期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
考虑时空融合环境因子的土壤含水率机器学习反演模型优化
1
作者 李瑞平 赵建伟 +3 位作者 王福强 王欢 于欣 苗存立 《农业机械学报》 北大核心 2025年第8期370-379,共10页
植被指数作为构建土壤含水率反演模型的关键要素之一,主要来源于遥感影像的提取。针对高时空分辨率影像难以获取的缺点,采用对象级处理策略的自适应时空融合模型(OL-STARFM)对研究区遥感影像融合,提取融合后的归一化植被指数(NDVI)、地... 植被指数作为构建土壤含水率反演模型的关键要素之一,主要来源于遥感影像的提取。针对高时空分辨率影像难以获取的缺点,采用对象级处理策略的自适应时空融合模型(OL-STARFM)对研究区遥感影像融合,提取融合后的归一化植被指数(NDVI)、地表温度(LST)和植被干旱指数(TVDI)作为环境变量,结合土地利用类型、土壤质地、蒸散量、高程、坡向、坡度、原始影像植被干旱指数(TVDI)、归一化植被指数(NDVI)、地表温度(LST),以及气温、降水量和风速作为建模因子,构建基于多元线性逐步回归(MLSR)、随机森林(RF)和梯度提升机(GBM)3种方法的土壤含水率反演模型,并进行优化分析。研究结果表明:地表温度是影响土壤含水率空间变异性的关键影响因素(R为-0.46),其次为蒸散量(-0.43)、气温(-0.39)、融合后归一化植被指数(0.38)、原始归一化植被指数(0.36)、土地利用类型(0.31)、融合后干旱植被指数(-0.3)、原始干旱植被指数(-0.28)、降水量(0.27)、土壤质地(0.27)、坡向(-0.25)、高程(0.26)、坡度(-0.20)及风速(-0.20);MLSR表现出较强的模型线性处理能力。非线性处理中RF回归模型最稳定,GBM模型则具有最高的精确度,R^(2)为0.910,MAE、MSE及RMSE分别为2.12%、6.89%和2.62%;多元逐步回归方法在土壤含水率反演过程中预测准确率较低,显示出线性模型在处理复杂关系处理时的局限性;OL-STARFM融合方法提取的TVDI和NDVI与土壤含水率的相关系数分别为-0.41和0.38,均高于单一影像提取的植被指数与土壤含水率的相关性,并且有效提高了土壤含水率反演模型的精度,表明该方法在土壤含水率反演模型构建中的可行性,为获取连续的高时空分辨率影像进而有效连续监测土壤含水率提供了理论依据。 展开更多
关键词 土壤含水率 遥感反演模型 时空融合 环境因子 OL-starfm 机器学习算法
在线阅读 下载PDF
基于STARFM的草地地上生物量遥感估测研究——以甘肃省夏河县桑科草原为例 被引量:8
2
作者 张玉琢 杨志贵 +6 位作者 于红妍 张强 杨淑霞 赵婷 许画画 孟宝平 吕燕燕 《草业学报》 CSCD 北大核心 2022年第6期23-34,共12页
遥感数据具有实时、动态、大范围等特点,在草地资源监测与管理研究中获得了广泛应用。然而,单一的遥感植被指数无法同时满足草地地上生物量观测中时空分辨率的需求。因此,本研究基于时间序列Landsat NDVI和MODIS NDVI数据,结合时空融合... 遥感数据具有实时、动态、大范围等特点,在草地资源监测与管理研究中获得了广泛应用。然而,单一的遥感植被指数无法同时满足草地地上生物量观测中时空分辨率的需求。因此,本研究基于时间序列Landsat NDVI和MODIS NDVI数据,结合时空融合算法(spatial and temporal adaptive reflectance fusion model,STARFM),生成了2000-2016年高时空分辨率的植被指数数据集(NDVI_(STARFM),时间分辨率为16 d,空间分辨率为30 m,并基于2013-2016年地面实测草地地上生物量数据,构建了夏河县桑科草原高寒草地地上生物量遥感反演模型,分析了2000-2016年研究区草地地上生物量生长状况和变化趋势。结果表明:1)基于NDVI_(STARFM)的最优估测模型为乘幂模型,其R^(2)为0.58,均方根误差(root mean square error,RMSE)为795.62 kg·hm^(-2),模型的表现能力次于Landsat NDVI最优估测模型(R^(2)=0.76,RMSE=634.83 kg·hm^(-2)),而优于MODIS NDVI最优估测模型(R^(2)=0.24,RMSE=937.79 kg·hm^(-2));2)基于NDVI_(STARFM)最优估测模型对各样区草地地上生物量总产的估测精度优于MODIS NDVI而次于Landsat NDVI,总体精度达84.05%;3)2000-2016年来,夏河县研究区草地地上生物量总体呈现增加趋势,其中90%左右的区域年增量大于30 kg·hm^(-2),草地地上生物量呈现减少趋势的区域仅占2.30%。 展开更多
关键词 高寒草甸 starfm 生物量估测模型 时空动态变化 MODIS LANDSAT
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部