As globalization accelerates,microbial contamination in the built environment poses a major public health challenge.Especially since Corona Virus Disease 2019(COVID-19),microbial sterilization technology has become a ...As globalization accelerates,microbial contamination in the built environment poses a major public health challenge.Especially since Corona Virus Disease 2019(COVID-19),microbial sterilization technology has become a crucial research area for indoor air pollution control in order to create a hygienic and safe built environment.Based on this,the study reviews sterilization technologies in the built environment,focusing on the principles,efficiency and applicability,revealing advantages and limitations,and summarizing current research advances.Despite the efficacy of single sterilization technologies in specific environments,the corresponding side effects still exist.Thus,this review highlights the efficiency of hybrid sterilization technologies,providing an in-depth understanding of the practical application in the built environment.Also,it presents an outlook on the future direction of sterilization technology,including the development of new methods that are more efficient,energy-saving,and targeted to better address microbial contamination in the complex and changing built environment.Overall,this study provides a clear guide for selecting technologies to handle microbial contamination in different building environments in the future,as well as a scientific basis for developing more effective air quality control strategies.展开更多
Bacterial contamination and marine biofouling are directly or indirectly impacting the economy,environment,and human health worldwide.Photocatalytic sterilization and antifouling technology is an effective method to p...Bacterial contamination and marine biofouling are directly or indirectly impacting the economy,environment,and human health worldwide.Photocatalytic sterilization and antifouling technology is an effective method to prevent microbial contamination and corrosion.Due to its eco-friendly nature,broad-spectrum bactericidal properties,and high efficiency,this method has recently received much attention.In this review,we have comprehensively discussed the photoinduced charge carriers transfer,main reactive oxygen species(ROS),the interactions among photocatalysts and microorganisms,as well as various antibacterial mechanisms such as oxidative stress,physical/mechanical destruction,photothermal effect,piezoelectric field effect,and triboelectric field.Different types of semiconductors,including TiO_(2),ZnO,CeO_(2),Cu-based semiconductors,Bi-based semiconductors,Ag-based semiconductors,g-C_(3)N_(4),MOF,and containing phosphorus photocatalysts are summarized in photocatalytic sterilization and antifouling activity.Besides,various improvement methods including morphological control,crystallizing,doping engineering,loading cocatalyst,and constructing heterojunction are discussed.Furthermore,a strategy for dramatically improving practice applications is proposed for the possibility of further antifouling applications.Challenges and prospects for the photocatalytic sterilization and antifouling method are also discussed to highlight design considerations.展开更多
This study examined the effects of pasteurization(PAS),ultrasonic sterilization(ULS),and microwave sterilization(MWS)on the quality and storage characteristics of brine-fermented tofu(BFT)and fermented tofu(FT).Compar...This study examined the effects of pasteurization(PAS),ultrasonic sterilization(ULS),and microwave sterilization(MWS)on the quality and storage characteristics of brine-fermented tofu(BFT)and fermented tofu(FT).Comparative analysis revealed that MWS had a negligible detrimental effect on the structural integrity and organoleptic properties of BFT and FT,while effectively maintaining its water-holding capacity(WHC)and exhibiting the least impact on its texture.In contrast,PAS and ULS increased hardness and chewiness significantly(P<0.05),but ULS also enhanced the brightness of tofu.Throughout the storage period,the WHC,elasticity,and sensory properties of tofu generally decreased,whereas the hardness and chewiness increased.PAS-BFT and MWS-FT maintained sensory quality for the longest periods of 14 and 12 days respectively,and could be decomposed to more small molecule peptides within 0–8 days and 0–6 days,which are more easily to be absorbed by the body.The findings discovered that MWS is the most suitable method for sterilization of tofu,with superior capability in maintaining the quality,extending shelf life,and improving digestibility of tofu.展开更多
Photocatalytic disinfection is an eco-friendly strategy for countering bacterial pollution in aquatic environments.Numerous strategies have been devised to facilitate the generation of reactive oxygen species(ROS)with...Photocatalytic disinfection is an eco-friendly strategy for countering bacterial pollution in aquatic environments.Numerous strategies have been devised to facilitate the generation of reactive oxygen species(ROS)within photocatalysts,ultimately leading to the eradication of bacteria.However,the significance of the physical morphology of photocatalysts in the context of sterilization is frequently obscured,and the progress in the development of physical-chemical synergistic sterilization photocatalysts has been relatively limited.Herein,graphitic carbon nitride(g-C_(3)N_(4))is chemically protonated to expose more sharp edges.PL fluorescence and EIS results indicate that the protonation can accelerate photogenerated carrier separation and enhance ROS production.Meanwhile,the sharp edges on the protonated g-C_(3)N_(4)facilitate the physical disruption of cell walls for further promoting oxidative damage.Protonated C_(3)N_(4)demonstrated superior bactericidal performance than that of pristine g-C_(3)N_(4),effectively eliminating Escherichia coli within 40 minutes under irradiation.This work highlights the significance of incorporating physical and chemical synergies in photocatalyst design to enhance the disinfection efficiency of photocatalysis.展开更多
Mercury ions(Hg^(2+))and bacteria are widely spread in water pollution and pose a great threat to human health and the environment.Herein,a multifunctional COF Dmta Tph with significant Hg^(2+)adsorption capability an...Mercury ions(Hg^(2+))and bacteria are widely spread in water pollution and pose a great threat to human health and the environment.Herein,a multifunctional COF Dmta Tph with significant Hg^(2+)adsorption capability and continuous sunlight-driven sterilization property is designed and synthesized by introducing thioether and photosensitive porphyrin in a single molecule.The obtained COF displays a high Hg^(2+)adsorption capacity of 657.9 mg/g at 298 K and a superior antibacterial effect toward Escherichia coli and Staphylococcus aureus under sunlight irradiation.Mechanistic studies reveal that the strong coordination between S species and Hg^(2+)is the main driving force for high Hg^(2+)adsorption capability.The sterilization mechanism clarifies that the inactivation of bacteria is caused by1O_(2)produced from Dmta Tph with the assistance of light irradiation.Noteworthy,when Dmta Tph is applied in the treatment of wastewater,it displays high Hg^(2+)removal efficiency and remarkable antibacterial effect under complex conditions.This study has demonstrated a promising strategy for designing multifunctional COF-based materials,offering great potential in tackling the problem of heavy metal ions and bacteria pollution in water.展开更多
Objective:To evaluate the application value of a refined quality control management model for a sterilization supply center.Methods:A retrospective analysis was conducted on the work situation of the sterilization sup...Objective:To evaluate the application value of a refined quality control management model for a sterilization supply center.Methods:A retrospective analysis was conducted on the work situation of the sterilization supply center from January 2021 to January 2023.The work situation before January 31,2022,was classified as the control group;a routine quality control management model was implemented,and the work situation after January 31,2022,was classified as the observation group.The quality of medical device management and department satisfaction between the two groups were compared.Results:The timely recovery and supply rate,classification and cleaning pass rate,disinfection pass rate,packaging pass rate,sterilization pass rate,and department satisfaction score in the observation group were all higher than those of the control group(P<0.05).Conclusion:Implementing a refined quality control management model in the sterilization supply center can improve the quality management level of medical devices and department satisfaction and is worthy of promotion.展开更多
We report a facile solution method to form titanium oxide(TiO_(2))nano-flower structure on the titanium(Ti)substrates for realizing good physical sterilization and biocompatibility.We first prepare TiO_(2) nanotubes(N...We report a facile solution method to form titanium oxide(TiO_(2))nano-flower structure on the titanium(Ti)substrates for realizing good physical sterilization and biocompatibility.We first prepare TiO_(2) nanotubes(NT)with a diameter of about 80-100 nm and a length of about 5μm on Ti substrates by anodization,which is utilized as precursor.Then,we employ immersion treatment in different concentrations of phosphoric acid solution at 75℃ for 5 h to realize the transformation from TiO_(2) NT to TiO_(2) nano-flower structure.In addition,we studied the effects of phosphoric acid concentration(1 wt%,2.5 wt%,5 wt% and 10 wt%)on the TiO_(2) nano-flower structure,and the antibacterial properties and biocompatibility of the TiO_(2) nano-flower structure.The results show that TiO_(2) nano-flower structure become larger and thicker with the increase in the phosphoric acid concentration,and the thickness of the coating can reach 6.88μm.Meanwhile,the TiO_(2) nano-flower structure shows good physical sterilization effect,especially for the TiO_(2) nano-flower structure formed in 10 wt%H^(3)PO_(4) solution,the antibacterial rate can reach 95%.In addition,the TiO_(2) nano-flower structure have no toxicity to the osteoblasts and support cell growth.展开更多
The massive use of antibiotics has led to the aggravation of bacterial resistance and also brought environmental pollution problems.This poses a great threat to human health.If the dosage of antibiotics is reduced by ...The massive use of antibiotics has led to the aggravation of bacterial resistance and also brought environmental pollution problems.This poses a great threat to human health.If the dosage of antibiotics is reduced by increasing its bactericidal performance,the emergence of drug resistance is certainly delayed,so that there's not enough time for developing drug resistance during treatment.Therefore,we selected typical representative materials of metal Ag and semiconductor ZnO nano-bactericides to design and synthesize Ag/ZnO hollow core-shell structures(AZ for short).Antibiotics are grafted on the surface of AZ through rational modification to form a composite sterilization system.The research results show that the antibacterial efficiency of the composite system is significantly increased,from the sum(34.7%+22.8%-57.5%)of the antibacterial efficiency of AZ and gentamicin to 80.2%,net synergizes 22.7%,which fully reflects the effect of 1+1>2.Therefore,the dosage of antibiotics can be drastically reduced in this way,which makes both the possibility of bacterial resistance and medical expenses remarkably decrease.Subsequently,residual antibiotics can be degraded under simple illumination using AZ-self as a photocatalyst,which cuts off the path of environmental pollution.In short,such an innovative route has guiding significance for drug resistance.展开更多
There is a currently a lack of large-area plasma sterilization devices that can intelligently identify the shape of a wound for automatic steriliza-tion.For this reason,in this work,a plasma sterilization device with ...There is a currently a lack of large-area plasma sterilization devices that can intelligently identify the shape of a wound for automatic steriliza-tion.For this reason,in this work,a plasma sterilization device with wound-edge recognition was developed using afield-programmable gate array(FPGA)and a high-performance image-processing platform to realize intelligent and precise sterilization of wounds.SOLIDWORKS was used to design the mechanical structure of the device,and it was manufactured using 3D printing.The device used an improvement of the traditional Sobel detection algorithm,which extends the detection of edges in only the x and y directions to eight directions(0○,45○,90○,135○,180○,225○,270○,and 315○),completing the wound-edge detection by adaptive thresholding.The device can be controlled according to different shapes of sterilization area to adjust the positioning of a single plasma-jet tube in the horizontal plane for two-dimensional move-ment;the distance between the plasma-jet tube and the surface of the object to be sterilized can be also adjusted in the vertical direction.In this way,motors are used to move the plasma jet and achieve automatic,efficient,and accurate plasma sterilization.It was found that a good sterilization effect could be achieved at both the culture-medium level and the biological-tissue level.The ideal sterilization parameters at the culture-medium level were a speed of 2 mm/s and aflow rate of 0.6 slm,while at the biological-tissue level,these values were 1 mm/s and 0.6 slm,respectively.展开更多
Plasma sterilization is a new generation of high-tech sterilization method that is fast,safe,and pollution free.It is widely used in medical,food,and environmental protection fields.Home air sterilization is an emergi...Plasma sterilization is a new generation of high-tech sterilization method that is fast,safe,and pollution free.It is widely used in medical,food,and environmental protection fields.Home air sterilization is an emerging field of plasma application,which puts higher requirements on the miniaturization,operational stability,and operating cost of plasma device.In this study,a novel magnetically driven rotating gliding arc(MDRGA)discharge device was used to sterilize Lactobacillus fermentation.Compared with the traditional gas-driven gliding arc,this device has a simple structure and a more stable gliding arc.Simulation using COMSOL Multiphysics showed that adding permanent magnets can form a stable magnetic field,which is conducive to the formation of gliding arcs.Experiments on the discharge performance,ozone concentration,and sterilization effect were conducted using different power supply parameters.The results revealed that the MDRGA process can be divided into three stages:starting,gliding,and extinguishing.Appropriate voltage was the key factor for stable arc gliding,and both high and low voltages were not conducive to stable arc gliding and ozone production.In this experimental setup,the sterilization effect was the best at 6.6 kV.A high modulation duty ratio was beneficial for achieving stable arc gliding.However,when the duty ratio exceeded a certain value,the improvement in the sterilization effect was slow.Therefore,considering the sterilization effect and energy factors comprehensively,we chose 80%as the optimal modulation duty ratio for this experimental device.展开更多
Guilin rice noodles, a unique cuisine from Guilin, Guangxi, is renowned both domestically and internationally as one of the top ten “Guilin Classics”. Utilizing a heat conduction model, this study explores the effec...Guilin rice noodles, a unique cuisine from Guilin, Guangxi, is renowned both domestically and internationally as one of the top ten “Guilin Classics”. Utilizing a heat conduction model, this study explores the effectiveness of the cooking process in sterilizing Guilin rice noodles before consumption. The model assumes that a large pot is filled with boiling water which is maintained at a constant high temperature heat resource through continuous gentle heating. And the room temperature is set as the initial temperature for the preheating process and the final temperature for the cooling process. The objective is to assess whether the cooking process achieves satisfactory sterilization results. The temperature distribution function of rice noodle with time is analytically obtained using the separation of variables method in the three-dimensional cylindrical coordinate system. Meanwhile, the thermal diffusion coefficient of Guilin rice noodles is obtained in terms of Riedel’ theory. By analyzing the elimination characteristics of Pseudomonas cocovenenans subsp. farinofermentans, this study obtains the optimal time required for effective sterilization at the core of Guilin rice noodles. The results show that the potential Pseudomonas cocovenenans subsp. farinofermentans will be completely eliminated through continuously preheating more than 31 seconds during the cooking process before consumption. This study provides a valuable reference of food safety standards in the cooking process of Guilin rice noodles, particularly in ensuring the complete inactivation of potentially harmful strains such as Pseudomonas cocovenenans subsp. farinofermentans.展开更多
Objective:This study aims to evaluate the application value of biological monitoring and different types of chemical indicator cards in batch monitoring of hydrogen peroxide low-temperature plasma sterilization.The go...Objective:This study aims to evaluate the application value of biological monitoring and different types of chemical indicator cards in batch monitoring of hydrogen peroxide low-temperature plasma sterilization.The goal is to standardize the selection of loading conditions for this sterilization method and avoid positive biological monitoring results.Methods:Physical monitoring,Class I chemical indicator card monitoring,Class IV chemical indicator card monitoring,and biological monitoring were used to monitor the hydrogen peroxide low-temperature plasma sterilization process.The sterilization effect on instruments inside the Johnson&Johnson 100S plasma sterilizer was monitored and the qualification of various monitoring methods was compared.Results:The comparison showed that when non-standard or adsorption-prone packaging materials were used,the interception rate of biological monitoring and Class IV chemical indicator cards was significantly higher than that of physical monitoring and Class I chemical indicator cards.These methods more intuitively and effectively detected sterilization failures.Conclusion:Biological monitoring and Class IV chemical indicator cards are safe,fast,accurate,and easy to interpret in hydrogen peroxide low-temperature plasma sterilization,especially for monitoring instruments inside packages.They provide a reliable basis for the release of sterilized instrument packages.Identifying the reasons for positive biological monitoring results in hydrogen peroxide low-temperature plasma sterilization and taking effective measures promptly can minimize associated risks.展开更多
[Objective] The aim was to study the explants sterilization and callus induction of Aquilegia oxysepala.[Method] the seeds of Aquilegia oxysepala were sterilized by different kinds and concentrations of disinfectants,...[Objective] The aim was to study the explants sterilization and callus induction of Aquilegia oxysepala.[Method] the seeds of Aquilegia oxysepala were sterilized by different kinds and concentrations of disinfectants,and the pollution rate and pollution speed were investigated so as to find the best way to build sterile seedling setup.Taking the roots,stem segments and leaves of the sterile seedlings from Aquilegia oxysepala seeds as explants,the optimum explants and medium were screened by adding MS basic medium with different hormone proportions.[Result] The best germicidal treatment was as follows:explants were soaked in 75% alcohol for 30 s firstly,washed by sterile water for 5 times,then soaked in 0.2% mercuric chloride liquid for 2 min,finally washed by sterile water for 5 times again.The sterilization treatment could get the lowest pollution rate,the highest germinating capacity and the best sterile seedling.Roots were the optimum explants for the callus induction of Aquilegia oxysepala,meanwhile the optimal medium was MS+0.6 mg/L 2,4-D+0.5 mg/L 6-BA.[Conclusion] The research provides technical support for the large scale production of Aquilegia oxysepala and also makes a contribution to the medicinal and ornamental value of Aquilegia oxysepala.展开更多
Objective:To explore the effect of applying the Plan-Do-Check-Act(PDCA)cycle combined with instrument mapping to manage surgical instruments in a hospital sterilization supply center.Methods:A total of 600 surgical in...Objective:To explore the effect of applying the Plan-Do-Check-Act(PDCA)cycle combined with instrument mapping to manage surgical instruments in a hospital sterilization supply center.Methods:A total of 600 surgical instruments in a hospital’s surgical instrument sterilization and supply management center were sampled and grouped based on the introduction of the PDCA cycle combined with instrument mapping.The control group included 300 surgical instruments subject to routine sterilization management from November 2023 to January 2024.The observation group included 300 surgical instruments managed with the PDCA cycle combined with instrument mapping from February 2024 to April 2024.The quality of surgical instrument management,incidence of adverse events,and other indicators were compared between the two groups.Results:The observation group demonstrated significantly higher scores in management quality indices compared to the control group,with scores for disassembly and assembly(93.28±1.57 vs.87.41±1.48),cleaning(95.04±2.08 vs.90.23±2.12),disinfection and sterilization(95.33±1.27 vs.91.95±1.39),waste disposal(93.26±1.24 vs.89.65±1.18),packaging and traceability(94.35±1.74 vs.92.23±1.65),and issuance and recycling(95.79±1.72 vs.90.22±1.81)(all P<0.05).The observation group reported two adverse events(one incomplete instrument specification and one case of instrument package overweight)with an incidence rate of 0.67%.Conversely,the control group reported six adverse events(including shortages,incomplete specifications,unqualified sterilization,defective instruments,untimely or incorrect delivery,and overweight instrument packages)with an incidence rate of 3%,demonstrating statistically significant differences between groups(P<0.05).Conclusion:Applying the PDCA cycle combined with instrument mapping for surgical instrument management in hospital sterilization supply centers significantly improves management quality and reduces adverse events.Its application is recommended for wider adoption in hospital sterilization supply centers.展开更多
An aircraft cabin is a narrow,closed-space environment.To keep the air quality in cabin healthy for passengers,especially during an epidemic such as SARS-CoV-2(or 2019-nCoV)in 2020,a novel aircraft air conditioning sy...An aircraft cabin is a narrow,closed-space environment.To keep the air quality in cabin healthy for passengers,especially during an epidemic such as SARS-CoV-2(or 2019-nCoV)in 2020,a novel aircraft air conditioning system,called the ultra-high-temperature instantaneous sterilization air conditioning system(UHTACS),is proposed.Based on the proposed system,a simulation of the UHT-ACS is analysed in various flight states.In the UHT-ACS,the mixing air temperature of return and bleed air can reach temperature up to 148.8°C,which is high enough to kill bacilli and viruses in 2一8 s.The supply air temperature of the UHT-ACS in a mixing cavity is about 12 C in cooling mode both on the ground and in the air.The supply air temperature is about 42 C in heating mode.Compared with the air conditioning systems(ACS)of traditional aircraft the supply air temperatures of the UHT-ACS in the mixing cavity are in good agreement with those of a traditional ACS with 60%fresh air and 40%return air.Furthermore the air temperature at the turbine outlet of the UHT-ACS is higher than that of a traditional ACS which will help to reduce the risk of icing at the outlet.Therefore the UHT-ACS can operate normally in various flight states.展开更多
With the epidemic of the coronavirus disease(COVID-19) infection, AlGaN-based ultraviolet-C light emitting diodes(UVC-LEDs) have attracted widespread attention for their sterilization application. However, the sterili...With the epidemic of the coronavirus disease(COVID-19) infection, AlGaN-based ultraviolet-C light emitting diodes(UVC-LEDs) have attracted widespread attention for their sterilization application. However, the sterilization characters of high power integrated light sources(ILSs) haven’t been widely investigated before utilizing in public sanitary security. In this work,by integrating up to 195 UVC-LED chips, high power UVC-LED ILSs with a light output power(LOP) of 1.88 W were demonstrated. The UVC-LED ILSs were verified to have efficient and rapid sterilization capability, which have achieved more than99.9% inactivation rate of several common pathogenic microorganisms within 1 s. In addition, the corresponding air sterilization module based on them was also demonstrated to kill more than 97% of Staphylococcus albus in the air of 20 m3 confined room within 30 min. This work demonstrates excellent sterilization ability of UVC-LED ILSs with high LOP, revealing great potential of UVC-LEDs in sterilization applications in the future.展开更多
This paper reviewed the latest progress on the sterilization technology of medicinal flowers, and briefly introduced its principle and application. Compared with the traditional chemical sterilization and autoclave st...This paper reviewed the latest progress on the sterilization technology of medicinal flowers, and briefly introduced its principle and application. Compared with the traditional chemical sterilization and autoclave sterilization techniques, irradiation sterilization, light radiation sterilization and gas sterilization own their unique advan- tages for different drugs sterilization requirements, which are worth further promotion.展开更多
The sterilization of the simulated unearthed silk fabrics using an atmospheric pressure plasma jet(APPJ) system employing Ar/O2 or He/O2 plasma to inactivate the mycete attached on the silk fabrics is reported. The ...The sterilization of the simulated unearthed silk fabrics using an atmospheric pressure plasma jet(APPJ) system employing Ar/O2 or He/O2 plasma to inactivate the mycete attached on the silk fabrics is reported. The effects of the APPJ characteristics(particularly the gas type and discharge power) on the fabric strength, physical-chemical structures,and sterilizing efficiency were investigated. Experimental results showed that the Ar/O2 APPJ plasma can inactivate the mycete completely within 4.0 min under a discharge power of 50.0 W. Such an APPJ treatment had negligible impact on the mechanical strength of the fabric and the surface chemical characteristics. Moreover, the Ar ions, O and OH radicals were shown to play important roles on the sterilization of the mycete attached on the unearthed silk fabrics.展开更多
Tissue substitutes are required in a number of clinical conditions for treatment of injured and diseased tissues.Tissues like bone,skin,amniotic membrane and soft tissues obtained from human donor can be used for repa...Tissue substitutes are required in a number of clinical conditions for treatment of injured and diseased tissues.Tissues like bone,skin,amniotic membrane and soft tissues obtained from human donor can be used for repair or reconstruction of the injured part of the body.Allograft tissues from human donor provide an excellent alternative to autografts.However,major concern with the use of allografts is the risk of infectious disease transmission.Therefore,tissue allografts should be sterilized to make them safe for clinical use.Gamma radiation has several advantages and is the most suitable method for sterilization of biological tissues.This review summarizes the use of gamma irradiation technology as an effective method for sterilization of biological tissues and ensuring safety of tissue allografts.展开更多
文摘As globalization accelerates,microbial contamination in the built environment poses a major public health challenge.Especially since Corona Virus Disease 2019(COVID-19),microbial sterilization technology has become a crucial research area for indoor air pollution control in order to create a hygienic and safe built environment.Based on this,the study reviews sterilization technologies in the built environment,focusing on the principles,efficiency and applicability,revealing advantages and limitations,and summarizing current research advances.Despite the efficacy of single sterilization technologies in specific environments,the corresponding side effects still exist.Thus,this review highlights the efficiency of hybrid sterilization technologies,providing an in-depth understanding of the practical application in the built environment.Also,it presents an outlook on the future direction of sterilization technology,including the development of new methods that are more efficient,energy-saving,and targeted to better address microbial contamination in the complex and changing built environment.Overall,this study provides a clear guide for selecting technologies to handle microbial contamination in different building environments in the future,as well as a scientific basis for developing more effective air quality control strategies.
基金funded by the National Natural Science Foundation of China(No.42076044)the Key Research Program of Frontier Sciences,CAS(No.ZDBS-LY-DQC025)+5 种基金the Key R&D Program of Shandong Province,China(No.2022CXPT027)the Chinese Academy of Sciences President’s International Fellowship Initiative(No.2023VEA0007)the Postdoctoral Fellowship Program of CPSF(No.GZB20230769)the China Postdoctoral Science Foundation(No.2023M743529)the Shandong Postdoctoral Science Foundation(No.SDBX202302014)Excellent Postdoctoral Incentive Program of Chinese Academy of Sciences,and Qingdao Postdoctoral Science Foundation(No.QDBSH20230202117).
文摘Bacterial contamination and marine biofouling are directly or indirectly impacting the economy,environment,and human health worldwide.Photocatalytic sterilization and antifouling technology is an effective method to prevent microbial contamination and corrosion.Due to its eco-friendly nature,broad-spectrum bactericidal properties,and high efficiency,this method has recently received much attention.In this review,we have comprehensively discussed the photoinduced charge carriers transfer,main reactive oxygen species(ROS),the interactions among photocatalysts and microorganisms,as well as various antibacterial mechanisms such as oxidative stress,physical/mechanical destruction,photothermal effect,piezoelectric field effect,and triboelectric field.Different types of semiconductors,including TiO_(2),ZnO,CeO_(2),Cu-based semiconductors,Bi-based semiconductors,Ag-based semiconductors,g-C_(3)N_(4),MOF,and containing phosphorus photocatalysts are summarized in photocatalytic sterilization and antifouling activity.Besides,various improvement methods including morphological control,crystallizing,doping engineering,loading cocatalyst,and constructing heterojunction are discussed.Furthermore,a strategy for dramatically improving practice applications is proposed for the possibility of further antifouling applications.Challenges and prospects for the photocatalytic sterilization and antifouling method are also discussed to highlight design considerations.
基金supported by the Innovation Talents Project of Harbin Science and Technology Bureau(2022CXRCCGO11)。
文摘This study examined the effects of pasteurization(PAS),ultrasonic sterilization(ULS),and microwave sterilization(MWS)on the quality and storage characteristics of brine-fermented tofu(BFT)and fermented tofu(FT).Comparative analysis revealed that MWS had a negligible detrimental effect on the structural integrity and organoleptic properties of BFT and FT,while effectively maintaining its water-holding capacity(WHC)and exhibiting the least impact on its texture.In contrast,PAS and ULS increased hardness and chewiness significantly(P<0.05),but ULS also enhanced the brightness of tofu.Throughout the storage period,the WHC,elasticity,and sensory properties of tofu generally decreased,whereas the hardness and chewiness increased.PAS-BFT and MWS-FT maintained sensory quality for the longest periods of 14 and 12 days respectively,and could be decomposed to more small molecule peptides within 0–8 days and 0–6 days,which are more easily to be absorbed by the body.The findings discovered that MWS is the most suitable method for sterilization of tofu,with superior capability in maintaining the quality,extending shelf life,and improving digestibility of tofu.
基金supported by the National Natural Science Foundation of China(No.2021YFC3200603)the Special Research Assistant Program,Chinese Academy of Sciences.
文摘Photocatalytic disinfection is an eco-friendly strategy for countering bacterial pollution in aquatic environments.Numerous strategies have been devised to facilitate the generation of reactive oxygen species(ROS)within photocatalysts,ultimately leading to the eradication of bacteria.However,the significance of the physical morphology of photocatalysts in the context of sterilization is frequently obscured,and the progress in the development of physical-chemical synergistic sterilization photocatalysts has been relatively limited.Herein,graphitic carbon nitride(g-C_(3)N_(4))is chemically protonated to expose more sharp edges.PL fluorescence and EIS results indicate that the protonation can accelerate photogenerated carrier separation and enhance ROS production.Meanwhile,the sharp edges on the protonated g-C_(3)N_(4)facilitate the physical disruption of cell walls for further promoting oxidative damage.Protonated C_(3)N_(4)demonstrated superior bactericidal performance than that of pristine g-C_(3)N_(4),effectively eliminating Escherichia coli within 40 minutes under irradiation.This work highlights the significance of incorporating physical and chemical synergies in photocatalyst design to enhance the disinfection efficiency of photocatalysis.
基金financially supported by the National Natural Science Foundation of China(Nos.22106078,62105175)High-end Foreign Experts Recruitment Plan(No.G2023024007L)+1 种基金Shandong Provincial Natural Science Foundation(Nos.ZR2022YQ12,ZR2021QB031,ZR2021QF058)the Science,Education,and Industry Integration Pilot Project for Talent Research at Qilu University of Technology(Shandong Academy of Sciences)(No.2024RCKY028)。
文摘Mercury ions(Hg^(2+))and bacteria are widely spread in water pollution and pose a great threat to human health and the environment.Herein,a multifunctional COF Dmta Tph with significant Hg^(2+)adsorption capability and continuous sunlight-driven sterilization property is designed and synthesized by introducing thioether and photosensitive porphyrin in a single molecule.The obtained COF displays a high Hg^(2+)adsorption capacity of 657.9 mg/g at 298 K and a superior antibacterial effect toward Escherichia coli and Staphylococcus aureus under sunlight irradiation.Mechanistic studies reveal that the strong coordination between S species and Hg^(2+)is the main driving force for high Hg^(2+)adsorption capability.The sterilization mechanism clarifies that the inactivation of bacteria is caused by1O_(2)produced from Dmta Tph with the assistance of light irradiation.Noteworthy,when Dmta Tph is applied in the treatment of wastewater,it displays high Hg^(2+)removal efficiency and remarkable antibacterial effect under complex conditions.This study has demonstrated a promising strategy for designing multifunctional COF-based materials,offering great potential in tackling the problem of heavy metal ions and bacteria pollution in water.
文摘Objective:To evaluate the application value of a refined quality control management model for a sterilization supply center.Methods:A retrospective analysis was conducted on the work situation of the sterilization supply center from January 2021 to January 2023.The work situation before January 31,2022,was classified as the control group;a routine quality control management model was implemented,and the work situation after January 31,2022,was classified as the observation group.The quality of medical device management and department satisfaction between the two groups were compared.Results:The timely recovery and supply rate,classification and cleaning pass rate,disinfection pass rate,packaging pass rate,sterilization pass rate,and department satisfaction score in the observation group were all higher than those of the control group(P<0.05).Conclusion:Implementing a refined quality control management model in the sterilization supply center can improve the quality management level of medical devices and department satisfaction and is worthy of promotion.
基金jointly supported by the Four“Batches”Innovation Project of Invigorating Medical through Science and Technology of Shanxi Province(2022XM12)the Central Leading Science and Technology Development Foundation of Shanxi Province(YDZJSX2021A019)+1 种基金the Key Research and Development Program of Shanxi Province(202102130501007)the Natural Science Foundation of Shanxi Province(202103021223102,202203021222127).
文摘We report a facile solution method to form titanium oxide(TiO_(2))nano-flower structure on the titanium(Ti)substrates for realizing good physical sterilization and biocompatibility.We first prepare TiO_(2) nanotubes(NT)with a diameter of about 80-100 nm and a length of about 5μm on Ti substrates by anodization,which is utilized as precursor.Then,we employ immersion treatment in different concentrations of phosphoric acid solution at 75℃ for 5 h to realize the transformation from TiO_(2) NT to TiO_(2) nano-flower structure.In addition,we studied the effects of phosphoric acid concentration(1 wt%,2.5 wt%,5 wt% and 10 wt%)on the TiO_(2) nano-flower structure,and the antibacterial properties and biocompatibility of the TiO_(2) nano-flower structure.The results show that TiO_(2) nano-flower structure become larger and thicker with the increase in the phosphoric acid concentration,and the thickness of the coating can reach 6.88μm.Meanwhile,the TiO_(2) nano-flower structure shows good physical sterilization effect,especially for the TiO_(2) nano-flower structure formed in 10 wt%H^(3)PO_(4) solution,the antibacterial rate can reach 95%.In addition,the TiO_(2) nano-flower structure have no toxicity to the osteoblasts and support cell growth.
基金supported by the National Natural Science Foundation of China(Nos.22176145,82172612)the State Key Laboratory of Fine Chemicals,Dalian University of Technology(KF 2001)the Fundamental Research Funds for the Central Universities(22120210137).
文摘The massive use of antibiotics has led to the aggravation of bacterial resistance and also brought environmental pollution problems.This poses a great threat to human health.If the dosage of antibiotics is reduced by increasing its bactericidal performance,the emergence of drug resistance is certainly delayed,so that there's not enough time for developing drug resistance during treatment.Therefore,we selected typical representative materials of metal Ag and semiconductor ZnO nano-bactericides to design and synthesize Ag/ZnO hollow core-shell structures(AZ for short).Antibiotics are grafted on the surface of AZ through rational modification to form a composite sterilization system.The research results show that the antibacterial efficiency of the composite system is significantly increased,from the sum(34.7%+22.8%-57.5%)of the antibacterial efficiency of AZ and gentamicin to 80.2%,net synergizes 22.7%,which fully reflects the effect of 1+1>2.Therefore,the dosage of antibiotics can be drastically reduced in this way,which makes both the possibility of bacterial resistance and medical expenses remarkably decrease.Subsequently,residual antibiotics can be degraded under simple illumination using AZ-self as a photocatalyst,which cuts off the path of environmental pollution.In short,such an innovative route has guiding significance for drug resistance.
基金supported by:the National Natural Science Foundation of China under Grant Nos.62163009 and 61864001the Natural Science Foundation of Guangxi Province under Grant No.2021JJD170019+1 种基金the Foundation of Guangxi Key Laboratory of Automatic Detecting Technology and Instruments(Guilin University of Electronic Technology)under Grant No.YQ23103the Innovation Project of Guangxi Graduate Education under Grant No.YCSW2022277.
文摘There is a currently a lack of large-area plasma sterilization devices that can intelligently identify the shape of a wound for automatic steriliza-tion.For this reason,in this work,a plasma sterilization device with wound-edge recognition was developed using afield-programmable gate array(FPGA)and a high-performance image-processing platform to realize intelligent and precise sterilization of wounds.SOLIDWORKS was used to design the mechanical structure of the device,and it was manufactured using 3D printing.The device used an improvement of the traditional Sobel detection algorithm,which extends the detection of edges in only the x and y directions to eight directions(0○,45○,90○,135○,180○,225○,270○,and 315○),completing the wound-edge detection by adaptive thresholding.The device can be controlled according to different shapes of sterilization area to adjust the positioning of a single plasma-jet tube in the horizontal plane for two-dimensional move-ment;the distance between the plasma-jet tube and the surface of the object to be sterilized can be also adjusted in the vertical direction.In this way,motors are used to move the plasma jet and achieve automatic,efficient,and accurate plasma sterilization.It was found that a good sterilization effect could be achieved at both the culture-medium level and the biological-tissue level.The ideal sterilization parameters at the culture-medium level were a speed of 2 mm/s and aflow rate of 0.6 slm,while at the biological-tissue level,these values were 1 mm/s and 0.6 slm,respectively.
基金supported by National Natural Science Foundation of China(Nos.52077129 and 52277150)the Natural Science Foundation of Shandong Province(No.ZR2022ME037).
文摘Plasma sterilization is a new generation of high-tech sterilization method that is fast,safe,and pollution free.It is widely used in medical,food,and environmental protection fields.Home air sterilization is an emerging field of plasma application,which puts higher requirements on the miniaturization,operational stability,and operating cost of plasma device.In this study,a novel magnetically driven rotating gliding arc(MDRGA)discharge device was used to sterilize Lactobacillus fermentation.Compared with the traditional gas-driven gliding arc,this device has a simple structure and a more stable gliding arc.Simulation using COMSOL Multiphysics showed that adding permanent magnets can form a stable magnetic field,which is conducive to the formation of gliding arcs.Experiments on the discharge performance,ozone concentration,and sterilization effect were conducted using different power supply parameters.The results revealed that the MDRGA process can be divided into three stages:starting,gliding,and extinguishing.Appropriate voltage was the key factor for stable arc gliding,and both high and low voltages were not conducive to stable arc gliding and ozone production.In this experimental setup,the sterilization effect was the best at 6.6 kV.A high modulation duty ratio was beneficial for achieving stable arc gliding.However,when the duty ratio exceeded a certain value,the improvement in the sterilization effect was slow.Therefore,considering the sterilization effect and energy factors comprehensively,we chose 80%as the optimal modulation duty ratio for this experimental device.
文摘Guilin rice noodles, a unique cuisine from Guilin, Guangxi, is renowned both domestically and internationally as one of the top ten “Guilin Classics”. Utilizing a heat conduction model, this study explores the effectiveness of the cooking process in sterilizing Guilin rice noodles before consumption. The model assumes that a large pot is filled with boiling water which is maintained at a constant high temperature heat resource through continuous gentle heating. And the room temperature is set as the initial temperature for the preheating process and the final temperature for the cooling process. The objective is to assess whether the cooking process achieves satisfactory sterilization results. The temperature distribution function of rice noodle with time is analytically obtained using the separation of variables method in the three-dimensional cylindrical coordinate system. Meanwhile, the thermal diffusion coefficient of Guilin rice noodles is obtained in terms of Riedel’ theory. By analyzing the elimination characteristics of Pseudomonas cocovenenans subsp. farinofermentans, this study obtains the optimal time required for effective sterilization at the core of Guilin rice noodles. The results show that the potential Pseudomonas cocovenenans subsp. farinofermentans will be completely eliminated through continuously preheating more than 31 seconds during the cooking process before consumption. This study provides a valuable reference of food safety standards in the cooking process of Guilin rice noodles, particularly in ensuring the complete inactivation of potentially harmful strains such as Pseudomonas cocovenenans subsp. farinofermentans.
文摘Objective:This study aims to evaluate the application value of biological monitoring and different types of chemical indicator cards in batch monitoring of hydrogen peroxide low-temperature plasma sterilization.The goal is to standardize the selection of loading conditions for this sterilization method and avoid positive biological monitoring results.Methods:Physical monitoring,Class I chemical indicator card monitoring,Class IV chemical indicator card monitoring,and biological monitoring were used to monitor the hydrogen peroxide low-temperature plasma sterilization process.The sterilization effect on instruments inside the Johnson&Johnson 100S plasma sterilizer was monitored and the qualification of various monitoring methods was compared.Results:The comparison showed that when non-standard or adsorption-prone packaging materials were used,the interception rate of biological monitoring and Class IV chemical indicator cards was significantly higher than that of physical monitoring and Class I chemical indicator cards.These methods more intuitively and effectively detected sterilization failures.Conclusion:Biological monitoring and Class IV chemical indicator cards are safe,fast,accurate,and easy to interpret in hydrogen peroxide low-temperature plasma sterilization,especially for monitoring instruments inside packages.They provide a reliable basis for the release of sterilized instrument packages.Identifying the reasons for positive biological monitoring results in hydrogen peroxide low-temperature plasma sterilization and taking effective measures promptly can minimize associated risks.
基金Supported by the Fundamental Research Funds for the Central Universities(DL09BA16)Science Research Foundation for Young Scientists of northeast Forestry University(09047 )Graduate Project Technology Innovation Funds of Northeast Forestry University~~
文摘[Objective] The aim was to study the explants sterilization and callus induction of Aquilegia oxysepala.[Method] the seeds of Aquilegia oxysepala were sterilized by different kinds and concentrations of disinfectants,and the pollution rate and pollution speed were investigated so as to find the best way to build sterile seedling setup.Taking the roots,stem segments and leaves of the sterile seedlings from Aquilegia oxysepala seeds as explants,the optimum explants and medium were screened by adding MS basic medium with different hormone proportions.[Result] The best germicidal treatment was as follows:explants were soaked in 75% alcohol for 30 s firstly,washed by sterile water for 5 times,then soaked in 0.2% mercuric chloride liquid for 2 min,finally washed by sterile water for 5 times again.The sterilization treatment could get the lowest pollution rate,the highest germinating capacity and the best sterile seedling.Roots were the optimum explants for the callus induction of Aquilegia oxysepala,meanwhile the optimal medium was MS+0.6 mg/L 2,4-D+0.5 mg/L 6-BA.[Conclusion] The research provides technical support for the large scale production of Aquilegia oxysepala and also makes a contribution to the medicinal and ornamental value of Aquilegia oxysepala.
文摘Objective:To explore the effect of applying the Plan-Do-Check-Act(PDCA)cycle combined with instrument mapping to manage surgical instruments in a hospital sterilization supply center.Methods:A total of 600 surgical instruments in a hospital’s surgical instrument sterilization and supply management center were sampled and grouped based on the introduction of the PDCA cycle combined with instrument mapping.The control group included 300 surgical instruments subject to routine sterilization management from November 2023 to January 2024.The observation group included 300 surgical instruments managed with the PDCA cycle combined with instrument mapping from February 2024 to April 2024.The quality of surgical instrument management,incidence of adverse events,and other indicators were compared between the two groups.Results:The observation group demonstrated significantly higher scores in management quality indices compared to the control group,with scores for disassembly and assembly(93.28±1.57 vs.87.41±1.48),cleaning(95.04±2.08 vs.90.23±2.12),disinfection and sterilization(95.33±1.27 vs.91.95±1.39),waste disposal(93.26±1.24 vs.89.65±1.18),packaging and traceability(94.35±1.74 vs.92.23±1.65),and issuance and recycling(95.79±1.72 vs.90.22±1.81)(all P<0.05).The observation group reported two adverse events(one incomplete instrument specification and one case of instrument package overweight)with an incidence rate of 0.67%.Conversely,the control group reported six adverse events(including shortages,incomplete specifications,unqualified sterilization,defective instruments,untimely or incorrect delivery,and overweight instrument packages)with an incidence rate of 3%,demonstrating statistically significant differences between groups(P<0.05).Conclusion:Applying the PDCA cycle combined with instrument mapping for surgical instrument management in hospital sterilization supply centers significantly improves management quality and reduces adverse events.Its application is recommended for wider adoption in hospital sterilization supply centers.
基金the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)and the Foundation of Jiangsu Postdoctoral(No.2019K126)。
文摘An aircraft cabin is a narrow,closed-space environment.To keep the air quality in cabin healthy for passengers,especially during an epidemic such as SARS-CoV-2(or 2019-nCoV)in 2020,a novel aircraft air conditioning system,called the ultra-high-temperature instantaneous sterilization air conditioning system(UHTACS),is proposed.Based on the proposed system,a simulation of the UHT-ACS is analysed in various flight states.In the UHT-ACS,the mixing air temperature of return and bleed air can reach temperature up to 148.8°C,which is high enough to kill bacilli and viruses in 2一8 s.The supply air temperature of the UHT-ACS in a mixing cavity is about 12 C in cooling mode both on the ground and in the air.The supply air temperature is about 42 C in heating mode.Compared with the air conditioning systems(ACS)of traditional aircraft the supply air temperatures of the UHT-ACS in the mixing cavity are in good agreement with those of a traditional ACS with 60%fresh air and 40%return air.Furthermore the air temperature at the turbine outlet of the UHT-ACS is higher than that of a traditional ACS which will help to reduce the risk of icing at the outlet.Therefore the UHT-ACS can operate normally in various flight states.
基金supported by the Guangdong Basic and Application Basic Research Foundation of Guangdong Province (Nos. 2021A1515111149, 2021B1515120022, 2020B 010174003)。
文摘With the epidemic of the coronavirus disease(COVID-19) infection, AlGaN-based ultraviolet-C light emitting diodes(UVC-LEDs) have attracted widespread attention for their sterilization application. However, the sterilization characters of high power integrated light sources(ILSs) haven’t been widely investigated before utilizing in public sanitary security. In this work,by integrating up to 195 UVC-LED chips, high power UVC-LED ILSs with a light output power(LOP) of 1.88 W were demonstrated. The UVC-LED ILSs were verified to have efficient and rapid sterilization capability, which have achieved more than99.9% inactivation rate of several common pathogenic microorganisms within 1 s. In addition, the corresponding air sterilization module based on them was also demonstrated to kill more than 97% of Staphylococcus albus in the air of 20 m3 confined room within 30 min. This work demonstrates excellent sterilization ability of UVC-LED ILSs with high LOP, revealing great potential of UVC-LEDs in sterilization applications in the future.
文摘This paper reviewed the latest progress on the sterilization technology of medicinal flowers, and briefly introduced its principle and application. Compared with the traditional chemical sterilization and autoclave sterilization techniques, irradiation sterilization, light radiation sterilization and gas sterilization own their unique advan- tages for different drugs sterilization requirements, which are worth further promotion.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11665005,11505032,11547139,51672249,and 11565003)the Zhejiang Natural Science Foundation of China(Grant No.LY16A050002)+3 种基金the Natural Science Foundation of Jiangxi Province,China(Grant Nos.20161BAB211026,20171ACB21049,and 20171BAB211012)the Science and Technology Project of Jiangxi Provincial Department of Education,China(Grant No.GJJ150981)the Program for Innovative Research Team of Zhejiang Sci-Tech University,Chinathe Opening Foundation of Insititue of Textile Technology,Wuhan Texitle Universitiy,China(Grant No.GCZX201702)
文摘The sterilization of the simulated unearthed silk fabrics using an atmospheric pressure plasma jet(APPJ) system employing Ar/O2 or He/O2 plasma to inactivate the mycete attached on the silk fabrics is reported. The effects of the APPJ characteristics(particularly the gas type and discharge power) on the fabric strength, physical-chemical structures,and sterilizing efficiency were investigated. Experimental results showed that the Ar/O2 APPJ plasma can inactivate the mycete completely within 4.0 min under a discharge power of 50.0 W. Such an APPJ treatment had negligible impact on the mechanical strength of the fabric and the surface chemical characteristics. Moreover, the Ar ions, O and OH radicals were shown to play important roles on the sterilization of the mycete attached on the unearthed silk fabrics.
文摘Tissue substitutes are required in a number of clinical conditions for treatment of injured and diseased tissues.Tissues like bone,skin,amniotic membrane and soft tissues obtained from human donor can be used for repair or reconstruction of the injured part of the body.Allograft tissues from human donor provide an excellent alternative to autografts.However,major concern with the use of allografts is the risk of infectious disease transmission.Therefore,tissue allografts should be sterilized to make them safe for clinical use.Gamma radiation has several advantages and is the most suitable method for sterilization of biological tissues.This review summarizes the use of gamma irradiation technology as an effective method for sterilization of biological tissues and ensuring safety of tissue allografts.