A synoptic snapshot in this study is made for the East Cape Eddy (ECE) basedon the World Ocean Circulation Experiment (WOCE) P14C Hydrographic Section and Shipboard ADCPvelocity vector data collected in September 1992...A synoptic snapshot in this study is made for the East Cape Eddy (ECE) basedon the World Ocean Circulation Experiment (WOCE) P14C Hydrographic Section and Shipboard ADCPvelocity vector data collected in September 1992. The ECE is an anticyclonic eddy, barotropicallystructured and centered at 33.64°S and 176.21°E, with warm and salinous-cored subsurface water.The radius of the eddy is of the order O (110 km) and the maximum circumferential velocity is O (40cm s^(-1)); as a result, the relative vorticity is estimated to be O (7 x 10^(-6)s^(-1)). Due to theexistence of the ECE, the mixed layer north of New Zealand becomes deeper, reaching a depth of 300m in the austral winter. The ECE plays an important role in the formation and distribution of theSubtropical Mode Water (STMW) over a considerable area in the South Pacific.展开更多
A premonitory sign of an anomalous SST over the eastern equatorial Pacific shows up in the North Pacific Subtropical Mode Water (STMW) 18 months earlier,and the air-sea relationship between the STMW and the anomalous ...A premonitory sign of an anomalous SST over the eastern equatorial Pacific shows up in the North Pacific Subtropical Mode Water (STMW) 18 months earlier,and the air-sea relationship between the STMW and the anomalous SST over the eastern equatorial Pacific is shown.This premonitory connection involves an air-sea coupling between the longtime persistent mid-latitude sea surface temperature anomaly (SSTA) induced by the remote re-emergence of the STMW and the following spring subtropical atmospheric circulation anomalies.An examination of the air-sea interaction reveals that the following spring subtropical atmospheric circulation,which responds to the longtime persistent SSTA,is dominated by the anomalous negative (positive) geopotential height downstream of the negative (positive) SSTA in the strong (weak) STMW case.Thus,the tropics adjust to these anomalies through coupled dynamics,producing positive (negative) SST anomalies over the eastern equatorial Pacific.A cold water event that occurred over the eastern equatorial Pacific during winter 2008-09 was successfully forecasted by the weak summer STMW index in 2007.The evolution of this process for the air-sea interactions from the autumn of 2007 to December 2008 is presented.展开更多
文摘A synoptic snapshot in this study is made for the East Cape Eddy (ECE) basedon the World Ocean Circulation Experiment (WOCE) P14C Hydrographic Section and Shipboard ADCPvelocity vector data collected in September 1992. The ECE is an anticyclonic eddy, barotropicallystructured and centered at 33.64°S and 176.21°E, with warm and salinous-cored subsurface water.The radius of the eddy is of the order O (110 km) and the maximum circumferential velocity is O (40cm s^(-1)); as a result, the relative vorticity is estimated to be O (7 x 10^(-6)s^(-1)). Due to theexistence of the ECE, the mixed layer north of New Zealand becomes deeper, reaching a depth of 300m in the austral winter. The ECE plays an important role in the formation and distribution of theSubtropical Mode Water (STMW) over a considerable area in the South Pacific.
基金jointly supported by the Key Projects in the National Science&Technology Pillar Program of China(2007BAC29B03)the National Basic Research Program of China(2009CB421401)the National Natural Science Foundation of China(40675031)
文摘A premonitory sign of an anomalous SST over the eastern equatorial Pacific shows up in the North Pacific Subtropical Mode Water (STMW) 18 months earlier,and the air-sea relationship between the STMW and the anomalous SST over the eastern equatorial Pacific is shown.This premonitory connection involves an air-sea coupling between the longtime persistent mid-latitude sea surface temperature anomaly (SSTA) induced by the remote re-emergence of the STMW and the following spring subtropical atmospheric circulation anomalies.An examination of the air-sea interaction reveals that the following spring subtropical atmospheric circulation,which responds to the longtime persistent SSTA,is dominated by the anomalous negative (positive) geopotential height downstream of the negative (positive) SSTA in the strong (weak) STMW case.Thus,the tropics adjust to these anomalies through coupled dynamics,producing positive (negative) SST anomalies over the eastern equatorial Pacific.A cold water event that occurred over the eastern equatorial Pacific during winter 2008-09 was successfully forecasted by the weak summer STMW index in 2007.The evolution of this process for the air-sea interactions from the autumn of 2007 to December 2008 is presented.