up-regulating non-structural carbohydrates in the xylem,which helps repair embolism or lower the freezing point acting as osmolytes.Overall,our findings reveal that larch could adapt to the drought and snowpack reduction by strict stomatal regulation and investing non-structural carbohydrates in embolism repairing,at the cost of carbon assimilation. 展开更多
关键词 Embolism resistance stomatal closure point stomatal safety margins Non-structural carbohydrates Larix gmelinii
在线阅读 下载PDF
Low R:FR light ratio enhances calcium nitrate resistance and stomatal movement in tomato seedlings by regulating H_(2)O_(2) accumulation
2
作者 Xiaoting Zhou Deyang Ye +7 位作者 Yunxin Tang Yirong Gan Jia Huang Zhonghua Bian Lihong Su Zhongqun He Chaoxing He Shaobo Cheng 《Horticultural Plant Journal》 2025年第2期693-705,共13页
Secondary salinization is a major environmental factor that causes a stress response and growth inhibition in plants in protected agriculture.The positive effect of a low red to far-red light ratio(R:FR)in salt tolera... Secondary salinization is a major environmental factor that causes a stress response and growth inhibition in plants in protected agriculture.The positive effect of a low red to far-red light ratio(R:FR)in salt tolerance through antioxidant defense has been reported,while the underlying model remains obscure.In this study,we used physiological and genetic approaches to investigate the relationship between H_(2)O_(2) signaling and low R:FR-induced salt tolerance and antioxidant capacity in tomato seedlings.This study found that low R:FR treatment with calcium nitrate stress(SL treatment)enhanced the growth of plants and increased the net photosynthetic rate 5 days after stress compared with a higher R:FR ratio and calcium nitrate stress(S treatment).With transcriptomic analysis of tomato leaves at 5 d,compared with CK,most of glutaredoxin genes and antioxidant enzymes were upregulated by S treatment,which were upregulated further by SL treatment.Compared to the S treatment,within 5 days,the H_(2)O_(2) level was increased faster before 24 h and it was slowed down after 24 h by SL treatment,with less H_(2)O_(2) accumulation at 5 d than that of S treatment.The enhancement of gene expression of RBOH genes were also shown at 24 h under SL.It was found that stomatal conductance followed the dynamic change of H_(2)O_(2),with a rapid closure of stomata of a decrease at 3 h and an increase after 9 h in SL treatment compared to S treatment,respectively.There was same trend of stomata opening degrees of tomato leaves observed by optical microscope.However,the inhibitor of H_(2)O_(2) production(DPI pretreatment)weakened the positive effect of low R:FR on the regulation of stomatal movement.In addition,SL treatment increased the antioxidant enzyme activities and proline content and decreased the MDA content as compared to the S treatment,while the enhancement of ROS homeostasis was reduced by the DPI pretreatment.In conclusion,low R:FR improved redox homeostasis and stomatal status under calcium nitrate stress through H_(2)O_(2)signaling,improving the adaptation of tomato seedlings to soil salinization stress. 展开更多
关键词 Far-red light Salt stress ROS stomatal opening RBOHs TOMATO
在线阅读 下载PDF
Exogenous melatonin enhances heat stress tolerance in sweetpotato by modulating antioxidant defense system,osmotic homeostasis and stomatal traits
3
作者 Sunjeet Kumar Rui Yu +5 位作者 Yang Liu Yi Liu Mohammad Nauman Khan Yonghua Liu Mengzhao Wang Guopeng Zhu 《Horticultural Plant Journal》 2025年第1期431-445,共15页
Heat stress hinders the growth and productivity of sweetpotato plants,predominantly through oxidative damage to cellular membranes.Therefore,the development of efficient approaches for mitigating heat-related impairme... Heat stress hinders the growth and productivity of sweetpotato plants,predominantly through oxidative damage to cellular membranes.Therefore,the development of efficient approaches for mitigating heat-related impairments is essential for the long-term production of sweetpotatoes.Melatonin has been recognised for its capacity to assist plants in dealing with abiotic stress conditions.This research aimed to investigate how different doses of exogenous melatonin influence heat damage in sweetpotato plants.Heat stress drastically affected shoot and root fresh weight by 31.8 and 44.5%,respectively.This reduction resulted in oxidative stress characterised by increased formation of hydrogen peroxide(H_(2)O_(2))by 804.4%,superoxide ion(O_(2)^(·-))by 211.5%and malondialdehyde(MDA)by 234.2%.Heat stress also reduced chlorophyll concentration,photosystemⅡefficiency(F_v/F_m)by 15.3%and gaseous exchange.However,pre-treatment with 100μmol L^(-1)melatonin increased growth and reduced oxidative damage to sweetpotato plants under heat stress.In particular,melatonin decreased H_(2)O_(2),O_(2)^(·-)and MDA by 64.8%,42.7%and 38.2%,respectively.Melatonin also mitigated the decline in chlorophyll levels and improved stomatal traits,gaseous exchange and F_(v)/F_(m)(13%).Results suggested that the favorable outcomes of melatonin treatment can be associated with elevated antioxidant enzyme activity and an increase in non-enzymatic antioxidants and osmo-protectants.Overall,these findings indicate that exogenous melatonin can improve heat stress tolerance in sweetpotatoes.This stu dy will assist re searchers in further investigating how melatonin makes sweetpotatoes more resistant to heat stress. 展开更多
关键词 SWEETPOTATO Heat stress MELATONIN Oxidative damage Antioxidant defense system stomatal traits
在线阅读 下载PDF
MdBAM17, a novel member of the β-amylase gene family,positively regulates starch degradation in ALA-induced stomatal opening in apple
4
作者 Longbo Liu Jiayi Zhou +2 位作者 Jianting Zhang Yan Zhong Liangju Wang 《Horticultural Plant Journal》 2025年第2期504-519,共16页
5-Aminolevulinic acid(ALA)is a novel plant growth regulator that has shown outstanding capability to promote stomatal opening.Starch degradation,catalyzed byβ-amylase(EC3.2.1.2,BAM),plays an important role in stomata... 5-Aminolevulinic acid(ALA)is a novel plant growth regulator that has shown outstanding capability to promote stomatal opening.Starch degradation,catalyzed byβ-amylase(EC3.2.1.2,BAM),plays an important role in stomatal opening.However,whether the starch breakdown is involved in ALA-regulating stomatal movement is unclear.In the current study,we found that exogenous ALA effectively stimulated the starch breakdown in guard cells,increasedβ-amylase activity and promoted stomatal opening in leaves of apple(Malus×domestica).Based on genome-wide identification,we identified a total of 119 members of BAM gene family in ten commonly Rosaceae crops.Analyses of gene structure,motif identification,and gene pair collinearity revealed relative conservation among members within the same group or subgroup.Among these genes,MdBAM17 and other 12 genes were identified as the orthologous genes of AtBAM1,which is responsible for starch degradation to modulate the stomatal movement in Arabidopsis.qRT-PCR analysis revealed a positive correlation between the expressions of MdBAM17 and stomatal aperture,as well asβ-amylase activity,whereas a negative correlation was observed with the starch content.Subcellular localization analysis confirmed that MdBAM17 is a chloroplast protein,consistent with the AtBAM1.MdBAM17 was mainly expressed in guard cells and responsive to exogenous ALA.Overexpressing MdBAM17 increasedβ-amylase activity and promoted starch breakdown,leading to stomatal opening,which was further strengthened by ALA.RNA-interfering MdBAM17 decreasedβ-amylase activity,resulting in starch accumulation,and impairing the stomatal opening by ALA.However,modulation of MdBAM17 expression did not affect the levels of flavonols and H_(2)O_(2)in guard cells,suggesting that MdBAM17-promoted starch degradation may function at downstream of ROS signaling in the ALAregulated stomatal opening.Our findings provide new insights into the mechanisms of ALA-regulated stomatal movement. 展开更多
关键词 ALA APPLE BAM gene family MdBAM17 Starch degradation stomatal opening
在线阅读 下载PDF
Effects of different light intensity on the growth,physiological and biochemical properties,and stomatal ultrastructure of Rhododendron micranthum saplings
5
作者 Yan Zhao Duo Xu +6 位作者 Zhihui Yu Jiaqi Huang Jiahui Li Yang Sun Xuhe Wang Qingtao Wang Xiaowei Wang 《Journal of Forestry Research》 2025年第3期171-188,共18页
Rhododendron micranthum Turcz.is a shrub esteemed for its ornamental and medicinal attributes within the Changbai Mountain range of China.We selected 3-year saplings and subjected them to four distinct light condi-tio... Rhododendron micranthum Turcz.is a shrub esteemed for its ornamental and medicinal attributes within the Changbai Mountain range of China.We selected 3-year saplings and subjected them to four distinct light condi-tions:full light(CK),70%light(L1),50%light(L2),and 30%light(L3)to investigate variations in morphology,photosynthetic responses,stomatal ultrastructure as well as the mechanisms through which these saplings adapt to differing lighting environments.The results indicate that L2 leaves exhibit significantly greater length,width,and petiole development compared to other treatments across varying intensities.Over time,chlorophyll content and PSII levels in L2-treated saplings surpass those observed in other treatments;Proline(PRO),malondialdehyde(MDA),and soluble protein(SP)contents are markedly lower under L2 treatment.Catalase(CAT)and superoxide dismutase(SOD)demonstrate significant correlations across various light con-ditions but respond differently among treatments,indicat-ing distinct species sensitivities to light intensity while both contribute to environmental stress resistance mechanisms.Findings reveal that R.micranthum saplings at 50%light intensity benefit from enhanced protection via antioxidant enzymes,and shading reduces osmotic adjustment sub-stances yet increases chlorophyll content.Stomatal length/width along with conductance rates and net photosynthesis rates for L2 exceed those of CK,suggesting an improved photosynthetic structure conducive to efficient photosynthe-sis under this condition.Thus,moderate shading represents optimal growth at 50%illumination,a critical factor promot-ing sapling development.This research elucidates the ideal environment for R.micranthum adaptation to varying light conditions supporting future conservation initiatives. 展开更多
关键词 Light intensity Eco-physiological characteristics stomatal ultrastructure Rhododendron micranthum Turcz.
在线阅读 下载PDF
Stomatal maturomics:hunting genes regulating guard cell maturation and function formation from single-cell transcriptomes
6
作者 Yuming Peng Yi Liu +3 位作者 Yifan Wang Zhenxing Geng Yue Qin Shisong Ma 《Journal of Genetics and Genomics》 SCIE CAS CSCD 2024年第11期1286-1299,共14页
Stomata play critical roles in gas exchange and immunity to pathogens.While many genes regulating early stomatal development up to the production of young guard cells(GCs)have been identified in Arabidopsis,much less ... Stomata play critical roles in gas exchange and immunity to pathogens.While many genes regulating early stomatal development up to the production of young guard cells(GCs)have been identified in Arabidopsis,much less is known about how young GCs develop into mature functional stomata.Here we perform a maturomics study on stomata,with“maturomics”defined as omics analysis of the maturation process of a tissue or organ.We develop an integrative scheme to analyze three public stomata-related single-cell RNAseq datasets and identify a list of 586 genes that are specifically up-regulated in all three datasets during stomatal maturation and function formation.The list,termed sc_586,is enriched with known regulators of stomatal maturation and functions.To validate the reliability of the dataset,we selected two candidate G2-like transcription factor genes,MYS1 and MYS2,to investigate their roles in stomata.These two genes redundantly regulate the size and hoop rigidity of mature GCs,and the mys1 mys2 double mutants cause mature GCs with severe defects in regulating their stomatal apertures.Taken together,our results provide a valuable list of genes for studying GC maturation and function formation. 展开更多
关键词 Stomata maturomics Hoop rigidity stomatal aperture Single-cell analysis G2-like transcription factors MYS1 MYS2
原文传递
Stomatal dynamics are regulated by leaf hydraulic traits and guard cell anatomy in nine true mangrove species
7
作者 Ya-Dong Qie Qi-Wei Zhang +1 位作者 Scott A.M.McAdam Kun-Fang Cao 《Plant Diversity》 SCIE CAS CSCD 2024年第3期395-405,共11页
Stomatal regulation is critical for mangroves to survive in the hyper-saline intertidal zone where water stress is severe and water availability is highly fluctuant.However,very little is known about the stomatal sens... Stomatal regulation is critical for mangroves to survive in the hyper-saline intertidal zone where water stress is severe and water availability is highly fluctuant.However,very little is known about the stomatal sensitivity to vapour pressure deficit(VPD)in mangroves,and its co-ordination with stomatal morphology and leaf hydraulic traits.We measured the stomatal response to a step increase in VPD in situ,stomatal anatomy,leaf hydraulic vulnerability and pressure-volume traits in nine true mangrove species of five families and collected the data of genome size.We aimed to answer two questions:(1)Does stomatal morphology influence stomatal dynamics in response to a high VPD in mangroves?with a consideration of possible influence of genome size on stomatal morphology;and(2)do leaf hydraulic traits influence stomatal sensitivity to VPD in mangroves?We found that the stomata of mangrove plants were highly sensitive to a step rise in VPD and the stomatal responses were directly affected by stomatal anatomy and hydraulic traits.Smaller,denser stomata was correlated with faster stomatal closure at high VPD across the species of Rhizophoraceae,and stomata size negatively and vein density positively correlated with genome size.Less negative leaf osmotic pressure at the full turgor(πo)was related to higher operating steady-state stomatal conductance(gs);and a higher leaf capacitance(Cleaf)and more embolism resistant leaf xylem were associated with slower stomatal responses to an increase in VPD.In addition,stomatal responsiveness to VPD was indirectly affected by leaf morphological traits,which were affected by site salinity and consequently leaf water status.Our results demonstrate that mangroves display a unique relationship between genome size,stomatal size and vein packing,and that stomatal responsiveness to VPD is regulated by leaf hydraulic traits and stomatal morphology.Our work provides a quantitative framework to better understand of stomatal regulation in mangroves in an environment with high salinity and dynamic water availability. 展开更多
关键词 stomatal temporal kinetics Vapour-pressure deficit(VPD) Leaf water relations Leaf hydraulic vulnerability Leaf osmotic potential Genome size
在线阅读 下载PDF
Changes in Leaf Stomatal Properties in Rice with the Growing Season
8
作者 Jiana Chen Fangbo Cao Min Huang 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第4期807-817,共11页
Transplanting rice varieties grown in different seasons can lead to different yields due to different dry matterproduction. Early-season rice varieties transplanted in the late season can obtain high yields with short... Transplanting rice varieties grown in different seasons can lead to different yields due to different dry matterproduction. Early-season rice varieties transplanted in the late season can obtain high yields with short-growthduration and higher yields driven by higher dry matter production. To make clear the variations in dry matterproduction across seasons, four early-season rice varieties were chosen for late-season transplantation. The grainyield, dry matter accumulation, leaf photosynthetic, and leaf stomatal properties were studied. It was observedthat the average yields of these four varieties in the late season were 33% greater, despite a reduced growth periodof 13 days in comparison with the early season. Furthermore, there was a notable increase in both total and postheadingdry matter production during the late season. The leaf net photosynthetic rate, stomatal area, stomatalwidth, and stomatal length were higher in the late season. Despite no significant difference in stomatal densitybetween seasons, strong positive linear relationships were observed between net photosynthetic rate and stomatalconductance, and between stomatal conductance and area. These relationships demonstrate that the increase ofthe stomatal width and length of the leaves in the late season leads to an increase in the stomatal area, therebyincreasing the stomatal conductance and enhancing the photosynthesis of the leaves. Consequently, this leads togreater dry matter production and a higher yield compared to the early season. Therefore, when breeding newhigh-yielding and short-growing varieties, the large stomatal area can be used as a reference index. 展开更多
关键词 PHOTOSYNTHESIS RICE stomatal properties SEASON yield
在线阅读 下载PDF
Evidence of Hydropassive Movement in Stomatal Oscillations of Glycyrrhiza inflata under Desert Conditions 被引量:8
9
作者 王根轩 廖建雄 吴冬秀 《Acta Botanica Sinica》 CSCD 2001年第1期41-45,共5页
Stomatal conductance was found to change from steady-state to a slate of oscillations during daytime when vapour pressure deficit (VPD) increased to a value of 1 kPa in Glycyrrhiza inflata Batalin grown under the cond... Stomatal conductance was found to change from steady-state to a slate of oscillations during daytime when vapour pressure deficit (VPD) increased to a value of 1 kPa in Glycyrrhiza inflata Batalin grown under the conditions of arid desert in north-west China. The injected metabolic inhibitors (NaN3 or carbonyl cyanide-m-chlorophenyl-hydrazone (CCCP)) slightly reduced the stomatal conductance but did not significantly decrease the intensity of stomatal oscillations (amplitude/average). The oscillation intensity was found to he significantly correlated with VPD and root resistance, but not with the respiration rate. There might exist a minimum threshold of VPD (0.8 kPa) and root resistance (1/4 relative value) that induced stomatal oscillations. These results suggested that stomatal oscillations induced by atmospheric drought stress and root resistance were mainly a type of hydropassive movement. 展开更多
关键词 stomatal oscillations Glycyrrhiza inflata hydropassive movement stomatal conductance vapour pressure deficit
在线阅读 下载PDF
Stomatal response of Pinus sylvestriformis to elevated CO2 concentrations during the four years of exposure 被引量:6
10
作者 ZHOUYu-mei HANShi-jie LIUYing JIAXia 《Journal of Forestry Research》 SCIE CAS CSCD 2005年第1期15-18,i001,共5页
Four-year-old Pinus sylvestriformis were exposed for four growing seasons in open top chambers to ambient CO2 concentration (approx. 350 μmol·mol-1) and high CO2 concentrations (500 and 700 μmol·mol-1) at ... Four-year-old Pinus sylvestriformis were exposed for four growing seasons in open top chambers to ambient CO2 concentration (approx. 350 μmol·mol-1) and high CO2 concentrations (500 and 700 μmol·mol-1) at Research Station of Changbai Mountain Forest Ecosystems, Chinese Academy of Sciences at Antu Town, Jilin Province, China (42oN, 128oE). Stomatal response to elevated CO2 concentrations was examined by stomatal conductance (gs), ratio of intercellular to ambient CO2 concentration (ci/ca) and stomatal number. Reciprocal transfer experiments of stomatal conductance showed that stomatal conductance in high-[CO2]-grown plants increased in comparison with ambient-[CO2]-grown plants when measured at their respective growth CO2 concentration and at the same measurement CO2 concentration (except a reduction in 700 μmol·mol-1 CO2 grown plants compared with plants on unchambered field when measured at growth CO2 concentration and 350 μmol·mol-1CO2). High-[CO2]-grown plants exhibited lower ci/ca ratios than ambient-[CO2]-grown plants when measured at their respective growth CO2 concentration. However, ci/ca ratios increased for plants grown in high CO2 concentrations compared with control plants when measured at the same CO2 concentration. There was no significant difference in stomatal number per unit long needle between elevated and ambient CO2. However, elevated CO2 concentrations reduced the total stomatal number of whole needle by the decline of stomatal line and changed the allocation pattern of stomata between upper and lower surface of needle. 展开更多
关键词 c_i/c_a ratio High CO_2 Pinus sylvestriformis stomatal conductance stomatal number stomatal line Abbreviations: g_s stomatal conductance c_i intercellular CO_2 concentration c_a ambient CO_2 concentration
在线阅读 下载PDF
Identification of Plasma Membrane Aquaporin in Guard Cells of Vicia faba and Its Role in Stomatal Movement 被引量:5
11
作者 黄荣峰 朱美君 +2 位作者 康蕴 陈珈 王学臣 《Acta Botanica Sinica》 CSCD 2002年第1期42-48,共7页
Water channels or aquaporins are the main pathways of water transport. Both the existence and function of aquaporins in die guard cells of Vicia faba L. were investigated both by using RD28 cDNA and RD28 antibody as p... Water channels or aquaporins are the main pathways of water transport. Both the existence and function of aquaporins in die guard cells of Vicia faba L. were investigated both by using RD28 cDNA and RD28 antibody as probes, and by controlling stomatal movement as a parameter combined with antibody and inhibitor of aquaporins respectively. The results revealed that RD28 mRNA, encoding a plasma membrane aquaporin, expressed in ale mesophyll cells and vascular tissues of V. faba, especially in guard cells. And the location of RD28-like proteins was mainly on plasma membrane of guard cells. The addition of 25 mumol/L HgCl2, an aquaporin blocker, and antibody of RD28 as well, greatly suppressed the stomatal opening or guardcell protoplast swelling induced by fusicoccin and light, and closing induced by abscisic acid. However, 5 mmol/L, beta-mercaptoethanol, a reverse reagent of aquaporin blocker, reversed the inhibitory effect of HgCl2 Pretreatment oil stomatal opening ( i.e., HgCl2 was removed after HgCl2 pretreatment for 10 min). The results suggest that the aquaporins in V. faba are associated with stomatal movement. 展开更多
关键词 AQUAPORIN in situ hybridization antibody of RD28 stomatal movement Vicia faba
在线阅读 下载PDF
SIMULATION OF THE PHYSIOLOGICAL RESPONSES OF C 3 PLANT LEAVES TO ENVIRONMENTAL FACTORS BY A MODEL WHICH COMBINES STOMATAL CONDUCTANCE, PHOTOSYNTHESIS AND TRANSPIRATION 被引量:41
12
作者 于强 王天铎 《Acta Botanica Sinica》 CSCD 1998年第8期740-754,共15页
Transpiration element is included in the integrated stomatal conductance photosynthesis model by considering gaseous transfer processes, so the present model is capable to simulate the influence of boundary layer con... Transpiration element is included in the integrated stomatal conductance photosynthesis model by considering gaseous transfer processes, so the present model is capable to simulate the influence of boundary layer conductance. Leuning in his revised Ball's model replaced relative humidity with VPD s (the vapor pressure deficit from stomatal pore to leaf surface) and thereby made the relation with transpiration more straightforward, and made it possible for the regulation of transpiration and the influence of boundary layer conductance to be integrated into the combined model. If the differences in water vapor and CO 2 concentration between leaf and ambient air are considered, VPD s , the evaporative demand, is influenced by stomatal and boundary layer conductance. The physiological responses of photosynthesis, transpiration, and stomatal function, and the changes of intercellular CO 2 and water use efficiency to environmental factors, such as wind speed, photon flux density, leaf temperature and ambient CO 2, are analyzed. It is shown that if the boundary layer conductance drops to a level comparable with stomatal conductance, the results of simulation by the model presented here differ significantly from those by the previous model, and, in some cases, are more realistic than the latter. 展开更多
关键词 PHOTOSYNTHESIS TRANSPIRATION stomatal conductance Boundary layer conductance Integrated model
在线阅读 下载PDF
Tempo-Spatial Variations in Stomatal Conductance, Aperture and Density of Ligustrum sinense Acclimated to Different Light Environments 被引量:5
13
作者 张守仁 马克平 陈灵芝 《Acta Botanica Sinica》 CSCD 2002年第10期1225-1232,共8页
There was heterogeneous distribution in stomatal conductance (g-s) and stomatal aperture for both high- and low-light leaves of Ligustrum sinense Lour. in four designated positions within a leaf. Linear or exponential... There was heterogeneous distribution in stomatal conductance (g-s) and stomatal aperture for both high- and low-light leaves of Ligustrum sinense Lour. in four designated positions within a leaf. Linear or exponential or polynomial relationships between g-s and stomatal aperture were found when regression of g-s and stomatal aperture was established. Statistical analysis revealed that the relationship between g-s and stomatal aperture for high-light leaves was more significant than that of low-light leaves. A linear relationship between g-s and stomatal aperture existed in both positions 1 and 3 for both high- and low-light leaves. The stomatal density of the low-light leaves was much lower than that of the high-light leaves. The sensitivity of stomata to changing environment for high-light leaves was higher than that for low-light leaves, which may also relate to the higher stomatal density for the high-light leaves. 展开更多
关键词 ACCLIMATION gas exchange light environment MICROSCOPY stomatal heterogeneity
在线阅读 下载PDF
Involvement of Calcium dependent Protein Kinases in ABA regulation of Stomatal Movement 被引量:9
14
作者 王喜庆 武维华 《Acta Botanica Sinica》 CSCD 1999年第5期556-559,共4页
Patch clamp techniques were employed to investigate if calcium dependent protein kinases (CDPKs) be involved in the signal transduction pathways of stomatal movement regulation by the phytohormone abscisic acid (ABA... Patch clamp techniques were employed to investigate if calcium dependent protein kinases (CDPKs) be involved in the signal transduction pathways of stomatal movement regulation by the phytohormone abscisic acid (ABA) in Vicia faba. Stomatal opening was completely inhibited by external application of 1 μmol/L ABA, and such ABA inhibition was significantly reversed by the addition of CDPK inhibitor trifluoperazine (TFP). The inward whole cell K + currents were inhibited by 60% in the presence of 1 μmol/L intracellular ABA, and this inhibition was completely abolished by the addition of CDPK competitive substrate histone Ⅲ S. The results suggest that CDPKs may be involved in the signal transduction cascades of ABA regulated stomatal movements. 展开更多
关键词 Calcium dependent protein kinases (CDPKs) K + channels Abscisic acid stomatal guard cells
在线阅读 下载PDF
Stomatal Opening Induced by Acetylcholine Is Associated with Cytoskeletal Components 被引量:2
15
作者 黄荣峰 王学臣 娄成后 《Acta Botanica Sinica》 CSCD 2000年第6期559-563,共5页
Acetylcholine (Ach) is a key component of animal cholinergic system. Recent experiments demonstrated that Ach, choline acetyltransferase, acetylcholinesterase and Ach receptors are present in all parts of plants and... Acetylcholine (Ach) is a key component of animal cholinergic system. Recent experiments demonstrated that Ach, choline acetyltransferase, acetylcholinesterase and Ach receptors are present in all parts of plants and have many functions, including inducing stomatal movement. The authors' previous work has evidenced that microtubules and microfilaments are involved in regulating both stomatal closing and opening. The present investigation is to determine whether stomatal opening induced by Ach is associated with microtubules and microfilaments. The results showed that Ach could induce stomatal opening of Vicia faba L. with or without addition of KCl in the dark. Ach also stimulated protoplast swelling in a K +_free solution in the dark. However, the induction was partially suppressed when the strips and protoplasts were pretreated with either cytochalasin B, an inhibitor of F_actin polymerization, or oryzalin, an inhibitor of plant microtubule polymerization. Thus, our data suggest for the first time that stomatal opening induced by Ach is associated with the dynamics of microtubules and microfilaments. 展开更多
关键词 MICROTUBULE MICROFILAMENT ACETYLCHOLINE Vicia faba stomatal opening
在线阅读 下载PDF
Effects of Periodical Soil Drying and Leaf Water Potential on the Sensitivity of Stomatal Response to Xylem ABA 被引量:6
16
作者 梁建生 张建华 《Acta Botanica Sinica》 CSCD 1999年第8期855-861,共7页
The study on the changes of stomatal sensitivity in relation to xylem ABA during periodical soil drying and the effect of leaf water status on the stomatal sensitivity has confirmed that xylem ABA concentration is a g... The study on the changes of stomatal sensitivity in relation to xylem ABA during periodical soil drying and the effect of leaf water status on the stomatal sensitivity has confirmed that xylem ABA concentration is a good indicator of soil water status around roots and the relation between xylem ABA concentration and predawn leaf water potential remained constant during the three consecutive soil drying cycles based on the slopes of the fitted lines. The sensitivity of stomata to xylem ABA increased substantially as the soil drying cycles progressed, and the xylem ABA concentration needed to cause a 50% decrease of stomatal conductance was as low as 550 nmol/L in the next two soil drying cycle, as compared with the 750 nmol/L ABA in the first cycle of soil drying. The results using the split_root system showed that leaf water deficit significantly enhanced the stomatal response to xylem ABA and the xylem ABA concentration needed to cause a 50% decrease in stomatal conductance was 2 to 4 times smaller in the whole_root_drying treatment than those in the semi_root_drying treatment. These results suggested that the sensitivity of stomata to xylem ABA concentration is not a fixed characteristic. 展开更多
关键词 Xylem ABA stomatal sensitivity Leaf water potential Periodical soil drying cycle
在线阅读 下载PDF
Applicability of Some Stomatal Models to Natural Conditions 被引量:4
17
作者 于强 刘建栋 罗毅 《Acta Botanica Sinica》 CSCD 2000年第2期203-206,共4页
Under natural conditions, the use of vapor pressure deficit between mesophyll cell surface and ambient air ( VPD s ) instead of atmospheric humidity factors in some stomatal models may markedly promote the applicabil... Under natural conditions, the use of vapor pressure deficit between mesophyll cell surface and ambient air ( VPD s ) instead of atmospheric humidity factors in some stomatal models may markedly promote the applicability of stomatal models. It has been pointed out from theoretical analysis that the expression of the responses of stomatal conductance to VPD s is equivalent to the expression of responses of stomatal conductance to water loss of transpiration in stomatal models. 展开更多
关键词 stomatal conductance MODEL
在线阅读 下载PDF
Response of stomatal conductance of two tree species to vapor pressure deficit in three climate zones 被引量:4
18
作者 Jing LI XiaoMing LI 《Journal of Arid Land》 SCIE CSCD 2014年第6期771-781,共11页
Stomatal behavior is a central topic of plant ecophysiological research under global environmental change. However, the physiological mechanism controlling the response of stomata to vapor pressure deficit (VPD) or ... Stomatal behavior is a central topic of plant ecophysiological research under global environmental change. However, the physiological mechanism controlling the response of stomata to vapor pressure deficit (VPD) or relative humidity (RH) has been inadequately understood till now. In this study, responses of stomatal conduc- tance (gs) to VPD in two species of trees (Fraxinus chinensis Roxb., Populus alba L. var. pyramidalis Bge.)in three different climate zones (Jinan with typical warm humid/semi-humid climate, Urumqi with temperate continental arid climate and Turpan with extreme arid desert climate) were measured. Levels of two phytohormones (abscisic acid, ABA; indole-3-acetic acid, IAA) in the leaves of the two tree species at these three sites were also measured by high performance liquid chromatography. The results showed that the responses of gs to an increasing VPD in these two tree species at the three sites had peak curves which could be fitted with a Log Normal Model (gs=a.exp(-O.5(In(DIc)lb)2). The VPD/RH values corresponding to the maximum g, can be calculated using the fitting models for the two tree species in the three sites. We found that the calculated g, -VPD correlated nega- tively with relative air humidity in the three sites during the plant growth period (April to October 2010), which showed the values of g,-max-VPD were related to the climate conditions. The prevailing empirical stomatal model (Leuning model) and optimal stomatal behavior model could not properly simulate our measured data. The water use efficiency in the two tree species did not show obvious differences under three very different climatic conditions, but the highest gs, photosynthetic and transpiration rates occurred in P. alba var. of Turpan. The sensitivity in re- sponse of g~ to VPD in leaves of the two trees showed positive correlations with the concentration of ABA, which implied that ABA level could be used as an indicator of the sensitivity of stomatal response to VPD. Our results confirmed that the prediction of the response of gs to VPD might be incomplete in the two current popular models. Therefore, an improved g, model which is able to integrate the results is needed. Also, the stomatal response mechanism of single peak curves of g~ to VPD should be considered. 展开更多
关键词 abscisic acid relative humidity stomatal conductance stomatal model vapor pressure deficit
在线阅读 下载PDF
Existence of Extracellular Calmodulin in the Lower Epidermis of the Leaves of Vicia faba and Its Role in Regulating Stomatal Movements
19
作者 陈玉玲 张学琴 +1 位作者 陈珈 王学臣 《Acta Botanica Sinica》 CSCD 2003年第1期40-46,共7页
As a possible peptide primary messenger, extracellular calmodulin (CaM) may regulate processes such as cell proliferation, pollen germination and expression of some genes. Stomata open or close quickly in response to ... As a possible peptide primary messenger, extracellular calmodulin (CaM) may regulate processes such as cell proliferation, pollen germination and expression of some genes. Stomata open or close quickly in response to environmental stimuli. CaM was found to be extracellular both in guard cells of broad bean leaves and in epidermal cells by immuno-electron microscopy and immuno-fluorescence microscopy techniques. Exogenous purified CaM enhanced stomatal closure and inhibited stomatal opening with an optimal concentration of 10(-8) mol/L; CaM antagonist W7-agarose and anti-CaM serum, which were membrane-impermeable macromolecules, inhibited stomatal closure and promoted stomatal opening. All these data showed that endogenous extracellular CaM. of guard cells did promote stomatal closure and inhibit stomatal opening, and could he active only outside the cells. Therefore under natural conditions, the endogenous extracellular CaM of guard cells might regulate stomatal movements as a primary messenger together with other signal molecules, and might be an important linkage between environmental stimuli and cell responses. 展开更多
关键词 extracellular CaM Vicia faba stomatal movement
在线阅读 下载PDF
Study on the stomatal characters of rice plant I. A new technique of samplepre paration for observ ing the stomatal characters of rice leaf 被引量:2
20
《Chinese Rice Research Newsletter》 2000年第3期7-8,共2页
关键词 A new technique of samplepre paration for observ ing the stomatal characters of rice leaf Study on the stomatal characters of rice plant I
在线阅读 下载PDF
上一页 1 2 13 下一页 到第
使用帮助 返回顶部