期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Precession–nutation correction for star tracker attitude measurement of STECE satellite 被引量:8
1
作者 Lai Yuwang Liu Junhong +2 位作者 Ding Yonghe Gu Defeng Yi Dongyun 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2014年第1期117-124,共8页
Space Technology Experiment and Climate Exploration (STECE) is a small satellite mis- sion of China for space technology experiment and climate exploration. A new test star tracker and one ASTRO 10 star tracker have... Space Technology Experiment and Climate Exploration (STECE) is a small satellite mis- sion of China for space technology experiment and climate exploration. A new test star tracker and one ASTRO 10 star tracker have been loaded on the STECE satellite to test the new star tracker's measurement performance. However, there is no autonomous precession nutation correction func- tion for the test star tracker, which causes an apparent periodic deflection in the inter-boresight angle between the two star trackers with respect to each other of up to - 500 arcsec, so the preces- sion and nutation effect needs to be considered while assessing the test star tracker. This paper researches on the precession-nutation correction for the test star traeker's attitude measurement and presents a precession-nutation correction method based on attitude quaternion data. The peri- odic deflection of the inter-boresight angle between the two star trackers has been greatly eliminated after the precession and nutation of the test star tracker's attitude data have been corrected by the proposed method and the validity of the proposed algorithm has been demonstrated. The in-flight accuracy of the test star tracker has been assessed like attitude noise and low-frequency errors after the precession-nutation correction. 展开更多
关键词 Attitude determination Low-frequency periodicerror Precession-nutation Star trackers stece satellite
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部