Stromal interaction molecules(STIM)s are Ca^(2+)sensors in internal Ca^(2+)stores of the endoplasmic reticulum.They activate the store-operated Ca^(2+)channels,which are the main source of Ca^(2+)entry in non-excitabl...Stromal interaction molecules(STIM)s are Ca^(2+)sensors in internal Ca^(2+)stores of the endoplasmic reticulum.They activate the store-operated Ca^(2+)channels,which are the main source of Ca^(2+)entry in non-excitable cells.Moreover,STIM proteins interact with other Ca^(2+)channel subunits and active transporters,making STIMs an important intermediate molecule in orchestrating a wide variety of Ca^(2+)influxes into excitable cells.Nevertheless,little is known about the role of STIM proteins in brain functioning.Being involved in many signaling pathways,STIMs replenish internal Ca^(2+)stores in neurons and mediate synaptic transmission and neuronal excitability.Ca^(2+)dyshomeostasis is a signature of many pathological conditions of the brain,including neurodegenerative diseases,injuries,stroke,and epilepsy.STIMs play a role in these disturbances not only by supporting abnormal store-operated Ca^(2+)entry but also by regulating Ca^(2+)influx through other channels.Here,we review the present knowledge of STIMs in neurons and their involvement in brain pathology.展开更多
基金supported by grants from the Russian Science Foundation(23-44-00054)the National Natural Science Foundation of China(32261133525).
文摘Stromal interaction molecules(STIM)s are Ca^(2+)sensors in internal Ca^(2+)stores of the endoplasmic reticulum.They activate the store-operated Ca^(2+)channels,which are the main source of Ca^(2+)entry in non-excitable cells.Moreover,STIM proteins interact with other Ca^(2+)channel subunits and active transporters,making STIMs an important intermediate molecule in orchestrating a wide variety of Ca^(2+)influxes into excitable cells.Nevertheless,little is known about the role of STIM proteins in brain functioning.Being involved in many signaling pathways,STIMs replenish internal Ca^(2+)stores in neurons and mediate synaptic transmission and neuronal excitability.Ca^(2+)dyshomeostasis is a signature of many pathological conditions of the brain,including neurodegenerative diseases,injuries,stroke,and epilepsy.STIMs play a role in these disturbances not only by supporting abnormal store-operated Ca^(2+)entry but also by regulating Ca^(2+)influx through other channels.Here,we review the present knowledge of STIMs in neurons and their involvement in brain pathology.