Released in September 2024 by an oversight committee of the US National Aeronautics and Space Administration(NASA),a safety report about the International Space Station(ISS)cited,in addition to 50 other“areas of conc...Released in September 2024 by an oversight committee of the US National Aeronautics and Space Administration(NASA),a safety report about the International Space Station(ISS)cited,in addition to 50 other“areas of concern,”a troublesome leak first detected six years ago in one of the station’s modules[1].Given the persistent leak,called“a top safety risk”[2],and the fact that the space sta-tion has outlived its original life expectancy by more than 10 years,the agency’s current plans call for decommissioning the ISS in 2031 by dragging it into the Pacific Ocean[3].展开更多
The Hongyancun subway station in Chongqing,China,is 116 meters deep and the difference in air pressure often leaves users with clogged(堵塞的)ears when accessed via its elevator.When the air pressure outside the eardr...The Hongyancun subway station in Chongqing,China,is 116 meters deep and the difference in air pressure often leaves users with clogged(堵塞的)ears when accessed via its elevator.When the air pressure outside the eardrum(耳膜)becomes different than the pressure inside,you experience ear barotrauma(气压伤).It occurs most often during steep ascents and descents and is usually associated with plane take⁃offs and landings,or driving up or down mountains.Most subway stations dont usually cause ear barotrauma,because they arent deep or steep enough for your ears to register a significant enough difference in air pressure.But taking the elevator to reach Chinas deepest subway station might actually clog up your ears.Thats because it is located 116 meters below the surface,which is the equivalent of about 40 floors underground.展开更多
The implementation of the standard is expected to help electric vehicle battery swap stations to adapt to diversified needs and vehicle models,promoting the industry’s orderly and healthy development.
In line with the new concept of building up a“well-connected,fullyi integrated,environment-friendlypassenger-oriented,economically-efficient,culturally-rich,intelligent and convenient”railway station and the constru...In line with the new concept of building up a“well-connected,fullyi integrated,environment-friendlypassenger-oriented,economically-efficient,culturally-rich,intelligent and convenient”railway station and the construction requirements of"elaborate,fine and exquisite construction of excellent passenger stations" put forward by China State Railway Group Co.Ltd.,design optimization and innovation are carried out in the construction of Nantongxi Railway Station and Pingtan Station in the aspects offunctional layout,decoration style,cultural enhancement,construction materials to be used,details treatment of the station buildings and the use of photoelectric technology,focusing on the consideration and research for furrther enhancing cultural confidence,deeply integrating into the regional features,inheriting historical context,innovating artistic expression,trying diversified integration,and exploring the use of science and technology in the contexl 0f the new era,and thus devoting to the construction of railway passenger stations in the new era which will meet the growing needs of the people for a better life.展开更多
The vibration response and noise caused by subway trains can affect the safety and comfort of superstructures.To study the dynamic response characteristics of subway stations and superstructures under train loads with...The vibration response and noise caused by subway trains can affect the safety and comfort of superstructures.To study the dynamic response characteristics of subway stations and superstructures under train loads with a hard combination,a numerical model is developed in this study.The indoor model test verified the accuracy of the numerical model.The influence laws of different hard combinations,train operating speeds and modes were studied and evaluated accordingly.The results show that the frequency corresponding to the peak vibration acceleration level of each floor of the superstructure property is concentrated at 10–20 Hz.The vibration response decreases in the high-frequency parts and increases in the lowfrequency parts with increasing distance from the source.Furthermore,the factors,such as train operating speed,operating mode,and hard combination type,will affect the vibration of the superstructure.The vibration response under the reversible operation of the train is greater than that of the unidirectional operation.The operating speed of the train is proportional to its vibration response.The vibration amplification area appears between the middle and the top of the superstructure at a higher train speed.Its vibration acceleration level will exceed the limit value of relevant regulations,and vibration-damping measures are required.Within the scope of application,this study provides some suggestions for constructing subway stations and superstructures.展开更多
In the background of the low-carbon transformation of the energy structure,the problem of operational uncertainty caused by the high proportion of renewable energy sources and diverse loads in the integrated energy sy...In the background of the low-carbon transformation of the energy structure,the problem of operational uncertainty caused by the high proportion of renewable energy sources and diverse loads in the integrated energy systems(IES)is becoming increasingly obvious.In this case,to promote the low-carbon operation of IES and renewable energy consumption,and to improve the IES anti-interference ability,this paper proposes an IES scheduling strategy that considers CCS-P2G and concentrating solar power(CSP)station.Firstly,CSP station,gas hydrogen doping mode and variable hydrogen doping ratio mode are applied to IES,and combined with CCS-P2G coupling model,the IES low-carbon economic dispatch model is established.Secondly,the stepped carbon trading mechanism is applied,and the sensitivity analysis of IES carbon trading is carried out.Finally,an IES optimal scheduling strategy based on fuzzy opportunity constraints and an IES risk assessment strategy based on CVaR theory are established.The simulation shows that the gas-hydrogen doping model proposed in this paper reduces the operating cost and carbon emission of IES by 1.32%and 7.17%,and improves the carbon benefit by 5.73%;variable hydrogen doping ratio model reduces the operating cost and carbon emission of IES by 3.75%and 1.70%,respectively;CSP stations reduce 19.64%and 38.52%of the operating costs of IES and 1.03%and 1.80%of the carbon emissions of IES respectively compared to equal-capacity photovoltaic and wind turbines;the baseline price of carbon trading of IES and its rate of change jointly affect the carbon emissions of IES;evaluating the anti-interference capability of IES through trapezoidal fuzzy number and weighting coefficients,enabling IES to guarantee operation at the lowest cost.展开更多
1.Introduction As China’s first floating production platform in ultra-deepwater,the“Deep Sea No.1”energy station is a milestone in China’s deepwater resource utilization.The energy station is located in the LS17-2...1.Introduction As China’s first floating production platform in ultra-deepwater,the“Deep Sea No.1”energy station is a milestone in China’s deepwater resource utilization.The energy station is located in the LS17-2 gas field,150 km off the southeast coast of Hainan Island,China.It is a semi-submersible platform(Fig.1)with a displacement of 101 thousand tonnes and an operational draft of 35 to 40 m.The platform is permanently moored in 1422 m water by 16 chain-polyester-chain mooring lines in a 4×4 pattern,and six steel catenary risers(SCRs)are attached to the platform.It is the world’s first and only semi-submersible platform with the function of condensate storage,so it can be regarded as a floating production storage and offloading(FPSO)unit.With the ability to produce 3 billion m3 of natural gas each year(enough for over 10 million families),the Deep Sea No.1 energy station is a key step toward China’s energy independence.The LS17-2 gas field,where the Deep Sea No.1 energy station is located,was discovered in 2014.Plans for its development were made in 2015,followed by research and a preliminary design.Deep Sea No.1 went into operation on June 25,2021,and will operate onsite continuously without dry-docking for 30 years.展开更多
The wireless signals emitted by base stations serve as a vital link connecting people in today’s society and have been occupying an increasingly important role in real life.The development of the Internet of Things(I...The wireless signals emitted by base stations serve as a vital link connecting people in today’s society and have been occupying an increasingly important role in real life.The development of the Internet of Things(IoT)relies on the support of base stations,which provide a solid foundation for achieving a more intelligent way of living.In a specific area,achieving higher signal coverage with fewer base stations has become an urgent problem.Therefore,this article focuses on the effective coverage area of base station signals and proposes a novel Evolutionary Particle Swarm Optimization(EPSO)algorithm based on collective prediction,referred to herein as ECPPSO.Introducing a new strategy called neighbor-based evolution prediction(NEP)addresses the issue of premature convergence often encountered by PSO.ECPPSO also employs a strengthening evolution(SE)strategy to enhance the algorithm’s global search capability and efficiency,ensuring enhanced robustness and a faster convergence speed when solving complex optimization problems.To better adapt to the actual communication needs of base stations,this article conducts simulation experiments by changing the number of base stations.The experimental results demonstrate thatunder the conditionof 50 ormore base stations,ECPPSOconsistently achieves the best coverage rate exceeding 95%,peaking at 99.4400%when the number of base stations reaches 80.These results validate the optimization capability of the ECPPSO algorithm,proving its feasibility and effectiveness.Further ablative experiments and comparisons with other algorithms highlight the advantages of ECPPSO.展开更多
The microwave wireless power transmission technologies for space solar power station are a crucial field in the international space sector,where various countries are competing in its development.This paper surveys th...The microwave wireless power transmission technologies for space solar power station are a crucial field in the international space sector,where various countries are competing in its development.This paper surveys the research experiments and development efforts related to space solar power stations and microwave wireless power transmission technologies worldwide.The objective is to assess the progress and current state of this technological foundation,determine the necessary focus for developing high-power microwave wireless power transmission technology,and provide clarity on the direction of future technology development in these areas.Finally,a distributed space solar power station plan that is immediately feasible is proposed.展开更多
Ground fissure,as a common geo-hazard,impairs the integrity of the site soil and affects the seismic performance of engineering structures.In this paper,a finite element(FE)model for subway stations in a ground fissur...Ground fissure,as a common geo-hazard,impairs the integrity of the site soil and affects the seismic performance of engineering structures.In this paper,a finite element(FE)model for subway stations in a ground fissure area was developed and validated by using experimental results.Numerical analyses were conducted to investigate the seismic response and failure mode of subway stations in a ground fissure area with different locations.Effects of ground fissure on deformations and internal forces of a station,soil pressures and soil plastic strains were discussed.The results showed that the seismic response of the station was significantly amplified by the ground fissure,and stations in the ground fissure area displayed obvious rocking deformation during earthquakes as compared to those in the area without fissures.It also was found that the soil yielding around the station,the dislocation occurring in the ground fissure area,and the dynamic amplification effect were more significant under vertical ground motion,which weakened the station’s ductility and accelerated its destruction process.展开更多
This paper begins with an overview of base station antennas,focusing on their structure and basic technical parameters.It then investigates the technical characteristics of three types of antennas—panel,Luneburg lens...This paper begins with an overview of base station antennas,focusing on their structure and basic technical parameters.It then investigates the technical characteristics of three types of antennas—panel,Luneburg lens,and innovative integrated antennas—in the context of railway 5G-R base station specifications.The advantages and disadvantages of these antenna types are compared and analyzed,and recommendations for the selection of 5G-R base station antennas are provided.Based on the special application scenarios of railway 5G-R base stations,this paper proposes connection methods between antennas and RRUs,and conducts a comparative analysis of antenna interface types.Furthermore,recommendations are provided for configuring the antenna information management module to meet the intelligent operation and maintenance requirements of the 5G-R system.The findings can serve as a reference for the selection and operation of antennas at railway 5G-R base stations.展开更多
Electric vehicles(EVs)are gradually being deployed in the transportation sector.Although they have a high impact on reducing greenhouse gas emissions,their penetration is challenged by their random energy demand and d...Electric vehicles(EVs)are gradually being deployed in the transportation sector.Although they have a high impact on reducing greenhouse gas emissions,their penetration is challenged by their random energy demand and difficult scheduling of their optimal charging.To cope with these problems,this paper presents a novel approach for photovoltaic grid-connected microgrid EV charging station energy demand forecasting.The present study is part of a comprehensive framework involving emerging technologies such as drones and artificial intelligence designed to support the EVs’charging scheduling task.By using predictive algorithms for solar generation and load demand estimation,this approach aimed at ensuring dynamic and efficient energy flow between the solar energy source,the grid and the electric vehicles.The main contribution of this paper lies in developing an intelligent approach based on deep recurrent neural networks to forecast the energy demand using only its previous records.Therefore,various forecasters based on Long Short-term Memory,Gated Recurrent Unit,and their bi-directional and stacked variants were investigated using a real dataset collected from an EV charging station located at Trieste University(Italy).The developed forecasters have been evaluated and compared according to different metrics,including R,RMSE,MAE,and MAPE.We found that the obtained R values for both PV power generation and energy demand ranged between 97%and 98%.These study findings can be used for reliable and efficient decision-making on the management side of the optimal scheduling of the charging operations.展开更多
Quantifying the post-earthquake functional recovery of railway stations presents significant challenges.This paper first establishes a post-earthquake function calculation method for railway stations,encompassing the ...Quantifying the post-earthquake functional recovery of railway stations presents significant challenges.This paper first establishes a post-earthquake function calculation method for railway stations,encompassing the establishment of relationships between the station’s function and the damage state,function loss,and failure probability of components and professional equipment in each layer.Also,the“4 stages-6 sequences”post-earthquake repair method is present,taking into account the functional and structural characteristics of railway stations.Additionally,a novel piecewise function for the post-earthquake functional dynamic recovery of railway stations is developed.A case study is conducted on a typical railway station to demonstrate the analysis procedure.Results indicate that under fortification,rare,and extremely rare earthquake scenarios,the interlayer drift ratio(IDR)of the railway station were 1/276,1/143,and 1/52,respectively,and corresponding peak floor acceleration(PFA)were 6.31 m/s^(2),7.82 m/s^(2),and 8.57 m/s^(2),respectively.The post-earthquake function of the railway station was 93.21%,82.33%,and 64.16%of its initial function.The repair times were 6.66 days,18.65 days,and 37.42 days.The displacement-sensitive,non-structural components were identified as the most vulnerable to damage.And the first repair stage(R_(1))which was mainly used to repair structural components and non-structural transport components,accounted for the highest proportion of total repair time.展开更多
Electric Vehicles(EVs)have emerged as a cleaner,low-carbon,and environmentally friendly alternative to traditional internal combustion engine(ICE)vehicles.With the increasing adoption of EVs,they are expected to event...Electric Vehicles(EVs)have emerged as a cleaner,low-carbon,and environmentally friendly alternative to traditional internal combustion engine(ICE)vehicles.With the increasing adoption of EVs,they are expected to eventually replace ICE vehicles entirely.However,the rapid growth of EVs has significantly increased energy demand,posing challenges for power grids and infrastructure.This surge in energy demand has driven advancements in developing efficient charging infrastructure and energy management solutions to mitigate the risks of power outages and disruptions caused by the rising number of EVs on the road.To address these challenges,various deep learning(DL)models,such as Recurrent Neural Networks(RNNs)and Long Short-Term Memory(LSTM)networks,have been employed for predicting energy demand at EV charging stations(EVCS).However,these models face certain limitations.They often lack interpretability,treating all input steps equally without assigning greater importance to critical patterns that are more relevant for prediction.Additionally,these models process data sequentially,which makes them computationally slower and less efficient when dealing with large datasets.In the context of these limitations,this paper introduces a novel Attention-Augmented Long Short-Term Memory(AA-LSTM)model.The proposed model integrates an attention mechanism to focus on the most relevant time steps,thereby enhancing its ability to capture long-term dependencies and improve prediction accuracy.By combining the strengths of LSTM networks in handling sequential data with the interpretability and efficiency of the attention mechanism,the AA-LSTM model delivers superior performance.The attention mechanism selectively prioritizes critical parts of the input sequence,reducing the computational burden and making the model faster and more effective.The AA-LSTM model achieves impressive results,demonstrating a Mean Absolute Percentage Error(MAPE)of 3.90%and a Mean Squared Error(MSE)of 0.40,highlighting its accuracy and reliability.These results suggest that the AA-LSTM model is a highly promising solution for predicting energy demand at EVCS,offering improved performance and efficiency compared to contemporary approaches.展开更多
The frequency regulation reserve setting of wind-PV-storage power stations is crucial.However,the existing grid codes set up the station reserve in a static manner,where the synchronous generator characteristics and f...The frequency regulation reserve setting of wind-PV-storage power stations is crucial.However,the existing grid codes set up the station reserve in a static manner,where the synchronous generator characteristics and frequency-step disturbance scenario are considered.Thus,the advantages of flexible regulation of renewable generations are wasted,resulting in excessive curtailment of wind and solar resources.In this study,a method for optimizing the frequency regulation reserve of wind PV storage power stations was developed.Moreover,a station frequency regulation model was constructed,considering the field dynamic response and the coupling between the station and system frequency dynamics.Furthermore,a method for the online evaluation of the station frequency regulation was proposed based on the benchmark governor fitting.This method helps in overcoming the capacity-based reserve static setting.Finally,an optimization model was developed,along with the proposal of the linearized solving algorithm.The field data from the JH4#station in China’s MX power grid was considered for validation.The proposed method achieves a 24.77%increase in the station income while ensuring the system frequency stability when compared with the grid code-based method.展开更多
To improve the resilience of railway stations,a typical station was selected as the research object,and an isolation design was introduced.Twenty-four groups of near-fault pulse-like ground motions were selected.The s...To improve the resilience of railway stations,a typical station was selected as the research object,and an isolation design was introduced.Twenty-four groups of near-fault pulse-like ground motions were selected.The seismic resilience of the no-isolation railway stations(NIRS)and the isolation railway stations(IRS)were compared to provide a numerical result of the improvement in resilience.The results show that in the station isolation design,the station's functional requirements and structural characteristics should be considered and the appropriate placement of isolation bearings is under the waiting room.Under the action of a rare earthquake,the repair cost,repair time,rate of harm and death of the IRS were decreased by 8.04 million,18.30 days,6.93×10^(-3)and 1.21×10^(-3),respectively,when compared to the NIRS.The IRS received a seismic resilience grade of three-stars and the NIRS only one-star,indicating that rational isolation design improves the seismic resilience of stations.Thus,for the design of stations close to earthquake faults,it is suggested to utilize appropriate isolation techniques to improve their seismic resilience.展开更多
Through the demand analysis of emergency power supply construction, waterfall noise reduction treatment, and utilization of residual pressure resources, combined with water resources and industrial infrastructure cond...Through the demand analysis of emergency power supply construction, waterfall noise reduction treatment, and utilization of residual pressure resources, combined with water resources and industrial infrastructure conditions, this paper proposes the significance of micro hydropower station construction. However, micro hydropower stations face issues such as insufficient construction standardization, prominent safety hazards, lack of specialized standards, and the need for improved planning and design. Therefore, this paper analyzes and discusses the constraints and improvement summaries in the entire construction process of micro hydropower stations from aspects including guidance of standard formulation, rationality of planning and design, and innovation of new product applications.展开更多
On January 23,we arrived in Shuanghu County,Nagqu City,Xizang.With an average altitude of 5,000 meters,this is the heart of Changtang no man's land.Along the journey,Tibetan wild donkeys and Tibetan antelopes were...On January 23,we arrived in Shuanghu County,Nagqu City,Xizang.With an average altitude of 5,000 meters,this is the heart of Changtang no man's land.Along the journey,Tibetan wild donkeys and Tibetan antelopes were often seen on both sides of the highway instead of traces of human presence,and sand and dust kept hitting our van.As the night fell,the highest county seat in the world finally came into view.展开更多
This article focuses on the municipal prefabricated bathroom station.It elaborates on its modular design concept,including key design points such as spatial layout,functional modules,and determination of key parameter...This article focuses on the municipal prefabricated bathroom station.It elaborates on its modular design concept,including key design points such as spatial layout,functional modules,and determination of key parameters;introduces the optimization of intelligent production processes,precision control,and integration of construction technology,and also mentions the verification of full lifecycle applications and quality control;as well as emphasizes the importance of BIM+IoT platform and looks forward to the future.展开更多
文摘Released in September 2024 by an oversight committee of the US National Aeronautics and Space Administration(NASA),a safety report about the International Space Station(ISS)cited,in addition to 50 other“areas of concern,”a troublesome leak first detected six years ago in one of the station’s modules[1].Given the persistent leak,called“a top safety risk”[2],and the fact that the space sta-tion has outlived its original life expectancy by more than 10 years,the agency’s current plans call for decommissioning the ISS in 2031 by dragging it into the Pacific Ocean[3].
文摘The Hongyancun subway station in Chongqing,China,is 116 meters deep and the difference in air pressure often leaves users with clogged(堵塞的)ears when accessed via its elevator.When the air pressure outside the eardrum(耳膜)becomes different than the pressure inside,you experience ear barotrauma(气压伤).It occurs most often during steep ascents and descents and is usually associated with plane take⁃offs and landings,or driving up or down mountains.Most subway stations dont usually cause ear barotrauma,because they arent deep or steep enough for your ears to register a significant enough difference in air pressure.But taking the elevator to reach Chinas deepest subway station might actually clog up your ears.Thats because it is located 116 meters below the surface,which is the equivalent of about 40 floors underground.
文摘The implementation of the standard is expected to help electric vehicle battery swap stations to adapt to diversified needs and vehicle models,promoting the industry’s orderly and healthy development.
文摘In line with the new concept of building up a“well-connected,fullyi integrated,environment-friendlypassenger-oriented,economically-efficient,culturally-rich,intelligent and convenient”railway station and the construction requirements of"elaborate,fine and exquisite construction of excellent passenger stations" put forward by China State Railway Group Co.Ltd.,design optimization and innovation are carried out in the construction of Nantongxi Railway Station and Pingtan Station in the aspects offunctional layout,decoration style,cultural enhancement,construction materials to be used,details treatment of the station buildings and the use of photoelectric technology,focusing on the consideration and research for furrther enhancing cultural confidence,deeply integrating into the regional features,inheriting historical context,innovating artistic expression,trying diversified integration,and exploring the use of science and technology in the contexl 0f the new era,and thus devoting to the construction of railway passenger stations in the new era which will meet the growing needs of the people for a better life.
基金National Natural Science Foundation of China under Grant No.51578463。
文摘The vibration response and noise caused by subway trains can affect the safety and comfort of superstructures.To study the dynamic response characteristics of subway stations and superstructures under train loads with a hard combination,a numerical model is developed in this study.The indoor model test verified the accuracy of the numerical model.The influence laws of different hard combinations,train operating speeds and modes were studied and evaluated accordingly.The results show that the frequency corresponding to the peak vibration acceleration level of each floor of the superstructure property is concentrated at 10–20 Hz.The vibration response decreases in the high-frequency parts and increases in the lowfrequency parts with increasing distance from the source.Furthermore,the factors,such as train operating speed,operating mode,and hard combination type,will affect the vibration of the superstructure.The vibration response under the reversible operation of the train is greater than that of the unidirectional operation.The operating speed of the train is proportional to its vibration response.The vibration amplification area appears between the middle and the top of the superstructure at a higher train speed.Its vibration acceleration level will exceed the limit value of relevant regulations,and vibration-damping measures are required.Within the scope of application,this study provides some suggestions for constructing subway stations and superstructures.
基金State Grid Gansu Electric Power Company Science and Technology Program(Grant No.W24FZ2730008)National Natural Science Foundation of China(Grant No.51767017).
文摘In the background of the low-carbon transformation of the energy structure,the problem of operational uncertainty caused by the high proportion of renewable energy sources and diverse loads in the integrated energy systems(IES)is becoming increasingly obvious.In this case,to promote the low-carbon operation of IES and renewable energy consumption,and to improve the IES anti-interference ability,this paper proposes an IES scheduling strategy that considers CCS-P2G and concentrating solar power(CSP)station.Firstly,CSP station,gas hydrogen doping mode and variable hydrogen doping ratio mode are applied to IES,and combined with CCS-P2G coupling model,the IES low-carbon economic dispatch model is established.Secondly,the stepped carbon trading mechanism is applied,and the sensitivity analysis of IES carbon trading is carried out.Finally,an IES optimal scheduling strategy based on fuzzy opportunity constraints and an IES risk assessment strategy based on CVaR theory are established.The simulation shows that the gas-hydrogen doping model proposed in this paper reduces the operating cost and carbon emission of IES by 1.32%and 7.17%,and improves the carbon benefit by 5.73%;variable hydrogen doping ratio model reduces the operating cost and carbon emission of IES by 3.75%and 1.70%,respectively;CSP stations reduce 19.64%and 38.52%of the operating costs of IES and 1.03%and 1.80%of the carbon emissions of IES respectively compared to equal-capacity photovoltaic and wind turbines;the baseline price of carbon trading of IES and its rate of change jointly affect the carbon emissions of IES;evaluating the anti-interference capability of IES through trapezoidal fuzzy number and weighting coefficients,enabling IES to guarantee operation at the lowest cost.
文摘1.Introduction As China’s first floating production platform in ultra-deepwater,the“Deep Sea No.1”energy station is a milestone in China’s deepwater resource utilization.The energy station is located in the LS17-2 gas field,150 km off the southeast coast of Hainan Island,China.It is a semi-submersible platform(Fig.1)with a displacement of 101 thousand tonnes and an operational draft of 35 to 40 m.The platform is permanently moored in 1422 m water by 16 chain-polyester-chain mooring lines in a 4×4 pattern,and six steel catenary risers(SCRs)are attached to the platform.It is the world’s first and only semi-submersible platform with the function of condensate storage,so it can be regarded as a floating production storage and offloading(FPSO)unit.With the ability to produce 3 billion m3 of natural gas each year(enough for over 10 million families),the Deep Sea No.1 energy station is a key step toward China’s energy independence.The LS17-2 gas field,where the Deep Sea No.1 energy station is located,was discovered in 2014.Plans for its development were made in 2015,followed by research and a preliminary design.Deep Sea No.1 went into operation on June 25,2021,and will operate onsite continuously without dry-docking for 30 years.
基金supported by the National Natural Science Foundation of China(Nos.62272418,62102058)Basic Public Welfare Research Program of Zhejiang Province(No.LGG18E050011)the Major Open Project of Key Laboratory for Advanced Design and Intelligent Computing of the Ministry of Education under Grant ADIC2023ZD001,National Undergraduate Training Program on Innovation and Entrepreneurship(No.202410345054).
文摘The wireless signals emitted by base stations serve as a vital link connecting people in today’s society and have been occupying an increasingly important role in real life.The development of the Internet of Things(IoT)relies on the support of base stations,which provide a solid foundation for achieving a more intelligent way of living.In a specific area,achieving higher signal coverage with fewer base stations has become an urgent problem.Therefore,this article focuses on the effective coverage area of base station signals and proposes a novel Evolutionary Particle Swarm Optimization(EPSO)algorithm based on collective prediction,referred to herein as ECPPSO.Introducing a new strategy called neighbor-based evolution prediction(NEP)addresses the issue of premature convergence often encountered by PSO.ECPPSO also employs a strengthening evolution(SE)strategy to enhance the algorithm’s global search capability and efficiency,ensuring enhanced robustness and a faster convergence speed when solving complex optimization problems.To better adapt to the actual communication needs of base stations,this article conducts simulation experiments by changing the number of base stations.The experimental results demonstrate thatunder the conditionof 50 ormore base stations,ECPPSOconsistently achieves the best coverage rate exceeding 95%,peaking at 99.4400%when the number of base stations reaches 80.These results validate the optimization capability of the ECPPSO algorithm,proving its feasibility and effectiveness.Further ablative experiments and comparisons with other algorithms highlight the advantages of ECPPSO.
基金Entrusted Fund of National Institute of Information and Communications Technology(NICT),Japan(JPJ012368C02401)。
文摘The microwave wireless power transmission technologies for space solar power station are a crucial field in the international space sector,where various countries are competing in its development.This paper surveys the research experiments and development efforts related to space solar power stations and microwave wireless power transmission technologies worldwide.The objective is to assess the progress and current state of this technological foundation,determine the necessary focus for developing high-power microwave wireless power transmission technology,and provide clarity on the direction of future technology development in these areas.Finally,a distributed space solar power station plan that is immediately feasible is proposed.
基金National Natural Science Foundation of China under Grant No.52108473Project of Shaanxi Engineering Technology Research Center for Urban Geology and Underground Space under Grant No.2025KT-03Key Project of Education Department of Shaanxi Province under Grant No.23JY042。
文摘Ground fissure,as a common geo-hazard,impairs the integrity of the site soil and affects the seismic performance of engineering structures.In this paper,a finite element(FE)model for subway stations in a ground fissure area was developed and validated by using experimental results.Numerical analyses were conducted to investigate the seismic response and failure mode of subway stations in a ground fissure area with different locations.Effects of ground fissure on deformations and internal forces of a station,soil pressures and soil plastic strains were discussed.The results showed that the seismic response of the station was significantly amplified by the ground fissure,and stations in the ground fissure area displayed obvious rocking deformation during earthquakes as compared to those in the area without fissures.It also was found that the soil yielding around the station,the dislocation occurring in the ground fissure area,and the dynamic amplification effect were more significant under vertical ground motion,which weakened the station’s ductility and accelerated its destruction process.
文摘This paper begins with an overview of base station antennas,focusing on their structure and basic technical parameters.It then investigates the technical characteristics of three types of antennas—panel,Luneburg lens,and innovative integrated antennas—in the context of railway 5G-R base station specifications.The advantages and disadvantages of these antenna types are compared and analyzed,and recommendations for the selection of 5G-R base station antennas are provided.Based on the special application scenarios of railway 5G-R base stations,this paper proposes connection methods between antennas and RRUs,and conducts a comparative analysis of antenna interface types.Furthermore,recommendations are provided for configuring the antenna information management module to meet the intelligent operation and maintenance requirements of the 5G-R system.The findings can serve as a reference for the selection and operation of antennas at railway 5G-R base stations.
基金University of Jeddah,Jeddah,Saudi Arabia,grant No.(UJ-23-SRP-10).
文摘Electric vehicles(EVs)are gradually being deployed in the transportation sector.Although they have a high impact on reducing greenhouse gas emissions,their penetration is challenged by their random energy demand and difficult scheduling of their optimal charging.To cope with these problems,this paper presents a novel approach for photovoltaic grid-connected microgrid EV charging station energy demand forecasting.The present study is part of a comprehensive framework involving emerging technologies such as drones and artificial intelligence designed to support the EVs’charging scheduling task.By using predictive algorithms for solar generation and load demand estimation,this approach aimed at ensuring dynamic and efficient energy flow between the solar energy source,the grid and the electric vehicles.The main contribution of this paper lies in developing an intelligent approach based on deep recurrent neural networks to forecast the energy demand using only its previous records.Therefore,various forecasters based on Long Short-term Memory,Gated Recurrent Unit,and their bi-directional and stacked variants were investigated using a real dataset collected from an EV charging station located at Trieste University(Italy).The developed forecasters have been evaluated and compared according to different metrics,including R,RMSE,MAE,and MAPE.We found that the obtained R values for both PV power generation and energy demand ranged between 97%and 98%.These study findings can be used for reliable and efficient decision-making on the management side of the optimal scheduling of the charging operations.
基金National Natural Science Foundation of China under Grant No.52278534the Sichuan Provincial Natural Science Foundation of China under Grant No.2022NSFSC0423。
文摘Quantifying the post-earthquake functional recovery of railway stations presents significant challenges.This paper first establishes a post-earthquake function calculation method for railway stations,encompassing the establishment of relationships between the station’s function and the damage state,function loss,and failure probability of components and professional equipment in each layer.Also,the“4 stages-6 sequences”post-earthquake repair method is present,taking into account the functional and structural characteristics of railway stations.Additionally,a novel piecewise function for the post-earthquake functional dynamic recovery of railway stations is developed.A case study is conducted on a typical railway station to demonstrate the analysis procedure.Results indicate that under fortification,rare,and extremely rare earthquake scenarios,the interlayer drift ratio(IDR)of the railway station were 1/276,1/143,and 1/52,respectively,and corresponding peak floor acceleration(PFA)were 6.31 m/s^(2),7.82 m/s^(2),and 8.57 m/s^(2),respectively.The post-earthquake function of the railway station was 93.21%,82.33%,and 64.16%of its initial function.The repair times were 6.66 days,18.65 days,and 37.42 days.The displacement-sensitive,non-structural components were identified as the most vulnerable to damage.And the first repair stage(R_(1))which was mainly used to repair structural components and non-structural transport components,accounted for the highest proportion of total repair time.
基金supported by the SC&SS,Jawaharlal Nehru University,New Delhi,India.
文摘Electric Vehicles(EVs)have emerged as a cleaner,low-carbon,and environmentally friendly alternative to traditional internal combustion engine(ICE)vehicles.With the increasing adoption of EVs,they are expected to eventually replace ICE vehicles entirely.However,the rapid growth of EVs has significantly increased energy demand,posing challenges for power grids and infrastructure.This surge in energy demand has driven advancements in developing efficient charging infrastructure and energy management solutions to mitigate the risks of power outages and disruptions caused by the rising number of EVs on the road.To address these challenges,various deep learning(DL)models,such as Recurrent Neural Networks(RNNs)and Long Short-Term Memory(LSTM)networks,have been employed for predicting energy demand at EV charging stations(EVCS).However,these models face certain limitations.They often lack interpretability,treating all input steps equally without assigning greater importance to critical patterns that are more relevant for prediction.Additionally,these models process data sequentially,which makes them computationally slower and less efficient when dealing with large datasets.In the context of these limitations,this paper introduces a novel Attention-Augmented Long Short-Term Memory(AA-LSTM)model.The proposed model integrates an attention mechanism to focus on the most relevant time steps,thereby enhancing its ability to capture long-term dependencies and improve prediction accuracy.By combining the strengths of LSTM networks in handling sequential data with the interpretability and efficiency of the attention mechanism,the AA-LSTM model delivers superior performance.The attention mechanism selectively prioritizes critical parts of the input sequence,reducing the computational burden and making the model faster and more effective.The AA-LSTM model achieves impressive results,demonstrating a Mean Absolute Percentage Error(MAPE)of 3.90%and a Mean Squared Error(MSE)of 0.40,highlighting its accuracy and reliability.These results suggest that the AA-LSTM model is a highly promising solution for predicting energy demand at EVCS,offering improved performance and efficiency compared to contemporary approaches.
基金supported by the Scientific Research Project of China Three Gorges Group Co.LTD(Contract Number:202103368).
文摘The frequency regulation reserve setting of wind-PV-storage power stations is crucial.However,the existing grid codes set up the station reserve in a static manner,where the synchronous generator characteristics and frequency-step disturbance scenario are considered.Thus,the advantages of flexible regulation of renewable generations are wasted,resulting in excessive curtailment of wind and solar resources.In this study,a method for optimizing the frequency regulation reserve of wind PV storage power stations was developed.Moreover,a station frequency regulation model was constructed,considering the field dynamic response and the coupling between the station and system frequency dynamics.Furthermore,a method for the online evaluation of the station frequency regulation was proposed based on the benchmark governor fitting.This method helps in overcoming the capacity-based reserve static setting.Finally,an optimization model was developed,along with the proposal of the linearized solving algorithm.The field data from the JH4#station in China’s MX power grid was considered for validation.The proposed method achieves a 24.77%increase in the station income while ensuring the system frequency stability when compared with the grid code-based method.
基金National Natural Science Foundation of China under Grant No.52278534Sichuan Provincial Natural Science Foundation of China under Grant No.2022NSFSC0423。
文摘To improve the resilience of railway stations,a typical station was selected as the research object,and an isolation design was introduced.Twenty-four groups of near-fault pulse-like ground motions were selected.The seismic resilience of the no-isolation railway stations(NIRS)and the isolation railway stations(IRS)were compared to provide a numerical result of the improvement in resilience.The results show that in the station isolation design,the station's functional requirements and structural characteristics should be considered and the appropriate placement of isolation bearings is under the waiting room.Under the action of a rare earthquake,the repair cost,repair time,rate of harm and death of the IRS were decreased by 8.04 million,18.30 days,6.93×10^(-3)and 1.21×10^(-3),respectively,when compared to the NIRS.The IRS received a seismic resilience grade of three-stars and the NIRS only one-star,indicating that rational isolation design improves the seismic resilience of stations.Thus,for the design of stations close to earthquake faults,it is suggested to utilize appropriate isolation techniques to improve their seismic resilience.
文摘Through the demand analysis of emergency power supply construction, waterfall noise reduction treatment, and utilization of residual pressure resources, combined with water resources and industrial infrastructure conditions, this paper proposes the significance of micro hydropower station construction. However, micro hydropower stations face issues such as insufficient construction standardization, prominent safety hazards, lack of specialized standards, and the need for improved planning and design. Therefore, this paper analyzes and discusses the constraints and improvement summaries in the entire construction process of micro hydropower stations from aspects including guidance of standard formulation, rationality of planning and design, and innovation of new product applications.
文摘On January 23,we arrived in Shuanghu County,Nagqu City,Xizang.With an average altitude of 5,000 meters,this is the heart of Changtang no man's land.Along the journey,Tibetan wild donkeys and Tibetan antelopes were often seen on both sides of the highway instead of traces of human presence,and sand and dust kept hitting our van.As the night fell,the highest county seat in the world finally came into view.
文摘This article focuses on the municipal prefabricated bathroom station.It elaborates on its modular design concept,including key design points such as spatial layout,functional modules,and determination of key parameters;introduces the optimization of intelligent production processes,precision control,and integration of construction technology,and also mentions the verification of full lifecycle applications and quality control;as well as emphasizes the importance of BIM+IoT platform and looks forward to the future.