X-ray diffraction(XRD),scanning electron microscopy(SEM),energy-dispersive spectroscopy(EDS),electron backscatter diffraction(EBSD),and transmission electron microscopy(TEM)were used to systematically investigate the ...X-ray diffraction(XRD),scanning electron microscopy(SEM),energy-dispersive spectroscopy(EDS),electron backscatter diffraction(EBSD),and transmission electron microscopy(TEM)were used to systematically investigate the impact of rapid cold stamping on microstructural evolution and mechanical properties of spray-formed Al-Zn-Mg-Cu alloys under ambient conditions.The results reveal that the dislocation density increases with successive cold stamping passes,the volume fraction of the secondary phase(Mg(Zn,Cu,Al)_(2))increases from 15.64% to 23.94%,and the average size decreases from 1.41 to 0.75μm.The pinning effect of the secondary phases on dislocations promotes a significant transformation from low-angle grain boundaries to high-angle grain boundaries,resulting in the average grain size decreasing from 5.75 to 0.97μm.The strength and hardness of the samples increase with successive cold stamping passes,which is attributed to the synergistic effects of dislocation strengthening,grain boundary strengthening,and secondary phase strengthening.展开更多
The impact of various initial states on the ultimate mechanical properties of medium Mn steel(MMnS)following the hot stamping process is revealed.MMnS blanks with three typical initial states were prepared separately,...The impact of various initial states on the ultimate mechanical properties of medium Mn steel(MMnS)following the hot stamping process is revealed.MMnS blanks with three typical initial states were prepared separately,including hot-rolled,cold-rolled and cold-rolled and annealed(CRA).Their microstructures were observed and analyzed by scanning electron microscopy and electron backscatter diffraction,and their mechanical properties were measured by tensile tests following hot stamping and baking treatments.The results reveal that the microstructure of martensite and residual austenite characterizes the hot-stamped MMnS across different rolling conditions,with CRA state exhibiting a clearly higher residual austenite content compared to the other two states.Meanwhile,CRA state boasts not only the highest tensile strength but also the greatest elongation post-hot stamping treatment.The superior comprehensive mechanical properties are attributed to its unique biphase structure of Mn-rich austenite and Mn-poor ferrite,which emerges in CRA state following a 12 h intercritical annealing and can be partially preserved during the hot stamping process.This structure is instrumental in achieving a higher level of residual austenite,consequently leading to enhanced elongation.展开更多
Laser debonding technology has been widely used in advanced chip packaging,such as fan-out integration,2.5D/3D ICs,and MEMS devices.Typically,laser debonding of bonded pairs(R/R separation)is typically achieved by com...Laser debonding technology has been widely used in advanced chip packaging,such as fan-out integration,2.5D/3D ICs,and MEMS devices.Typically,laser debonding of bonded pairs(R/R separation)is typically achieved by completely removing the material from the ablation region within the release material layer at high energy densities.However,this R/R separation method often results in a significant amount of release material and carbonized debris remaining on the surface of the device wafer,severely reducing product yields and cleaning efficiency for ultra-thin device wafers.Here,we proposed an interfacial separation strategy based on laser-induced hot stamping effect and thermoelastic stress wave,which enables stress-free separation of wafer bonding pairs at the interface of the release layer and the adhesive layer(R/A separation).By comprehensively analyzing the micro-morphology and material composition of the release material,we elucidated the laser debonding behavior of bonded pairs under different separation modes.Additionally,we calculated the ablation threshold of the release material in the case of wafer bonding and established the processing window for different separation methods.This work offers a fresh perspective on the development and application of laser debonding technology.The proposed R/A interface separation method is versatile,controllable,and highly reliable,and does not leave release materials and carbonized debris on device wafers,demonstrating strong industrial adaptability,which greatly facilitates the application and development of advanced packaging for ultra-thin chips.展开更多
To address the common issues of wrinkling,tearing,and uneven wall thickness in the actual sheet metal stamp-ing process of the outer ring of needle roller bearings,this study analyzes critical technical indicators suc...To address the common issues of wrinkling,tearing,and uneven wall thickness in the actual sheet metal stamp-ing process of the outer ring of needle roller bearings,this study analyzes critical technical indicators such asforming limits,thickness distribution,and principal strains in the forming process in detail.Three-dimensionalmodels of the concave and convex dies were constructed.The effects of different process parameters,includingstamping speed,edge pressure,sheet metal thickness,and friction coefficient,on the quality of the forming partswere investigated by varying these parameters.Subsequently,the orthogonal experimental method was used todetermine an optimal experimental group from multiple sets of experiments.It was found that under the processparameters of a stamping speed of 3000 mm/s,edge pressure of 2000 N,sheet metal thickness of 0.9 mm,andfriction coefficient of 0.125,the forming quality of the outer ring of the bearing is ideal.展开更多
The forming defects, including thinning, rupture, wrinkling and springback, usually arising in producing a side-door impact beam, were investigated by trial and numerical simulation. A temperature-related constitutive...The forming defects, including thinning, rupture, wrinkling and springback, usually arising in producing a side-door impact beam, were investigated by trial and numerical simulation. A temperature-related constitutive model specific to the temperature range from 350 °C to 500 °C was established and used for the numerical simulation. The trial and numerical simulation were conducted to clarify the quantitative characteristics of forming defects and to analyze the effects of process parameters on the forming defects. Results show that the rupture situation is ameliorated and the springback is eliminated in the aluminum alloy hot stamping. The wrinkling severity decreases with increasing blank holder force (BHF), but the BHF greater than 15 kN causes the rupture at the deepest drawing position of workpiece. The forming defects are avoided with lubricant in the feasible ranges of process parameters: the BHF of 3 to 5 kN and the stamping speed of 50 to 200 mm/s.展开更多
Flow behavior of the Al-Si coated boron steel was investigated with Gleeble-3500,in comparison with the uncoated one.Effect of deformation conditions on the coating integrity was characterized by optical microscopy.Fa...Flow behavior of the Al-Si coated boron steel was investigated with Gleeble-3500,in comparison with the uncoated one.Effect of deformation conditions on the coating integrity was characterized by optical microscopy.Facture surfaces of the coated steels were inspected under SEM.Experimental results indicate that the ultimate tensile strength and ductility of the Al-Si coated boron steel are lower than those of the uncoated steel under test conditions.Extensive cracks occur in the coating after tensile tests;the width and density of cracks are sensitive to the deformation temperatures and strain rates.The bare substrate exposed between the separate coating segments is oxidized.Appearance of the oxide degrades the Al-Si coating adhesion.Remarkable difference between formability of the coating layer and the substrate is confirmed.The formability of the Al-Si coating could be optimized by controlling the phase transformation of the ductile Fe-rich intermetallic compounds within it during the austenization.展开更多
To improve the manufacture efficiency and promote the application of composites in the automobile industry, a new composite forming method, thermal stamping, was discussed to form composite parts directly. Experiments...To improve the manufacture efficiency and promote the application of composites in the automobile industry, a new composite forming method, thermal stamping, was discussed to form composite parts directly. Experiments on two typical stamping processes, thermal bending and thermal deep drawing, were conducted to investigate the forming behavior of composite sheets and analyze the influence of forming temperature on the formed composite part. Experimental results show that the locking angle for woven composite is about 30°. The bending load is smaller than 5 N in the stamping process and decreases with the increase of temperature. The optimal temperature to form the carbon fiber composite is 170 ℃. The die temperature distribution and the deformation of composite sheet were simulated by FEA software ABAQUS. To investigate the fiber movement of carbon woven fabric during stamping, the two-node three-dimension linear Truss unit T2D3 was chosen as the fiber element. The simulation results have a good agreement to the experimental results.展开更多
Reducing the forming load, deletion of springback, increasing the formability of sheets as well as producing high strength parts are the main reasons to apply hot stamping process. Hot stamping process and 22MnB5 stee...Reducing the forming load, deletion of springback, increasing the formability of sheets as well as producing high strength parts are the main reasons to apply hot stamping process. Hot stamping process and 22MnB5 steels are the state of the art process and grades, respectively; however novel processes and steel grades are under considerations. In the current research, behavior of the steel grade MSW1200 blanks under semi and fully hot stamping processes was characterized. During semi-hot stamping process, the blank was firstly heated to a temperature of about 650℃ and then formed and quenched in the die assembly, simultaneously. Microstructure and mechanical properties of semi and fully hot stamped blanks were studied and the results were compared with those of normally water/air quenched blanks. The hot stamped blanks attained the strength values as high as water quenched blanks. The highest ductility and consequently, the best formability were achieved for the blank which had been semi-hot stamped. It was concluded that for the mentioned steel, semi-hot stamping process could be considered as an improved thermo-mechanical process which not only guaranteed a high formability, but also led to ultra high strength values.展开更多
Springback behavior of 6016 aluminum alloy in hot stamping was investigated by a series of experiments under different conditions using V-shape dies and a finite element model which was validated reliable was used to ...Springback behavior of 6016 aluminum alloy in hot stamping was investigated by a series of experiments under different conditions using V-shape dies and a finite element model which was validated reliable was used to further elucidate the springback mechanism. The effects of initial blank temperature, blank-holding force, die closing pressure and die corner radius were studied. It is found that springback decreases remarkably as the initial blank temperature rises up to 500 °C. The springback also reduces with the increase of die holding pressure and the decrease of die corner radius. Under different initial temperatures, the influence of blank-holding force is distinct. In addition, the bending and straightening of the side wall during the stamping process is found to interpret the negative springback phenomenon.展开更多
Modified electrically assisted(EA) rapid heating of Al–Si-coated hot stamping steel is suggested, and the intermetallic evolution in the coating during heating is experimentally investigated. In the modified EA rapid...Modified electrically assisted(EA) rapid heating of Al–Si-coated hot stamping steel is suggested, and the intermetallic evolution in the coating during heating is experimentally investigated. In the modified EA rapid heating, a continuous electric current for a suitable duration is applied to a specimen to heat it to a temperature slightly below the melting temperature of the coating. The temperature of the specimen is then kept constant for a specified dwell time. The result of the microstructural analysis shows that the modified EA rapid heating could effectively increase the thickness of the intermetallic layer between the coating and steel substrate much faster than conventional furnace heating and induction heating. The effectiveness of EA rapid heating may be due to the athermal effect of the electric current on the mobility of atoms, in addition to the well-known resistance heating effect. EA rapid heating also provides a technical advantage in that partial austenization can be easily achieved by properly placing the electrodes, as demonstrated in the present study.展开更多
The aim of this paper is to review the state-of-the-art SFPs and their applications,and to provide a guide for researchers and engineers working in this field.Various SFPs are classified according to the combination w...The aim of this paper is to review the state-of-the-art SFPs and their applications,and to provide a guide for researchers and engineers working in this field.Various SFPs are classified according to the combination ways of stamping and forging operations.The process principle of each combination is reviewed,with its applications discussed.The state-of-the-art of SFPs suggests that future work in this field should focus on the development of high-strength die materials,better lubrication control methods,forming machines with intelligent control capacity and special functions,and some new SFPs for high strength or ultra-high strength materials.展开更多
High-resolution transmission electron microscopy(TEM),X-ray diffractometry(XRD),energy dispersive spectroscopy(EDS)and hardness test were used to study the re-dissolution and re-precipitation behavior of nano-precipit...High-resolution transmission electron microscopy(TEM),X-ray diffractometry(XRD),energy dispersive spectroscopy(EDS)and hardness test were used to study the re-dissolution and re-precipitation behavior of nano-precipitates of the spray-formed fine-grained Al-Cu-Mg alloy during rapid cold stamping deformation.Results show that the extruded Al-Cu-Mg alloy undergoes obvious re-dissolution and re-precipitation during the rapid cold-stamping deformation process.The plasticθ′phase has a slower re-dissolution rate than the brittle S′phase.The long strip-shaped S′phases and the acicularθ′phases in Al-Cu-Mg alloy after three passes of cold stamping basically re-dissolved to form a supersaturated solid solution.A large number of fine granular balanceθphases precipitate after four passes of rapid cold-stamping deformation.Rapid cold stamping deformation causes the S′phase andθ′phase to break and promote the nano-precipitate phases to re-dissolve.The high distortion free energy of the matrix promotes the precipitation of the equilibriumθphase,and the hardness of the alloy obviously increases from HB 55 to HB 125 after the rapid cold stamping process.展开更多
To obtain the optimal process parameters of stamping forming, finite element analysis and optimization technique were integrated via transforming multi-objective issue into a single-objective issue. A Pareto-based gen...To obtain the optimal process parameters of stamping forming, finite element analysis and optimization technique were integrated via transforming multi-objective issue into a single-objective issue. A Pareto-based genetic algorithm was applied to optimizing the head stamping forming process. In the proposed optimal model, fracture, wrinkle and thickness varying are a function of several factors, such as fillet radius, draw-bead position, blank size and blank-holding force. Hence, it is necessary to investigate the relationship between the objective functions and the variables in order to make objective functions varying minimized simultaneously. Firstly, the central composite experimental(CCD) with four factors and five levels was applied, and the experimental data based on the central composite experimental were acquired. Then, the response surface model(RSM) was set up and the results of the analysis of variance(ANOVA) show that it is reliable to predict the fracture, wrinkle and thickness varying functions by the response surface model. Finally, a Pareto-based genetic algorithm was used to find out a set of Pareto front, which makes fracture, wrinkle and thickness varying minimized integrally. A head stamping case indicates that the present method has higher precision and practicability compared with the "trial and error" procedure.展开更多
The effect of solution treatment time on the post-formed plasticity and ductile fracture of 7075 aluminum alloy in the hot stamping process was studied.Tensile tests were conducted on the specimens subjected to the ho...The effect of solution treatment time on the post-formed plasticity and ductile fracture of 7075 aluminum alloy in the hot stamping process was studied.Tensile tests were conducted on the specimens subjected to the hot stamping process with different solution treatment time.The digital image correlation(DIC)analysis was used to obtain the strain of the specimen.Based on the experiments and modeling,the Yld2000-3d yield criterion and the DF2014 ductile fracture criterion were calibrated and used to characterize the anisotropy and fracture behavior of the metal,respectively.Furthermore,the microstructure of specimens was studied.The experimental and simulation results indicate that the 7075 aluminum alloy retains distinct anisotropy after the hot stamping process,and there is no obvious effect of extending the solution treatment time on the material anisotropy.However,it is found that a longer solution treatment time can increase the fracture strain of the aluminum alloy during the hot stamping process,which may be related to the decrease of the second-phase particles size.展开更多
Based on the deformation characteristic of regular polygonal box stamped parts and the superfluous triangle material wrinkle model,the criterion of regular polygonal box stamped parts without wrinkle was deduced and u...Based on the deformation characteristic of regular polygonal box stamped parts and the superfluous triangle material wrinkle model,the criterion of regular polygonal box stamped parts without wrinkle was deduced and used to predict and control the wrinkle limit.According to the fracture model,the criterion of regular polygonal box stamped parts without fracture was deduced and used to predict and control the fracture limit.Combining the criterion for stamping without wrinkle with that without fracture,the stamping criterion of regular polygonal box stamped parts was obtained to predict and control the stamping limit.Taken the stainless steel0Cr18Ni9(SUS304)sheet and the square box stamped part as examples,the limit diagram was given to predict and control the wrinkle,fracture and stamping limits.It is suitable for the deep drawing without flange,the deep drawing and stretching combined forming with flange and the rigid punch stretching of plane blank.The limit deep-drawing coefficient and the minimum deep-drawing coefficient can be determined,and the appropriate BHF(blank holder force)and the deep-drawing force can be chosen.These provide a reference for the technology planning,the die and mold design and the equipment determination,and a new criterion evaluating sheet stamping formability,which predicts and controls the stamping process,can be applied to the deep drawing under constant or variable BHF conditions.展开更多
The influences of hot stamping parameters such as heating temperature,soaking time,deformation temperature and cooling medium on the phase transformation,microstructure and mechanical properties of 30MnB5 and 22MnB5 a...The influences of hot stamping parameters such as heating temperature,soaking time,deformation temperature and cooling medium on the phase transformation,microstructure and mechanical properties of 30MnB5 and 22MnB5 are investigated and analyzed in this work.The quenching experiment,tensile testing,hardness measurement and microstructure observation were conducted to obtain the mechanical and microstructural data.The results indicate that 30MnB5 possesses a higher tensile strength but a lower elongation than 22MnB5,if hot stamped at the same process parameter.The tensile strength and hardness of the hot stamped specimens decrease under inappropriate heating conditions for two reasons,insufficient austenitization or coarse austenite grains.The austenitic forming rate of 30MnB5 is higher than that of 22MnB5,because more cementite leads to higher nucleation rate and diffusion coefficient of carbon atom.More amount of fine martensite forms under the higher deformation temperature or the quicker cooling rate.展开更多
Thermomechanical experiments were carried out to reproduce the hot stamping process and to investigate the effects of process parameters on the microstructure and mechanical properties of stamped parts. The process pa...Thermomechanical experiments were carried out to reproduce the hot stamping process and to investigate the effects of process parameters on the microstructure and mechanical properties of stamped parts. The process parameters, such as austenitizing temperature, soaking time, initial deformation temperature and cooling rate, are studied. The resulting microstructures of specimens were observed and analyzed. To evaluate the mechanical properties of specimens, tensile and hardness tests were also performed at room temperature. The op-timum parameters to achieve the highest tensile strength and the desired microstructure were acquired by comparing and analyzing the results. It is indicated that hot deformation changes the transformation characteristics of 22MnB5 steel. Austenite deformation promotes the austen-ite-to-ferrite transformation and elevates the critical cooling rate to induce a fully martensitic transformation.展开更多
In this paper,the springback of TC4 titanium alloy under hot stamping condition was studied by means of experiment and numerical analysis.Firstly,an analytical model was established to predict the V-shaped springback ...In this paper,the springback of TC4 titanium alloy under hot stamping condition was studied by means of experiment and numerical analysis.Firstly,an analytical model was established to predict the V-shaped springback angleΔαunder the stretch-bending conditions.The model took into account of blank holder force,friction,property of the material,thickness of the sheet and the neutral layer shift.Then,the influence of several process parameters on springback was studied by experiment and finite element simulation using a V-shaped stamping tool.In the hot stamping tests,the titanium alloy sheet fractured seriously at room temperature.The titanium alloy has good formability when the initial temperature of the sheet is 750–900°C.However,the springback angle of formed parts is large and decreases with increasing temperature.The springback angleΔαdecreased by 50%from 0.5°to 0.25°,and the angleΔβdecreased by 46.7%from 1.5°to 0.8°when the initial temperature of sheet increased from 750°C to 900°C.The springback angle of titanium alloy sheet increases gradually with the increase of the punch radius,because of the increase of elastic recovery,the complex distribution of stress,the length of forming region and the decreasing degree of stress.Compared with the simulation results,the analytical model can better predict the springback angleΔα.展开更多
Automobile manufacturers have been inereasingl^r adopting hot-stamped parts for use in newly designed ve- hicles to improve crash worthiness and fuel efficiency. However, the simulation of hot stamping is rather compl...Automobile manufacturers have been inereasingl^r adopting hot-stamped parts for use in newly designed ve- hicles to improve crash worthiness and fuel efficiency. However, the simulation of hot stamping is rather complex and challenging, and further research still needs to be done on hot stamping hardening mechanism. The microstruc- ture evolution and hardening mechanisms during hot stamping of 22MnB5 steel were thoroughly investigated, using information provided in the literatures as well as experimental results. New models were developed to predict the grain growth during heating and the flow stress of a manganese boron steel (22MnB5) with high hardenability by the Gleeble simulation experimental results. The deformed austenite decomposition during stamping and quenching was emphatically quantified based on the transformation thermodynamic and kinetic theories, and the relationship of mi- crostructure to properties was analyzed. The results showed that the optimal process to obtain homogeneous and small lath martensite is heating at 900--950 ℃ for 5 min and then auenching at 50 ℃/s with a Dressing time about 8 s.展开更多
The effect of hot stamping parameters on the mechanical properties of 22MnB5 steel sheet with thickness of 1.1 mm is studied. The considered parameters are austenization temperature (800- 1 000 ℃ ), austenitizing s...The effect of hot stamping parameters on the mechanical properties of 22MnB5 steel sheet with thickness of 1.1 mm is studied. The considered parameters are austenization temperature (800- 1 000 ℃ ), austenitizing soa king time (60-540 s), initial deformation temperature (560-800 C) and tool temperature (20-220 ℃). In order to obtain hot stamped parts with optimal mechanical properties, response surface methodology based on the central composite design has been employed to design the experiment matrix. Tensile strength of hot stamped parts is deter- mined as the relation in the mathematical model. The optimal condition and objective effects of parameters are deter mined via this relation. The statistical analysis showed that all four factors significantly affect the tensile strength of the hot stamped parts. The optimum austenization temperature is found to be 918.89 ℃ with the austenitizing soa- king time, initial deformation temperature and tool temperature of 279.45 s, 684.69 C and 21.85 ℃, respectively. These optimal hot stamping parameters prove to have high tensile strength (1 631.84 MPa) where deviation between predicted and actual response falls within 2 %.展开更多
基金supported by the National Natural Science Foundation of China(No.52271177).
文摘X-ray diffraction(XRD),scanning electron microscopy(SEM),energy-dispersive spectroscopy(EDS),electron backscatter diffraction(EBSD),and transmission electron microscopy(TEM)were used to systematically investigate the impact of rapid cold stamping on microstructural evolution and mechanical properties of spray-formed Al-Zn-Mg-Cu alloys under ambient conditions.The results reveal that the dislocation density increases with successive cold stamping passes,the volume fraction of the secondary phase(Mg(Zn,Cu,Al)_(2))increases from 15.64% to 23.94%,and the average size decreases from 1.41 to 0.75μm.The pinning effect of the secondary phases on dislocations promotes a significant transformation from low-angle grain boundaries to high-angle grain boundaries,resulting in the average grain size decreasing from 5.75 to 0.97μm.The strength and hardness of the samples increase with successive cold stamping passes,which is attributed to the synergistic effects of dislocation strengthening,grain boundary strengthening,and secondary phase strengthening.
基金supported by the National Key R&D Program of China(No.2022YFE0196600)the National Natural Science Foundation of China(No.52175349)the Shanghai Oriental Talent Program(No.BJKJ2024016).
文摘The impact of various initial states on the ultimate mechanical properties of medium Mn steel(MMnS)following the hot stamping process is revealed.MMnS blanks with three typical initial states were prepared separately,including hot-rolled,cold-rolled and cold-rolled and annealed(CRA).Their microstructures were observed and analyzed by scanning electron microscopy and electron backscatter diffraction,and their mechanical properties were measured by tensile tests following hot stamping and baking treatments.The results reveal that the microstructure of martensite and residual austenite characterizes the hot-stamped MMnS across different rolling conditions,with CRA state exhibiting a clearly higher residual austenite content compared to the other two states.Meanwhile,CRA state boasts not only the highest tensile strength but also the greatest elongation post-hot stamping treatment.The superior comprehensive mechanical properties are attributed to its unique biphase structure of Mn-rich austenite and Mn-poor ferrite,which emerges in CRA state following a 12 h intercritical annealing and can be partially preserved during the hot stamping process.This structure is instrumental in achieving a higher level of residual austenite,consequently leading to enhanced elongation.
基金the National Natural Science Foundation of China(62174170)the Natural Science Foundation of Guangdong Province(2024A1515010123)+4 种基金the Shenzhen Science and Technology Program(20220807020526001)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB0670000)the Shenzhen Science and Technology Program(KJZD20230923114708018,KJZD20230923114710022)the Talent Support Project of Guangdong(2021TX06C101)the Shenzhen Basic Research(JCYJ20210324115406019).
文摘Laser debonding technology has been widely used in advanced chip packaging,such as fan-out integration,2.5D/3D ICs,and MEMS devices.Typically,laser debonding of bonded pairs(R/R separation)is typically achieved by completely removing the material from the ablation region within the release material layer at high energy densities.However,this R/R separation method often results in a significant amount of release material and carbonized debris remaining on the surface of the device wafer,severely reducing product yields and cleaning efficiency for ultra-thin device wafers.Here,we proposed an interfacial separation strategy based on laser-induced hot stamping effect and thermoelastic stress wave,which enables stress-free separation of wafer bonding pairs at the interface of the release layer and the adhesive layer(R/A separation).By comprehensively analyzing the micro-morphology and material composition of the release material,we elucidated the laser debonding behavior of bonded pairs under different separation modes.Additionally,we calculated the ablation threshold of the release material in the case of wafer bonding and established the processing window for different separation methods.This work offers a fresh perspective on the development and application of laser debonding technology.The proposed R/A interface separation method is versatile,controllable,and highly reliable,and does not leave release materials and carbonized debris on device wafers,demonstrating strong industrial adaptability,which greatly facilitates the application and development of advanced packaging for ultra-thin chips.
基金supported by the China Postdoctoral Science Foundation(Grant No.2022M721395)the National Natural Science Foundation of China(Grant No.72072089).
文摘To address the common issues of wrinkling,tearing,and uneven wall thickness in the actual sheet metal stamp-ing process of the outer ring of needle roller bearings,this study analyzes critical technical indicators such asforming limits,thickness distribution,and principal strains in the forming process in detail.Three-dimensionalmodels of the concave and convex dies were constructed.The effects of different process parameters,includingstamping speed,edge pressure,sheet metal thickness,and friction coefficient,on the quality of the forming partswere investigated by varying these parameters.Subsequently,the orthogonal experimental method was used todetermine an optimal experimental group from multiple sets of experiments.It was found that under the processparameters of a stamping speed of 3000 mm/s,edge pressure of 2000 N,sheet metal thickness of 0.9 mm,andfriction coefficient of 0.125,the forming quality of the outer ring of the bearing is ideal.
基金Project(P2014-15)supported by the State Key Laboratory of Materials Processing and Die&Mould Technology,Huazhong University of Science and Technology,ChinaProject supported by the Beijing Laboratory of Metallic Materials and Processing for Modern Transportation,China
文摘The forming defects, including thinning, rupture, wrinkling and springback, usually arising in producing a side-door impact beam, were investigated by trial and numerical simulation. A temperature-related constitutive model specific to the temperature range from 350 °C to 500 °C was established and used for the numerical simulation. The trial and numerical simulation were conducted to clarify the quantitative characteristics of forming defects and to analyze the effects of process parameters on the forming defects. Results show that the rupture situation is ameliorated and the springback is eliminated in the aluminum alloy hot stamping. The wrinkling severity decreases with increasing blank holder force (BHF), but the BHF greater than 15 kN causes the rupture at the deepest drawing position of workpiece. The forming defects are avoided with lubricant in the feasible ranges of process parameters: the BHF of 3 to 5 kN and the stamping speed of 50 to 200 mm/s.
基金Project (51275185) supported by the National Natural Science Foundation of China
文摘Flow behavior of the Al-Si coated boron steel was investigated with Gleeble-3500,in comparison with the uncoated one.Effect of deformation conditions on the coating integrity was characterized by optical microscopy.Facture surfaces of the coated steels were inspected under SEM.Experimental results indicate that the ultimate tensile strength and ductility of the Al-Si coated boron steel are lower than those of the uncoated steel under test conditions.Extensive cracks occur in the coating after tensile tests;the width and density of cracks are sensitive to the deformation temperatures and strain rates.The bare substrate exposed between the separate coating segments is oxidized.Appearance of the oxide degrades the Al-Si coating adhesion.Remarkable difference between formability of the coating layer and the substrate is confirmed.The formability of the Al-Si coating could be optimized by controlling the phase transformation of the ductile Fe-rich intermetallic compounds within it during the austenization.
基金Project(51375369)supported by the National Natural Science Foundation of ChinaProject(SYG201137)supported by the Science and Technology Development Program of Suzhou,China
文摘To improve the manufacture efficiency and promote the application of composites in the automobile industry, a new composite forming method, thermal stamping, was discussed to form composite parts directly. Experiments on two typical stamping processes, thermal bending and thermal deep drawing, were conducted to investigate the forming behavior of composite sheets and analyze the influence of forming temperature on the formed composite part. Experimental results show that the locking angle for woven composite is about 30°. The bending load is smaller than 5 N in the stamping process and decreases with the increase of temperature. The optimal temperature to form the carbon fiber composite is 170 ℃. The die temperature distribution and the deformation of composite sheet were simulated by FEA software ABAQUS. To investigate the fiber movement of carbon woven fabric during stamping, the two-node three-dimension linear Truss unit T2D3 was chosen as the fiber element. The simulation results have a good agreement to the experimental results.
文摘Reducing the forming load, deletion of springback, increasing the formability of sheets as well as producing high strength parts are the main reasons to apply hot stamping process. Hot stamping process and 22MnB5 steels are the state of the art process and grades, respectively; however novel processes and steel grades are under considerations. In the current research, behavior of the steel grade MSW1200 blanks under semi and fully hot stamping processes was characterized. During semi-hot stamping process, the blank was firstly heated to a temperature of about 650℃ and then formed and quenched in the die assembly, simultaneously. Microstructure and mechanical properties of semi and fully hot stamped blanks were studied and the results were compared with those of normally water/air quenched blanks. The hot stamped blanks attained the strength values as high as water quenched blanks. The highest ductility and consequently, the best formability were achieved for the blank which had been semi-hot stamped. It was concluded that for the mentioned steel, semi-hot stamping process could be considered as an improved thermo-mechanical process which not only guaranteed a high formability, but also led to ultra high strength values.
基金Projects(U1564202,51705018)supported by the National Natural Science Foundation of ChinaProject(FRF-TP-15-087A1)supported by the Fundamental Research Funds for the Central Universities,China
文摘Springback behavior of 6016 aluminum alloy in hot stamping was investigated by a series of experiments under different conditions using V-shape dies and a finite element model which was validated reliable was used to further elucidate the springback mechanism. The effects of initial blank temperature, blank-holding force, die closing pressure and die corner radius were studied. It is found that springback decreases remarkably as the initial blank temperature rises up to 500 °C. The springback also reduces with the increase of die holding pressure and the decrease of die corner radius. Under different initial temperatures, the influence of blank-holding force is distinct. In addition, the bending and straightening of the side wall during the stamping process is found to interpret the negative springback phenomenon.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Ministry of Science,ICT and Future Planning(MSIP)(NRF-2015R1A5A1037627)the Technology Innovation Program(Industrial Strategic Technology Development Program,10044807.Development of technologies for vehicle body part made from UHSS and Al5000 by electrically assisted manufacturing)funded by the Ministry of Trade,Industry and Energy(MOTIE,Korea)
文摘Modified electrically assisted(EA) rapid heating of Al–Si-coated hot stamping steel is suggested, and the intermetallic evolution in the coating during heating is experimentally investigated. In the modified EA rapid heating, a continuous electric current for a suitable duration is applied to a specimen to heat it to a temperature slightly below the melting temperature of the coating. The temperature of the specimen is then kept constant for a specified dwell time. The result of the microstructural analysis shows that the modified EA rapid heating could effectively increase the thickness of the intermetallic layer between the coating and steel substrate much faster than conventional furnace heating and induction heating. The effectiveness of EA rapid heating may be due to the athermal effect of the electric current on the mobility of atoms, in addition to the well-known resistance heating effect. EA rapid heating also provides a technical advantage in that partial austenization can be easily achieved by properly placing the electrodes, as demonstrated in the present study.
基金Sponsored by the National Natural Science Foundation of China(Grant Nos.50705034,51175202,51435007 and 51675201)
文摘The aim of this paper is to review the state-of-the-art SFPs and their applications,and to provide a guide for researchers and engineers working in this field.Various SFPs are classified according to the combination ways of stamping and forging operations.The process principle of each combination is reviewed,with its applications discussed.The state-of-the-art of SFPs suggests that future work in this field should focus on the development of high-strength die materials,better lubrication control methods,forming machines with intelligent control capacity and special functions,and some new SFPs for high strength or ultra-high strength materials.
基金Project(2019JJ60050) supported by the Natural Science Foundation of Hunan Province,China
文摘High-resolution transmission electron microscopy(TEM),X-ray diffractometry(XRD),energy dispersive spectroscopy(EDS)and hardness test were used to study the re-dissolution and re-precipitation behavior of nano-precipitates of the spray-formed fine-grained Al-Cu-Mg alloy during rapid cold stamping deformation.Results show that the extruded Al-Cu-Mg alloy undergoes obvious re-dissolution and re-precipitation during the rapid cold-stamping deformation process.The plasticθ′phase has a slower re-dissolution rate than the brittle S′phase.The long strip-shaped S′phases and the acicularθ′phases in Al-Cu-Mg alloy after three passes of cold stamping basically re-dissolved to form a supersaturated solid solution.A large number of fine granular balanceθphases precipitate after four passes of rapid cold-stamping deformation.Rapid cold stamping deformation causes the S′phase andθ′phase to break and promote the nano-precipitate phases to re-dissolve.The high distortion free energy of the matrix promotes the precipitation of the equilibriumθphase,and the hardness of the alloy obviously increases from HB 55 to HB 125 after the rapid cold stamping process.
基金Project(2012ZX04010-081) supported by the National Science and Technology Major Project of the Ministry of Science and Technology of China
文摘To obtain the optimal process parameters of stamping forming, finite element analysis and optimization technique were integrated via transforming multi-objective issue into a single-objective issue. A Pareto-based genetic algorithm was applied to optimizing the head stamping forming process. In the proposed optimal model, fracture, wrinkle and thickness varying are a function of several factors, such as fillet radius, draw-bead position, blank size and blank-holding force. Hence, it is necessary to investigate the relationship between the objective functions and the variables in order to make objective functions varying minimized simultaneously. Firstly, the central composite experimental(CCD) with four factors and five levels was applied, and the experimental data based on the central composite experimental were acquired. Then, the response surface model(RSM) was set up and the results of the analysis of variance(ANOVA) show that it is reliable to predict the fracture, wrinkle and thickness varying functions by the response surface model. Finally, a Pareto-based genetic algorithm was used to find out a set of Pareto front, which makes fracture, wrinkle and thickness varying minimized integrally. A head stamping case indicates that the present method has higher precision and practicability compared with the "trial and error" procedure.
基金the National Natural Science Foundation of China(No.U1760205).
文摘The effect of solution treatment time on the post-formed plasticity and ductile fracture of 7075 aluminum alloy in the hot stamping process was studied.Tensile tests were conducted on the specimens subjected to the hot stamping process with different solution treatment time.The digital image correlation(DIC)analysis was used to obtain the strain of the specimen.Based on the experiments and modeling,the Yld2000-3d yield criterion and the DF2014 ductile fracture criterion were calibrated and used to characterize the anisotropy and fracture behavior of the metal,respectively.Furthermore,the microstructure of specimens was studied.The experimental and simulation results indicate that the 7075 aluminum alloy retains distinct anisotropy after the hot stamping process,and there is no obvious effect of extending the solution treatment time on the material anisotropy.However,it is found that a longer solution treatment time can increase the fracture strain of the aluminum alloy during the hot stamping process,which may be related to the decrease of the second-phase particles size.
文摘Based on the deformation characteristic of regular polygonal box stamped parts and the superfluous triangle material wrinkle model,the criterion of regular polygonal box stamped parts without wrinkle was deduced and used to predict and control the wrinkle limit.According to the fracture model,the criterion of regular polygonal box stamped parts without fracture was deduced and used to predict and control the fracture limit.Combining the criterion for stamping without wrinkle with that without fracture,the stamping criterion of regular polygonal box stamped parts was obtained to predict and control the stamping limit.Taken the stainless steel0Cr18Ni9(SUS304)sheet and the square box stamped part as examples,the limit diagram was given to predict and control the wrinkle,fracture and stamping limits.It is suitable for the deep drawing without flange,the deep drawing and stretching combined forming with flange and the rigid punch stretching of plane blank.The limit deep-drawing coefficient and the minimum deep-drawing coefficient can be determined,and the appropriate BHF(blank holder force)and the deep-drawing force can be chosen.These provide a reference for the technology planning,the die and mold design and the equipment determination,and a new criterion evaluating sheet stamping formability,which predicts and controls the stamping process,can be applied to the deep drawing under constant or variable BHF conditions.
基金Projects(51705018,U1564202)supported by the National Natural Science Foundation of China
文摘The influences of hot stamping parameters such as heating temperature,soaking time,deformation temperature and cooling medium on the phase transformation,microstructure and mechanical properties of 30MnB5 and 22MnB5 are investigated and analyzed in this work.The quenching experiment,tensile testing,hardness measurement and microstructure observation were conducted to obtain the mechanical and microstructural data.The results indicate that 30MnB5 possesses a higher tensile strength but a lower elongation than 22MnB5,if hot stamped at the same process parameter.The tensile strength and hardness of the hot stamped specimens decrease under inappropriate heating conditions for two reasons,insufficient austenitization or coarse austenite grains.The austenitic forming rate of 30MnB5 is higher than that of 22MnB5,because more cementite leads to higher nucleation rate and diffusion coefficient of carbon atom.More amount of fine martensite forms under the higher deformation temperature or the quicker cooling rate.
基金financially supported by the Research Fund for the Doctoral Program of Higher Education,China(No.20120006110017)
文摘Thermomechanical experiments were carried out to reproduce the hot stamping process and to investigate the effects of process parameters on the microstructure and mechanical properties of stamped parts. The process parameters, such as austenitizing temperature, soaking time, initial deformation temperature and cooling rate, are studied. The resulting microstructures of specimens were observed and analyzed. To evaluate the mechanical properties of specimens, tensile and hardness tests were also performed at room temperature. The op-timum parameters to achieve the highest tensile strength and the desired microstructure were acquired by comparing and analyzing the results. It is indicated that hot deformation changes the transformation characteristics of 22MnB5 steel. Austenite deformation promotes the austen-ite-to-ferrite transformation and elevates the critical cooling rate to induce a fully martensitic transformation.
基金Projects(U1564202,51705018)supported by the National Natural Science Foundation of ChinaProject supported by the Beijing Laboratory of Modern Transportation Metal Materials and Processing Technology and the Beijing Key Laboratory of Metal Forming Lightweight,China。
文摘In this paper,the springback of TC4 titanium alloy under hot stamping condition was studied by means of experiment and numerical analysis.Firstly,an analytical model was established to predict the V-shaped springback angleΔαunder the stretch-bending conditions.The model took into account of blank holder force,friction,property of the material,thickness of the sheet and the neutral layer shift.Then,the influence of several process parameters on springback was studied by experiment and finite element simulation using a V-shaped stamping tool.In the hot stamping tests,the titanium alloy sheet fractured seriously at room temperature.The titanium alloy has good formability when the initial temperature of the sheet is 750–900°C.However,the springback angle of formed parts is large and decreases with increasing temperature.The springback angleΔαdecreased by 50%from 0.5°to 0.25°,and the angleΔβdecreased by 46.7%from 1.5°to 0.8°when the initial temperature of sheet increased from 750°C to 900°C.The springback angle of titanium alloy sheet increases gradually with the increase of the punch radius,because of the increase of elastic recovery,the complex distribution of stress,the length of forming region and the decreasing degree of stress.Compared with the simulation results,the analytical model can better predict the springback angleΔα.
基金Item Sponsored by Major Project of Ministry of Industry and Information Technology of China(2009ZX04014-072)Basic Research Project of Jilin University of China(200903019)
文摘Automobile manufacturers have been inereasingl^r adopting hot-stamped parts for use in newly designed ve- hicles to improve crash worthiness and fuel efficiency. However, the simulation of hot stamping is rather complex and challenging, and further research still needs to be done on hot stamping hardening mechanism. The microstruc- ture evolution and hardening mechanisms during hot stamping of 22MnB5 steel were thoroughly investigated, using information provided in the literatures as well as experimental results. New models were developed to predict the grain growth during heating and the flow stress of a manganese boron steel (22MnB5) with high hardenability by the Gleeble simulation experimental results. The deformed austenite decomposition during stamping and quenching was emphatically quantified based on the transformation thermodynamic and kinetic theories, and the relationship of mi- crostructure to properties was analyzed. The results showed that the optimal process to obtain homogeneous and small lath martensite is heating at 900--950 ℃ for 5 min and then auenching at 50 ℃/s with a Dressing time about 8 s.
基金Sponsored by National Science and Technology Major Project of the Ministry of Science and Technology of China(2009ZX04014-074)Doctor Science Research Foundation of the Education Ministry of China(20120006110017)
文摘The effect of hot stamping parameters on the mechanical properties of 22MnB5 steel sheet with thickness of 1.1 mm is studied. The considered parameters are austenization temperature (800- 1 000 ℃ ), austenitizing soa king time (60-540 s), initial deformation temperature (560-800 C) and tool temperature (20-220 ℃). In order to obtain hot stamped parts with optimal mechanical properties, response surface methodology based on the central composite design has been employed to design the experiment matrix. Tensile strength of hot stamped parts is deter- mined as the relation in the mathematical model. The optimal condition and objective effects of parameters are deter mined via this relation. The statistical analysis showed that all four factors significantly affect the tensile strength of the hot stamped parts. The optimum austenization temperature is found to be 918.89 ℃ with the austenitizing soa- king time, initial deformation temperature and tool temperature of 279.45 s, 684.69 C and 21.85 ℃, respectively. These optimal hot stamping parameters prove to have high tensile strength (1 631.84 MPa) where deviation between predicted and actual response falls within 2 %.