After brain damage,regenerative angiogenesis and neurogenesis have been shown to occur simultaneously in mammals,suggesting a close link between these processes.However,the mechanisms by which these processes interact...After brain damage,regenerative angiogenesis and neurogenesis have been shown to occur simultaneously in mammals,suggesting a close link between these processes.However,the mechanisms by which these processes interact are not well understood.In this work,we aimed to study the correlation between angiogenesis and neurogenesis after a telencephalic stab wound injury.To this end,we used zebrafish as a relevant model of neuroplasticity and brain repair mechanisms.First,using the Tg(fli1:EGFP×mpeg1.1:mCherry)zebrafish line,which enables visualization of blood vessels and microglia respectively,we analyzed regenerative angiogenesis from 1 to 21 days post-lesion.In parallel,we monitored brain cell proliferation in neurogenic niches localized in the ventricular zone by using immunohistochemistry.We found that after brain damage,the blood vessel area and width as well as expression of the fli1 transgene and vascular endothelial growth factor(vegfaa and vegfbb)were increased.At the same time,neural stem cell proliferation was also increased,peaking between 3 and 5 days post-lesion in a manner similar to angiogenesis,along with the recruitment of microglia.Then,through pharmacological manipulation by injecting an anti-angiogenic drug(Tivozanib)or Vegf at the lesion site,we demonstrated that blocking or activating Vegf signaling modulated both angiogenic and neurogenic processes,as well as microglial recruitment.Finally,we showed that inhibition of microglia by clodronate-containing liposome injection or dexamethasone treatment impairs regenerative neurogenesis,as previously described,as well as injury-induced angiogenesis.In conclusion,we have described regenerative angiogenesis in zebrafish for the first time and have highlighted the role of inflammation in this process.In addition,we have shown that both angiogenesis and neurogenesis are involved in brain repair and that microglia and inflammation-dependent mechanisms activated by Vegf signaling are important contributors to these processes.This study paves the way for a better understanding of the effect of Vegf on microglia and for studies aimed at promoting angiogenesis to improve brain plasticity after brain injury.展开更多
Stab-resistant textiles play a critical role in personal protection,necessitating a deeper understanding of how structural and layering factors influence their performance.The current study experimentally examines the...Stab-resistant textiles play a critical role in personal protection,necessitating a deeper understanding of how structural and layering factors influence their performance.The current study experimentally examines the effects of textile structure,layering,and ply orientation on the stab resistance of multi-layer textiles.Three 3D warp interlock(3DWI)structures({f1},{f2},{f3})and a 2D woven fabric({f4}),all made of high-performance p-aramid yarns,were engineered and manufactured.Multi-layer specimens were prepared and subjected to drop-weight stabbing tests following HOSBD standards.Stabbing performance metrics,including Depth of Trauma(DoT),Depth of Penetration(DoP),and trauma deformation(Ymax,Xmax),were investigated and analyzed.Statistical analyses(Two-and One-Way ANOVA)indicated that fabric type and layer number significantly impacted DoP(P<0.05),while ply orientation significantly affected DoP(P<0.05)but not DoT(P>0.05).Further detailed analysis revealed that 2D woven fabrics exhibited greater trauma deformation than 3D WIF structures.Increasing the number of layers reduced both DoP and DoT across all fabric structures,with f3 demonstrating the best performance in multi-layer configurations.Aligned ply orientations also enhanced stab resistance,underscoring the importance of alignment in dissipating impact energy.展开更多
Despite numerous research investigations to understand the influences of various structural parameters,to the authors'knowledge,no research has been the effect of different angles of incidence on stab response and...Despite numerous research investigations to understand the influences of various structural parameters,to the authors'knowledge,no research has been the effect of different angles of incidence on stab response and performance of different types of protective textiles.Three distinct structures of 3D woven textiles and 2D plain weave fabric made with similar high-performance fiber and areal density were designed and manufactured to be tested.Two samples,one composed of a single and the other of 4-panel layers,from each fabric type structure,were prepared,and tested against stabbing at[0○],[22.5○],and[45○]angle of incidence.A new stabbing experimental setup that entertained testing of the specimens at various angles of incidence was engineered and utilized.The stabbing bench is also equipped with magnetic sensors and a UK Home Office Scientific Development Branch(HOSDB)/P1/B sharpness engineered knives to measure the impact velocity and exerted impact energy respectively.A silicon compound was utilized to imprint the Back Face Signature(BFS)on the backing material after every specimen test.Each silicon print was then scanned,digitized,and precisely measured to evaluate the stab response and performance of the specimen based on different performance variables,including Depth of Trauma(DOT),Depth of Penetration(DOP),and Length of Penetration(LOP).Besides,the post-impact surface failure modes of the fabrics were also measured using Image software and analyzed at the microscale level.The results show stab angle of incidence greatly influences the stab response and performance of protective textiles.The outcome of the study could provide not only valuable insights into understanding the stab response and capabilities of protective textiles under different angle of incidence,but also provide valuable information for protective textile manufacturer,armor developer and stab testing and standardizing organizations to consider the angle of incidence while developing,testing,optimizing,and using protective textiles in various applications.展开更多
High performance fibers impregnated by shear thickening fluids(STFs) have been recognized as a kind of latent stab-resistant materials. In our work, the rheological properties of various nano-silica particles in diffi...High performance fibers impregnated by shear thickening fluids(STFs) have been recognized as a kind of latent stab-resistant materials. In our work, the rheological properties of various nano-silica particles in diffierent carriers were first investigated, some of which showed the typical characteristic of shear thickening phenomena.And then, the effiects of add-on and surface hydrophilicity of silica particles, the type and concentration of the carriers were discussed in detail. It was found that the systems of hydrophilic silica in ethylene glycol, butylenes glycol and polyethylene glycol(PEG) demonstrated shear thickening; moreover, the reversibility of rheological behaviors of hydrophilic silica-PEG300 suspensions indicated energy dissipation existed within a circulation of shear stress. Furthermore, the detail mechanism of STF based nano-silica particles was explored and a process diagram was presented. Finally, the stab-resistance and morphology of cutting edge of ultra high molecular weight polyethylene(UHMWPE) fabric impregnated STF composites were investigated and the results were analyzed.The higher silica add-on was benefit to the improvement of the stab resistance of the composites.展开更多
Gastrointestinal bleeding due to aortoenteric fistula is extremely rare.Aortoenteric fistula is difficult to be diagnosed timely and entails a significant morbidity and mortality.Herein,we present an uncommon case of ...Gastrointestinal bleeding due to aortoenteric fistula is extremely rare.Aortoenteric fistula is difficult to be diagnosed timely and entails a significant morbidity and mortality.Herein,we present an uncommon case of gastrointestinal bleeding caused by aortoduodenal fistula,which was a complication of a successful aortic reconstruction 4 months ago for an aortic pseudoaneurysm resulted from a stab wound 12 years ago.An urgent laparotomy confirmed an aortoduodenal fistula and repaired the defects in aorta and duodenum,but a prolonged shock led to the patient's death.In summary,early diagnosis and surgical intervention for aortoenteric fistula are vital for survival.展开更多
A stab-resistant substrate was designed and realized with a triangular pyramidal structure, inspired by the biological armor model in nature. The stab-resistance behavior and dynamic response mechanisms were studied t...A stab-resistant substrate was designed and realized with a triangular pyramidal structure, inspired by the biological armor model in nature. The stab-resistance behavior and dynamic response mechanisms were studied through numerical simulation and experimental testing of a knife impacting a substrate,and an optimal structural design was obtained accordingly, with a tilted angle of 22.5and optimal thickness of 1.2 mm. It was shown that the triangular pyramidal structure generated twice the internal energy of the knife than the flat substrate due to the dispersing effect of the structure. The force parallel to the inclination caused a significant scratch on the substrate surface, while the force perpendicular caused obvious substrate deformation. A new riveting method was used to form the total layer, which passed the GA 68-2008 standard. The stab-resistant clothing coupled with the reduced wearing burden could provide effective protection and avoid fatal injuries on security personnel working in dangerous environments. The method provided may enlighten the future design and manufacturing of stabresistant clothing.展开更多
Thoracic spinal cord stab injuries are rare lesions. A 17-year-old boy was stabbed on his back by his classmate when he bent forward to pick up his cloth from the ground. On admission, he presented with: complete para...Thoracic spinal cord stab injuries are rare lesions. A 17-year-old boy was stabbed on his back by his classmate when he bent forward to pick up his cloth from the ground. On admission, he presented with: complete paraplegia with muscle strength of zero on all muscle groups, complete anesthesia from dermatome 10 and below, acute urinary retention, and a four-centimeter wound on the thoracolumbar region from which cerebrospinal fluid mixed with blood was oozing out. A high-dose methylprednisolone protocol was started (30 mg/kg in one hour and then 5.4 mg/kg over 23 hours) an indwelling urinary catheter placed and sterile dressing of the wound done. Antibiotics and analgesics were also administered. The computed tomography scanning revealed a spinal cord transection at T10-T11 level with incarceration of the broken knife blade. An emergency thoracic laminectomy was performed. Removal of the broken knife blade revealed complete spinal cord transection with a compressive hematoma within the spinal cord which was removed by smooth suction. The spinal dura was sutured and the wound closed in many layers. On day 14 after surgery, sensitivity was recovered with 3 on 5 muscle strength in both lower limbs except for both feet where motor function remained null. Urinary retention and fecal incontinence persisted. The patient was discharged from our service for a rehabilitation center. At 32-month follow-up, neurological examination was unchanged although patient noticed a slight improvement of sphincter disturbances.展开更多
Traumatic brain injury is a global health crisis,causing significant death and disability worldwide.Neuroinflammation that follows traumatic brain injury has serious consequences for neuronal survival and cognitive im...Traumatic brain injury is a global health crisis,causing significant death and disability worldwide.Neuroinflammation that follows traumatic brain injury has serious consequences for neuronal survival and cognitive impairments,with astrocytes involved in this response.Following traumatic brain injury,astrocytes rapidly become reactive,and astrogliosis propagates from the injury core to distant brain regions.Homeostatic astroglial proteins are downregulated near the traumatic brain injury core,while pro-inflammatory astroglial genes are overexpressed.This altered gene expression is considered a pathological remodeling of astrocytes that produces serious consequences for neuronal survival and cognitive recovery.In addition,glial scar formed by reactive astrocytes is initially necessary to limit immune cell infiltration,but in the long term impedes axonal reconnection and functional recovery.Current therapeutic strategies for traumatic brain injury are focused on preventing acute complications.Statins,cannabinoids,progesterone,beta-blockers,and cerebrolysin demonstrate neuroprotective benefits but most of them have not been studied in the context of astrocytes.In this review,we discuss the cell signaling pathways activated in reactive astrocytes following traumatic brain injury and we discuss some of the potential new strategies aimed to modulate astroglial responses in traumatic brain injury,especially using cell-targeted strategies with miRNAs or lncRNA,viral vectors,and repurposed drugs.展开更多
Precision medicine has become a cornerstone in modern therapeutic strategies, with nucleic acid aptamers emerging aspivotal tools due to their unique properties. These oligonucleotide fragments, selected through the S...Precision medicine has become a cornerstone in modern therapeutic strategies, with nucleic acid aptamers emerging aspivotal tools due to their unique properties. These oligonucleotide fragments, selected through the Systematic Evolution ofLigands by Exponential Enrichment process, exhibit high affinity and specificity toward their targets, such as DNA, RNA,proteins, and other biomolecules. Nucleic acid aptamers offer significant advantages over traditional therapeutic agents,including superior biological stability, minimal immunogenicity, and the capacity for universal chemical modifications thatenhance their in vivo performance and targeting precision. In the realm of osseous tissue repair and regeneration, a complexphysiological process essential for maintaining skeletal integrity, aptamers have shown remarkable potential in influencingmolecular pathways crucial for bone regeneration, promoting osteogenic differentiation and supporting osteoblast survival. Byengineering aptamers to regulate inflammatory responses and facilitate the proliferation and differentiation of fibroblasts,these oligonucleotides can be integrated into advanced drug delivery systems, significantly improving bone repair efficacywhile minimizing adverse effects. Aptamer-mediated strategies, including the use of siRNA and miRNA mimics or inhibitors,have shown efficacy in enhancing bone mass and microstructure. These approaches hold transformative potential for treatinga range of orthopedic conditions like osteoporosis, osteosarcoma, and osteoarthritis. This review synthesizes the molecularmechanisms and biological roles of aptamers in orthopedic diseases, emphasizing their potential to drive innovative andeffective therapeutic interventions.展开更多
基金supported by European Regional Development Funds RE0022527 ZEBRATOX(EU-Région Réunion-French State national counterpart,to Nicolas Diotel and Jean-Loup Bascands).
文摘After brain damage,regenerative angiogenesis and neurogenesis have been shown to occur simultaneously in mammals,suggesting a close link between these processes.However,the mechanisms by which these processes interact are not well understood.In this work,we aimed to study the correlation between angiogenesis and neurogenesis after a telencephalic stab wound injury.To this end,we used zebrafish as a relevant model of neuroplasticity and brain repair mechanisms.First,using the Tg(fli1:EGFP×mpeg1.1:mCherry)zebrafish line,which enables visualization of blood vessels and microglia respectively,we analyzed regenerative angiogenesis from 1 to 21 days post-lesion.In parallel,we monitored brain cell proliferation in neurogenic niches localized in the ventricular zone by using immunohistochemistry.We found that after brain damage,the blood vessel area and width as well as expression of the fli1 transgene and vascular endothelial growth factor(vegfaa and vegfbb)were increased.At the same time,neural stem cell proliferation was also increased,peaking between 3 and 5 days post-lesion in a manner similar to angiogenesis,along with the recruitment of microglia.Then,through pharmacological manipulation by injecting an anti-angiogenic drug(Tivozanib)or Vegf at the lesion site,we demonstrated that blocking or activating Vegf signaling modulated both angiogenic and neurogenic processes,as well as microglial recruitment.Finally,we showed that inhibition of microglia by clodronate-containing liposome injection or dexamethasone treatment impairs regenerative neurogenesis,as previously described,as well as injury-induced angiogenesis.In conclusion,we have described regenerative angiogenesis in zebrafish for the first time and have highlighted the role of inflammation in this process.In addition,we have shown that both angiogenesis and neurogenesis are involved in brain repair and that microglia and inflammation-dependent mechanisms activated by Vegf signaling are important contributors to these processes.This study paves the way for a better understanding of the effect of Vegf on microglia and for studies aimed at promoting angiogenesis to improve brain plasticity after brain injury.
文摘Stab-resistant textiles play a critical role in personal protection,necessitating a deeper understanding of how structural and layering factors influence their performance.The current study experimentally examines the effects of textile structure,layering,and ply orientation on the stab resistance of multi-layer textiles.Three 3D warp interlock(3DWI)structures({f1},{f2},{f3})and a 2D woven fabric({f4}),all made of high-performance p-aramid yarns,were engineered and manufactured.Multi-layer specimens were prepared and subjected to drop-weight stabbing tests following HOSBD standards.Stabbing performance metrics,including Depth of Trauma(DoT),Depth of Penetration(DoP),and trauma deformation(Ymax,Xmax),were investigated and analyzed.Statistical analyses(Two-and One-Way ANOVA)indicated that fabric type and layer number significantly impacted DoP(P<0.05),while ply orientation significantly affected DoP(P<0.05)but not DoT(P>0.05).Further detailed analysis revealed that 2D woven fabrics exhibited greater trauma deformation than 3D WIF structures.Increasing the number of layers reduced both DoP and DoT across all fabric structures,with f3 demonstrating the best performance in multi-layer configurations.Aligned ply orientations also enhanced stab resistance,underscoring the importance of alignment in dissipating impact energy.
文摘Despite numerous research investigations to understand the influences of various structural parameters,to the authors'knowledge,no research has been the effect of different angles of incidence on stab response and performance of different types of protective textiles.Three distinct structures of 3D woven textiles and 2D plain weave fabric made with similar high-performance fiber and areal density were designed and manufactured to be tested.Two samples,one composed of a single and the other of 4-panel layers,from each fabric type structure,were prepared,and tested against stabbing at[0○],[22.5○],and[45○]angle of incidence.A new stabbing experimental setup that entertained testing of the specimens at various angles of incidence was engineered and utilized.The stabbing bench is also equipped with magnetic sensors and a UK Home Office Scientific Development Branch(HOSDB)/P1/B sharpness engineered knives to measure the impact velocity and exerted impact energy respectively.A silicon compound was utilized to imprint the Back Face Signature(BFS)on the backing material after every specimen test.Each silicon print was then scanned,digitized,and precisely measured to evaluate the stab response and performance of the specimen based on different performance variables,including Depth of Trauma(DOT),Depth of Penetration(DOP),and Length of Penetration(LOP).Besides,the post-impact surface failure modes of the fabrics were also measured using Image software and analyzed at the microscale level.The results show stab angle of incidence greatly influences the stab response and performance of protective textiles.The outcome of the study could provide not only valuable insights into understanding the stab response and capabilities of protective textiles under different angle of incidence,but also provide valuable information for protective textile manufacturer,armor developer and stab testing and standardizing organizations to consider the angle of incidence while developing,testing,optimizing,and using protective textiles in various applications.
文摘High performance fibers impregnated by shear thickening fluids(STFs) have been recognized as a kind of latent stab-resistant materials. In our work, the rheological properties of various nano-silica particles in diffierent carriers were first investigated, some of which showed the typical characteristic of shear thickening phenomena.And then, the effiects of add-on and surface hydrophilicity of silica particles, the type and concentration of the carriers were discussed in detail. It was found that the systems of hydrophilic silica in ethylene glycol, butylenes glycol and polyethylene glycol(PEG) demonstrated shear thickening; moreover, the reversibility of rheological behaviors of hydrophilic silica-PEG300 suspensions indicated energy dissipation existed within a circulation of shear stress. Furthermore, the detail mechanism of STF based nano-silica particles was explored and a process diagram was presented. Finally, the stab-resistance and morphology of cutting edge of ultra high molecular weight polyethylene(UHMWPE) fabric impregnated STF composites were investigated and the results were analyzed.The higher silica add-on was benefit to the improvement of the stab resistance of the composites.
文摘Gastrointestinal bleeding due to aortoenteric fistula is extremely rare.Aortoenteric fistula is difficult to be diagnosed timely and entails a significant morbidity and mortality.Herein,we present an uncommon case of gastrointestinal bleeding caused by aortoduodenal fistula,which was a complication of a successful aortic reconstruction 4 months ago for an aortic pseudoaneurysm resulted from a stab wound 12 years ago.An urgent laparotomy confirmed an aortoduodenal fistula and repaired the defects in aorta and duodenum,but a prolonged shock led to the patient's death.In summary,early diagnosis and surgical intervention for aortoenteric fistula are vital for survival.
基金supported by the National Natural Science Foundation of China [51874041 and 71861167002]。
文摘A stab-resistant substrate was designed and realized with a triangular pyramidal structure, inspired by the biological armor model in nature. The stab-resistance behavior and dynamic response mechanisms were studied through numerical simulation and experimental testing of a knife impacting a substrate,and an optimal structural design was obtained accordingly, with a tilted angle of 22.5and optimal thickness of 1.2 mm. It was shown that the triangular pyramidal structure generated twice the internal energy of the knife than the flat substrate due to the dispersing effect of the structure. The force parallel to the inclination caused a significant scratch on the substrate surface, while the force perpendicular caused obvious substrate deformation. A new riveting method was used to form the total layer, which passed the GA 68-2008 standard. The stab-resistant clothing coupled with the reduced wearing burden could provide effective protection and avoid fatal injuries on security personnel working in dangerous environments. The method provided may enlighten the future design and manufacturing of stabresistant clothing.
文摘Thoracic spinal cord stab injuries are rare lesions. A 17-year-old boy was stabbed on his back by his classmate when he bent forward to pick up his cloth from the ground. On admission, he presented with: complete paraplegia with muscle strength of zero on all muscle groups, complete anesthesia from dermatome 10 and below, acute urinary retention, and a four-centimeter wound on the thoracolumbar region from which cerebrospinal fluid mixed with blood was oozing out. A high-dose methylprednisolone protocol was started (30 mg/kg in one hour and then 5.4 mg/kg over 23 hours) an indwelling urinary catheter placed and sterile dressing of the wound done. Antibiotics and analgesics were also administered. The computed tomography scanning revealed a spinal cord transection at T10-T11 level with incarceration of the broken knife blade. An emergency thoracic laminectomy was performed. Removal of the broken knife blade revealed complete spinal cord transection with a compressive hematoma within the spinal cord which was removed by smooth suction. The spinal dura was sutured and the wound closed in many layers. On day 14 after surgery, sensitivity was recovered with 3 on 5 muscle strength in both lower limbs except for both feet where motor function remained null. Urinary retention and fecal incontinence persisted. The patient was discharged from our service for a rehabilitation center. At 32-month follow-up, neurological examination was unchanged although patient noticed a slight improvement of sphincter disturbances.
基金supported by grants PICT 2019-08512017-2203,UBACYT and PIP CONICET(to AJR).
文摘Traumatic brain injury is a global health crisis,causing significant death and disability worldwide.Neuroinflammation that follows traumatic brain injury has serious consequences for neuronal survival and cognitive impairments,with astrocytes involved in this response.Following traumatic brain injury,astrocytes rapidly become reactive,and astrogliosis propagates from the injury core to distant brain regions.Homeostatic astroglial proteins are downregulated near the traumatic brain injury core,while pro-inflammatory astroglial genes are overexpressed.This altered gene expression is considered a pathological remodeling of astrocytes that produces serious consequences for neuronal survival and cognitive recovery.In addition,glial scar formed by reactive astrocytes is initially necessary to limit immune cell infiltration,but in the long term impedes axonal reconnection and functional recovery.Current therapeutic strategies for traumatic brain injury are focused on preventing acute complications.Statins,cannabinoids,progesterone,beta-blockers,and cerebrolysin demonstrate neuroprotective benefits but most of them have not been studied in the context of astrocytes.In this review,we discuss the cell signaling pathways activated in reactive astrocytes following traumatic brain injury and we discuss some of the potential new strategies aimed to modulate astroglial responses in traumatic brain injury,especially using cell-targeted strategies with miRNAs or lncRNA,viral vectors,and repurposed drugs.
基金Key research and development projects of Sichuan Science and Technology Plan Project(2024YFFK0135)Fujian Provincial Natural Science Foundation of China(2024J011450).
文摘Precision medicine has become a cornerstone in modern therapeutic strategies, with nucleic acid aptamers emerging aspivotal tools due to their unique properties. These oligonucleotide fragments, selected through the Systematic Evolution ofLigands by Exponential Enrichment process, exhibit high affinity and specificity toward their targets, such as DNA, RNA,proteins, and other biomolecules. Nucleic acid aptamers offer significant advantages over traditional therapeutic agents,including superior biological stability, minimal immunogenicity, and the capacity for universal chemical modifications thatenhance their in vivo performance and targeting precision. In the realm of osseous tissue repair and regeneration, a complexphysiological process essential for maintaining skeletal integrity, aptamers have shown remarkable potential in influencingmolecular pathways crucial for bone regeneration, promoting osteogenic differentiation and supporting osteoblast survival. Byengineering aptamers to regulate inflammatory responses and facilitate the proliferation and differentiation of fibroblasts,these oligonucleotides can be integrated into advanced drug delivery systems, significantly improving bone repair efficacywhile minimizing adverse effects. Aptamer-mediated strategies, including the use of siRNA and miRNA mimics or inhibitors,have shown efficacy in enhancing bone mass and microstructure. These approaches hold transformative potential for treatinga range of orthopedic conditions like osteoporosis, osteosarcoma, and osteoarthritis. This review synthesizes the molecularmechanisms and biological roles of aptamers in orthopedic diseases, emphasizing their potential to drive innovative andeffective therapeutic interventions.