对水质情况进行准确评估和预测对水污染防控至关重要,然而,由于水质受多种因素的影响,其时间序列数据常常具有趋势性、季节性和长期依赖关系,传统的预测方法往往无法很好地捕捉这些特征。为了解决这些问题,首先基于STL(Seasonal and Tre...对水质情况进行准确评估和预测对水污染防控至关重要,然而,由于水质受多种因素的影响,其时间序列数据常常具有趋势性、季节性和长期依赖关系,传统的预测方法往往无法很好地捕捉这些特征。为了解决这些问题,首先基于STL(Seasonal and Trend Decomposition using Loess)和TCN(Temporal Convolutional Network)构建STL-TCN水质预测模型。其中,通过STL模型对水质时间序列数据进行趋势和季节性分解,有效地提取时序数据的周期性特征;利用TCN模型中并行结构和残差连接有效捕捉时间序列数据的长期依赖关系,对分解后的数据进行多步预测。然后,选用福建省浪石断面河流的氨氮数据来验证STL-TCN水质预测模型的预测效果,并与基于长短时记忆网络(LSTM)和门控循环单元结构(GRU)的水质预测模型进行对比实验。实验结果表明,STL-TCN水质预测模型12步预测的MAE平均值达到0.0343、RMSE平均值达到0.0494、R^(2)平均值达到0.94737,相对LSTM和GRU,MAE平均提高7.8%和8.1%、RMSE平均提高2.2%和1.8%、R^(2)平均提高7.9%和7.8%。说明STL-TCN水质预测模型能够有效提高水质预测的准确性和稳定性,可以作为辅助水环境管理和决策的一种有效手段。展开更多
In Additive Manufacturing field, the current researches of data processing mainly focus on a slicing process of large STL files or complicated CAD models. To improve the efficiency and reduce the slicing time, a paral...In Additive Manufacturing field, the current researches of data processing mainly focus on a slicing process of large STL files or complicated CAD models. To improve the efficiency and reduce the slicing time, a parallel algorithm has great advantages. However, traditional algorithms can't make full use of multi-core CPU hardware resources. In the paper, a fast parallel algorithm is presented to speed up data processing. A pipeline mode is adopted to design the parallel algorithm. And the complexity of the pipeline algorithm is analyzed theoretically. To evaluate the performance of the new algorithm, effects of threads number and layers number are investigated by a serial of experiments. The experimental results show that the threads number and layers number are two remarkable factors to the speedup ratio. The tendency of speedup versus threads number reveals a positive relationship which greatly agrees with the Amdahl's law, and the tendency of speedup versus layers number also keeps a positive relationship agreeing with Gustafson's law. The new algorithm uses topological information to compute contours with a parallel method of speedup. Another parallel algorithm based on data parallel is used in experiments to show that pipeline parallel mode is more efficient. A case study at last shows a suspending performance of the new parallel algorithm. Compared with the serial slicing algorithm, the new pipeline parallel algorithm can make full use of the multi-core CPU hardware, accelerate the slicing process, and compared with the data parallel slicing algorithm, the new slicing algorithm in this paper adopts a pipeline parallel model, and a much higher speedup ratio and efficiency is achieved.展开更多
文摘对水质情况进行准确评估和预测对水污染防控至关重要,然而,由于水质受多种因素的影响,其时间序列数据常常具有趋势性、季节性和长期依赖关系,传统的预测方法往往无法很好地捕捉这些特征。为了解决这些问题,首先基于STL(Seasonal and Trend Decomposition using Loess)和TCN(Temporal Convolutional Network)构建STL-TCN水质预测模型。其中,通过STL模型对水质时间序列数据进行趋势和季节性分解,有效地提取时序数据的周期性特征;利用TCN模型中并行结构和残差连接有效捕捉时间序列数据的长期依赖关系,对分解后的数据进行多步预测。然后,选用福建省浪石断面河流的氨氮数据来验证STL-TCN水质预测模型的预测效果,并与基于长短时记忆网络(LSTM)和门控循环单元结构(GRU)的水质预测模型进行对比实验。实验结果表明,STL-TCN水质预测模型12步预测的MAE平均值达到0.0343、RMSE平均值达到0.0494、R^(2)平均值达到0.94737,相对LSTM和GRU,MAE平均提高7.8%和8.1%、RMSE平均提高2.2%和1.8%、R^(2)平均提高7.9%和7.8%。说明STL-TCN水质预测模型能够有效提高水质预测的准确性和稳定性,可以作为辅助水环境管理和决策的一种有效手段。
文摘In Additive Manufacturing field, the current researches of data processing mainly focus on a slicing process of large STL files or complicated CAD models. To improve the efficiency and reduce the slicing time, a parallel algorithm has great advantages. However, traditional algorithms can't make full use of multi-core CPU hardware resources. In the paper, a fast parallel algorithm is presented to speed up data processing. A pipeline mode is adopted to design the parallel algorithm. And the complexity of the pipeline algorithm is analyzed theoretically. To evaluate the performance of the new algorithm, effects of threads number and layers number are investigated by a serial of experiments. The experimental results show that the threads number and layers number are two remarkable factors to the speedup ratio. The tendency of speedup versus threads number reveals a positive relationship which greatly agrees with the Amdahl's law, and the tendency of speedup versus layers number also keeps a positive relationship agreeing with Gustafson's law. The new algorithm uses topological information to compute contours with a parallel method of speedup. Another parallel algorithm based on data parallel is used in experiments to show that pipeline parallel mode is more efficient. A case study at last shows a suspending performance of the new parallel algorithm. Compared with the serial slicing algorithm, the new pipeline parallel algorithm can make full use of the multi-core CPU hardware, accelerate the slicing process, and compared with the data parallel slicing algorithm, the new slicing algorithm in this paper adopts a pipeline parallel model, and a much higher speedup ratio and efficiency is achieved.