The ability to accurately predict urban traffic flows is crucial for optimising city operations.Consequently,various methods for forecasting urban traffic have been developed,focusing on analysing historical data to u...The ability to accurately predict urban traffic flows is crucial for optimising city operations.Consequently,various methods for forecasting urban traffic have been developed,focusing on analysing historical data to understand complex mobility patterns.Deep learning techniques,such as graph neural networks(GNNs),are popular for their ability to capture spatio-temporal dependencies.However,these models often become overly complex due to the large number of hyper-parameters involved.In this study,we introduce Dynamic Multi-Graph Spatial-Temporal Graph Neural Ordinary Differential Equation Networks(DMST-GNODE),a framework based on ordinary differential equations(ODEs)that autonomously discovers effective spatial-temporal graph neural network(STGNN)architectures for traffic prediction tasks.The comparative analysis of DMST-GNODE and baseline models indicates that DMST-GNODE model demonstrates superior performance across multiple datasets,consistently achieving the lowest Root Mean Square Error(RMSE)and Mean Absolute Error(MAE)values,alongside the highest accuracy.On the BKK(Bangkok)dataset,it outperformed other models with an RMSE of 3.3165 and an accuracy of 0.9367 for a 20-min interval,maintaining this trend across 40 and 60 min.Similarly,on the PeMS08 dataset,DMST-GNODE achieved the best performance with an RMSE of 19.4863 and an accuracy of 0.9377 at 20 min,demonstrating its effectiveness over longer periods.The Los_Loop dataset results further emphasise this model’s advantage,with an RMSE of 3.3422 and an accuracy of 0.7643 at 20 min,consistently maintaining superiority across all time intervals.These numerical highlights indicate that DMST-GNODE not only outperforms baseline models but also achieves higher accuracy and lower errors across different time intervals and datasets.展开更多
Electrocardiogram (ECG) analysis is critical for detecting arrhythmias, but traditional methods struggle with large-scale Electrocardiogram data and rare arrhythmia events in imbalanced datasets. These methods fail to...Electrocardiogram (ECG) analysis is critical for detecting arrhythmias, but traditional methods struggle with large-scale Electrocardiogram data and rare arrhythmia events in imbalanced datasets. These methods fail to perform multi-perspective learning of temporal signals and Electrocardiogram images, nor can they fully extract the latent information within the data, falling short of the accuracy required by clinicians. Therefore, this paper proposes an innovative hybrid multimodal spatiotemporal neural network to address these challenges. The model employs a multimodal data augmentation framework integrating visual and signal-based features to enhance the classification performance of rare arrhythmias in imbalanced datasets. Additionally, the spatiotemporal fusion module incorporates a spatiotemporal graph convolutional network to jointly model temporal and spatial features, uncovering complex dependencies within the Electrocardiogram data and improving the model’s ability to represent complex patterns. In experiments conducted on the MIT-BIH arrhythmia dataset, the model achieved 99.95% accuracy, 99.80% recall, and a 99.78% F1 score. The model was further validated for generalization using the clinical INCART arrhythmia dataset, and the results demonstrated its effectiveness in terms of both generalization and robustness.展开更多
In the burgeoning field of anomaly detection within attributed networks,traditional methodologies often encounter the intricacies of network complexity,particularly in capturing nonlinearity and sparsity.This study in...In the burgeoning field of anomaly detection within attributed networks,traditional methodologies often encounter the intricacies of network complexity,particularly in capturing nonlinearity and sparsity.This study introduces an innovative approach that synergizes the strengths of graph convolutional networks with advanced deep residual learning and a unique residual-based attention mechanism,thereby creating a more nuanced and efficient method for anomaly detection in complex networks.The heart of our model lies in the integration of graph convolutional networks that capture complex structural relationships within the network data.This is further bolstered by deep residual learning,which is employed to model intricate nonlinear connections directly from input data.A pivotal innovation in our approach is the incorporation of a residual-based attention mech-anism.This mechanism dynamically adjusts the importance of nodes based on their residual information,thereby significantly enhancing the sensitivity of the model to subtle anomalies.Furthermore,we introduce a novel hypersphere mapping technique in the latent space to distinctly separate normal and anomalous data.This mapping is the key to our model’s ability to pinpoint anomalies with greater precision.An extensive experimental setup was used to validate the efficacy of the proposed model.Using attributed social network datasets,we demonstrate that our model not only competes with but also surpasses existing state-of-the-art methods in anomaly detection.The results show the exceptional capability of our model to handle the multifaceted nature of real-world networks.展开更多
Accurate traffic flow prediction has a profound impact on modern traffic management. Traffic flow has complex spatial-temporal correlations and periodicity, which poses difficulties for precise prediction. To address ...Accurate traffic flow prediction has a profound impact on modern traffic management. Traffic flow has complex spatial-temporal correlations and periodicity, which poses difficulties for precise prediction. To address this problem, a Multi-head Self-attention and Spatial-Temporal Graph Convolutional Network (MSSTGCN) for multiscale traffic flow prediction is proposed. Firstly, to capture the hidden traffic periodicity of traffic flow, traffic flow is divided into three kinds of periods, including hourly, daily, and weekly data. Secondly, a graph attention residual layer is constructed to learn the global spatial features across regions. Local spatial-temporal dependence is captured by using a T-GCN module. Thirdly, a transformer layer is introduced to learn the long-term dependence in time. A position embedding mechanism is introduced to label position information for all traffic sequences. Thus, this multi-head self-attention mechanism can recognize the sequence order and allocate weights for different time nodes. Experimental results on four real-world datasets show that the MSSTGCN performs better than the baseline methods and can be successfully adapted to traffic prediction tasks.展开更多
Micro-expressions are spontaneous, unconscious movements that reveal true emotions.Accurate facial movement information and network training learning methods are crucial for micro-expression recognition.However, most ...Micro-expressions are spontaneous, unconscious movements that reveal true emotions.Accurate facial movement information and network training learning methods are crucial for micro-expression recognition.However, most existing micro-expression recognition technologies so far focus on modeling the single category of micro-expression images and neural network structure.Aiming at the problems of low recognition rate and weak model generalization ability in micro-expression recognition, a micro-expression recognition algorithm is proposed based on graph convolution network(GCN) and Transformer model.Firstly, action unit(AU) feature detection is extracted and facial muscle nodes in the neighborhood are divided into three subsets for recognition.Then, graph convolution layer is used to find the layout of dependencies between AU nodes of micro-expression classification.Finally, multiple attentional features of each facial action are enriched with Transformer model to include more sequence information before calculating the overall correlation of each region.The proposed method is validated in CASME II and CAS(ME)^2 datasets, and the recognition rate reached 69.85%.展开更多
With the advent of deep learning,various deep neural network architectures have been proposed to capture the complex spatio-temporal dependencies in traffic data.This paper introduces a novel Deep Bi-directional Adapt...With the advent of deep learning,various deep neural network architectures have been proposed to capture the complex spatio-temporal dependencies in traffic data.This paper introduces a novel Deep Bi-directional Adaptive Gating Graph Convolutional Network(DBAG-GCN)model for spatio-temporal traffic forecasting.The proposed model leverages the power of graph convolutional networks to capture the spatial dependencies in the road network topology and incorporates bi-directional gating mechanisms to control the information flow adaptively.Furthermore,we introduce a multi-scale temporal convolution module to capture multi-scale temporal dynamics and a contextual attention mechanism to integrate external factors such as weather conditions and event information.Extensive experiments on real-world traffic datasets demonstrate the superior performance of DBAG-GCN compared to state-of-the-art baselines,achieving significant improvements in prediction accuracy and computational efficiency.The DBAG-GCN model provides a powerful and flexible framework for spatio-temporal traffic forecasting,paving the way for intelligent transportation management and urban planning.展开更多
Pedestrian trajectory prediction is pivotal and challenging in applications such as autonomous driving,social robotics,and intelligent surveillance systems.Pedestrian trajectory is governed not only by individual inte...Pedestrian trajectory prediction is pivotal and challenging in applications such as autonomous driving,social robotics,and intelligent surveillance systems.Pedestrian trajectory is governed not only by individual intent but also by interactions with surrounding agents.These interactions are critical to trajectory prediction accuracy.While prior studies have employed Convolutional Neural Networks(CNNs)and Graph Convolutional Networks(GCNs)to model such interactions,these methods fail to distinguish varying influence levels among neighboring pedestrians.To address this,we propose a novel model based on a bidirectional graph attention network and spatio-temporal graphs to capture dynamic interactions.Specifically,we construct temporal and spatial graphs encoding the sequential evolution and spatial proximity among pedestrians.These features are then fused and processed by the Bidirectional Graph Attention Network(Bi-GAT),which models the bidirectional interactions between the target pedestrian and its neighbors.The model computes node attention weights(i.e.,similarity scores)to differentially aggregate neighbor information,enabling fine-grained interaction representations.Extensive experiments conducted on two widely used pedestrian trajectory prediction benchmark datasets demonstrate that our approach outperforms existing state-of-theartmethods regarding Average Displacement Error(ADE)and Final Displacement Error(FDE),highlighting its strong prediction accuracy and generalization capability.展开更多
Recommendation Information Systems(RIS)are pivotal in helping users in swiftly locating desired content from the vast amount of information available on the Internet.Graph Convolution Network(GCN)algorithms have been ...Recommendation Information Systems(RIS)are pivotal in helping users in swiftly locating desired content from the vast amount of information available on the Internet.Graph Convolution Network(GCN)algorithms have been employed to implement the RIS efficiently.However,the GCN algorithm faces limitations in terms of performance enhancement owing to the due to the embedding value-vanishing problem that occurs during the learning process.To address this issue,we propose a Weighted Forwarding method using the GCN(WF-GCN)algorithm.The proposed method involves multiplying the embedding results with different weights for each hop layer during graph learning.By applying the WF-GCN algorithm,which adjusts weights for each hop layer before forwarding to the next,nodes with many neighbors achieve higher embedding values.This approach facilitates the learning of more hop layers within the GCN framework.The efficacy of the WF-GCN was demonstrated through its application to various datasets.In the MovieLens dataset,the implementation of WF-GCN in LightGCN resulted in significant performance improvements,with recall and NDCG increasing by up to+163.64%and+132.04%,respectively.Similarly,in the Last.FM dataset,LightGCN using WF-GCN enhanced with WF-GCN showed substantial improvements,with the recall and NDCG metrics rising by up to+174.40%and+169.95%,respectively.Furthermore,the application of WF-GCN to Self-supervised Graph Learning(SGL)and Simple Graph Contrastive Learning(SimGCL)also demonstrated notable enhancements in both recall and NDCG across these datasets.展开更多
Hepatology encompasses various aspects,such as metabolic-associated fatty liver disease,viral hepatitis,alcoholic liver disease,liver cirrhosis,liver failure,liver tumors,and liver transplantation.The global epidemiol...Hepatology encompasses various aspects,such as metabolic-associated fatty liver disease,viral hepatitis,alcoholic liver disease,liver cirrhosis,liver failure,liver tumors,and liver transplantation.The global epidemiological situation of liver diseases is grave,posing a substantial threat to human health and quality of life.Characterized by high incidence and mortality rates,liver diseases have emerged as a prominent global public health concern.In recent years,the rapid advan-cement of artificial intelligence(AI),deep learning,and radiomics has transfor-med medical research and clinical practice,demonstrating considerable potential in hepatology.AI is capable of automatically detecting abnormal cells in liver tissue sections,enhancing the accu-racy and efficiency of pathological diagnosis.Deep learning models are able to extract features from computed tomography and magnetic resonance imaging images to facilitate liver disease classification.Machine learning models are capable of integrating clinical data to forecast disease progression and treatment responses,thus supporting clinical decision-making for personalized medicine.Through the analysis of imaging data,laboratory results,and genomic information,AI can assist in diagnosis,forecast disease progression,and optimize treatment plans,thereby improving clinical outcomes for liver disease patients.This minireview intends to comprehensively summarize the state-of-the-art theories and applications of AI in hepatology,explore the opportunities and challenges it presents in clinical practice,basic research,and translational medicine,and propose future research directions to guide the advancement of hepatology and ultimately improve patient outcomes.展开更多
Uncertainty quantification of building design loads is essential to efficient and reliable building energy planning in the design stage.Current data-driven methods struggle to generalize across buildings with diverse ...Uncertainty quantification of building design loads is essential to efficient and reliable building energy planning in the design stage.Current data-driven methods struggle to generalize across buildings with diverse shapes due to limitations in representing complex geometric structures.To tackle this issue,a graph convolutional networks(GCN)-based uncertainty quantification method is proposed.This graph-based approach is introduced to represent building shapes by dividing them into blocks and defining their spatial relationships through nodes and edges.The method effectively captures complex building characteristics,enhancing the generalization abilities.An approach leveraging GCN could estimate design loads by understanding the impact of diverse uncertain factors.Additionally,a class activation map is formulated to identify key uncertain factors,guiding the selection of important design parameters during the building design stage.The effectiveness of this method is evaluated through comparison with four widely-used data-driven techniques.Results indicate that the mean absolute percentage errors(MAPE)for statistical indicators of uncertainty quantification are under 6.0%and 4.0%for cooling loads and heating loads,respectively.The proposed method is demonstrated to quantify uncertainty in building design loads with outstanding generalization abilities.With regard to time costs,the computation time of the proposed method is reduced from 331 hours to 30 seconds for a twenty-floor building compared to a conventional physics-based method.展开更多
As one of the main characteristics of atmospheric pollutants,PM_(2.5) severely affects human health and has received widespread attention in recent years.How to predict the variations of PM_(2.5) concentrations with h...As one of the main characteristics of atmospheric pollutants,PM_(2.5) severely affects human health and has received widespread attention in recent years.How to predict the variations of PM_(2.5) concentrations with high accuracy is an important topic.The PM_(2.5) monitoring stations in Xinjiang Uygur Autonomous Region,China,are unevenly distributed,which makes it challenging to conduct comprehensive analyses and predictions.Therefore,this study primarily addresses the limitations mentioned above and the poor generalization ability of PM_(2.5) concentration prediction models across different monitoring stations.We chose the northern slope of the Tianshan Mountains as the study area and took the January−December in 2019 as the research period.On the basis of data from 21 PM_(2.5) monitoring stations as well as meteorological data(temperature,instantaneous wind speed,and pressure),we developed an improved model,namely GCN−TCN−AR(where GCN is the graph convolution network,TCN is the temporal convolutional network,and AR is the autoregression),for predicting PM_(2.5) concentrations on the northern slope of the Tianshan Mountains.The GCN−TCN−AR model is composed of an improved GCN model,a TCN model,and an AR model.The results revealed that the R2 values predicted by the GCN−TCN−AR model at the four monitoring stations(Urumqi,Wujiaqu,Shihezi,and Changji)were 0.93,0.91,0.93,and 0.92,respectively,and the RMSE(root mean square error)values were 6.85,7.52,7.01,and 7.28μg/m^(3),respectively.The performance of the GCN−TCN−AR model was also compared with the currently neural network models,including the GCN−TCN,GCN,TCN,Support Vector Regression(SVR),and AR.The GCN−TCN−AR outperformed the other current neural network models,with high prediction accuracy and good stability,making it especially suitable for the predictions of PM_(2.5)concentrations.This study revealed the significant spatiotemporal variations of PM_(2.5)concentrations.First,the PM_(2.5) concentrations exhibited clear seasonal fluctuations,with higher levels typically observed in winter and differences presented between months.Second,the spatial distribution analysis revealed that cities such as Urumqi and Wujiaqu have high PM_(2.5) concentrations,with a noticeable geographical clustering of pollutions.Understanding the variations in PM_(2.5) concentrations is highly important for the sustainable development of ecological environment in arid areas.展开更多
We present a novel transient fault detection and classification approach in power transmission lines based on graph convolutional neural network.Compared with the existing techniques,the proposed approach considers ex...We present a novel transient fault detection and classification approach in power transmission lines based on graph convolutional neural network.Compared with the existing techniques,the proposed approach considers explicit spatial information in sampling sequences as prior knowledge and it has stronger feature extraction ability.On this basis,a framework for transient fault detection and classification is created.Graph structure is generated to provide topology information to the task.Our approach takes the adjacency matrix of topology graph and the bus voltage signals during a sampling period after transient faults as inputs,and outputs the predicted classification results rapidly.Furthermore,the proposed approach is tested in various situations and its generalization ability is verified by experimental results.The results show that the proposed approach can detect and classify transient faults more effectively than the existing techniques,and it is practical for online transmission line protection for its rapidness,high robustness and generalization ability.展开更多
In order to address the issues of predefined adjacency matrices inadequately representing information in road networks,insufficiently capturing spatial dependencies of traffic networks,and the potential problem of exc...In order to address the issues of predefined adjacency matrices inadequately representing information in road networks,insufficiently capturing spatial dependencies of traffic networks,and the potential problem of excessive smoothing or neglecting initial node information as the layers of graph convolutional neural networks increase,thus affecting traffic prediction performance,this paper proposes a prediction model based on Adaptive Multi-channel Graph Convolutional Neural Networks(AMGCN).The model utilizes an adaptive adjacency matrix to automatically learn implicit graph structures from data,introduces a mixed skip propagation graph convolutional neural network model,which retains the original node states and selectively acquires outputs of convolutional layers,thus avoiding the loss of node initial states and comprehensively capturing spatial correlations of traffic flow.Finally,the output is fed into Long Short-Term Memory networks to capture temporal correlations.Comparative experiments on two real datasets validate the effectiveness of the proposed model.展开更多
文摘The ability to accurately predict urban traffic flows is crucial for optimising city operations.Consequently,various methods for forecasting urban traffic have been developed,focusing on analysing historical data to understand complex mobility patterns.Deep learning techniques,such as graph neural networks(GNNs),are popular for their ability to capture spatio-temporal dependencies.However,these models often become overly complex due to the large number of hyper-parameters involved.In this study,we introduce Dynamic Multi-Graph Spatial-Temporal Graph Neural Ordinary Differential Equation Networks(DMST-GNODE),a framework based on ordinary differential equations(ODEs)that autonomously discovers effective spatial-temporal graph neural network(STGNN)architectures for traffic prediction tasks.The comparative analysis of DMST-GNODE and baseline models indicates that DMST-GNODE model demonstrates superior performance across multiple datasets,consistently achieving the lowest Root Mean Square Error(RMSE)and Mean Absolute Error(MAE)values,alongside the highest accuracy.On the BKK(Bangkok)dataset,it outperformed other models with an RMSE of 3.3165 and an accuracy of 0.9367 for a 20-min interval,maintaining this trend across 40 and 60 min.Similarly,on the PeMS08 dataset,DMST-GNODE achieved the best performance with an RMSE of 19.4863 and an accuracy of 0.9377 at 20 min,demonstrating its effectiveness over longer periods.The Los_Loop dataset results further emphasise this model’s advantage,with an RMSE of 3.3422 and an accuracy of 0.7643 at 20 min,consistently maintaining superiority across all time intervals.These numerical highlights indicate that DMST-GNODE not only outperforms baseline models but also achieves higher accuracy and lower errors across different time intervals and datasets.
基金supported by The Henan Province Science and Technology Research Project(242102211046)the Key Scientific Research Project of Higher Education Institutions in Henan Province(25A520039)+1 种基金theNatural Science Foundation project of Zhongyuan Institute of Technology(K2025YB011)the Zhongyuan University of Technology Graduate Education and Teaching Reform Research Project(JG202424).
文摘Electrocardiogram (ECG) analysis is critical for detecting arrhythmias, but traditional methods struggle with large-scale Electrocardiogram data and rare arrhythmia events in imbalanced datasets. These methods fail to perform multi-perspective learning of temporal signals and Electrocardiogram images, nor can they fully extract the latent information within the data, falling short of the accuracy required by clinicians. Therefore, this paper proposes an innovative hybrid multimodal spatiotemporal neural network to address these challenges. The model employs a multimodal data augmentation framework integrating visual and signal-based features to enhance the classification performance of rare arrhythmias in imbalanced datasets. Additionally, the spatiotemporal fusion module incorporates a spatiotemporal graph convolutional network to jointly model temporal and spatial features, uncovering complex dependencies within the Electrocardiogram data and improving the model’s ability to represent complex patterns. In experiments conducted on the MIT-BIH arrhythmia dataset, the model achieved 99.95% accuracy, 99.80% recall, and a 99.78% F1 score. The model was further validated for generalization using the clinical INCART arrhythmia dataset, and the results demonstrated its effectiveness in terms of both generalization and robustness.
文摘In the burgeoning field of anomaly detection within attributed networks,traditional methodologies often encounter the intricacies of network complexity,particularly in capturing nonlinearity and sparsity.This study introduces an innovative approach that synergizes the strengths of graph convolutional networks with advanced deep residual learning and a unique residual-based attention mechanism,thereby creating a more nuanced and efficient method for anomaly detection in complex networks.The heart of our model lies in the integration of graph convolutional networks that capture complex structural relationships within the network data.This is further bolstered by deep residual learning,which is employed to model intricate nonlinear connections directly from input data.A pivotal innovation in our approach is the incorporation of a residual-based attention mech-anism.This mechanism dynamically adjusts the importance of nodes based on their residual information,thereby significantly enhancing the sensitivity of the model to subtle anomalies.Furthermore,we introduce a novel hypersphere mapping technique in the latent space to distinctly separate normal and anomalous data.This mapping is the key to our model’s ability to pinpoint anomalies with greater precision.An extensive experimental setup was used to validate the efficacy of the proposed model.Using attributed social network datasets,we demonstrate that our model not only competes with but also surpasses existing state-of-the-art methods in anomaly detection.The results show the exceptional capability of our model to handle the multifaceted nature of real-world networks.
基金supported by the National Natural Science Foundation of China(Grant Nos.62472149,62376089,62202147)Hubei Provincial Science and Technology Plan Project(2023BCB04100).
文摘Accurate traffic flow prediction has a profound impact on modern traffic management. Traffic flow has complex spatial-temporal correlations and periodicity, which poses difficulties for precise prediction. To address this problem, a Multi-head Self-attention and Spatial-Temporal Graph Convolutional Network (MSSTGCN) for multiscale traffic flow prediction is proposed. Firstly, to capture the hidden traffic periodicity of traffic flow, traffic flow is divided into three kinds of periods, including hourly, daily, and weekly data. Secondly, a graph attention residual layer is constructed to learn the global spatial features across regions. Local spatial-temporal dependence is captured by using a T-GCN module. Thirdly, a transformer layer is introduced to learn the long-term dependence in time. A position embedding mechanism is introduced to label position information for all traffic sequences. Thus, this multi-head self-attention mechanism can recognize the sequence order and allocate weights for different time nodes. Experimental results on four real-world datasets show that the MSSTGCN performs better than the baseline methods and can be successfully adapted to traffic prediction tasks.
基金Supported by Shaanxi Province Key Research and Development Project (2021GY-280)the National Natural Science Foundation of China (No.61834005,61772417,61802304)。
文摘Micro-expressions are spontaneous, unconscious movements that reveal true emotions.Accurate facial movement information and network training learning methods are crucial for micro-expression recognition.However, most existing micro-expression recognition technologies so far focus on modeling the single category of micro-expression images and neural network structure.Aiming at the problems of low recognition rate and weak model generalization ability in micro-expression recognition, a micro-expression recognition algorithm is proposed based on graph convolution network(GCN) and Transformer model.Firstly, action unit(AU) feature detection is extracted and facial muscle nodes in the neighborhood are divided into three subsets for recognition.Then, graph convolution layer is used to find the layout of dependencies between AU nodes of micro-expression classification.Finally, multiple attentional features of each facial action are enriched with Transformer model to include more sequence information before calculating the overall correlation of each region.The proposed method is validated in CASME II and CAS(ME)^2 datasets, and the recognition rate reached 69.85%.
基金supported by the National Natural Science Foundation of China(Nos.62202247 and 62306073)the National Key Research and Development Program of China(No.2022ZD0115303).
文摘With the advent of deep learning,various deep neural network architectures have been proposed to capture the complex spatio-temporal dependencies in traffic data.This paper introduces a novel Deep Bi-directional Adaptive Gating Graph Convolutional Network(DBAG-GCN)model for spatio-temporal traffic forecasting.The proposed model leverages the power of graph convolutional networks to capture the spatial dependencies in the road network topology and incorporates bi-directional gating mechanisms to control the information flow adaptively.Furthermore,we introduce a multi-scale temporal convolution module to capture multi-scale temporal dynamics and a contextual attention mechanism to integrate external factors such as weather conditions and event information.Extensive experiments on real-world traffic datasets demonstrate the superior performance of DBAG-GCN compared to state-of-the-art baselines,achieving significant improvements in prediction accuracy and computational efficiency.The DBAG-GCN model provides a powerful and flexible framework for spatio-temporal traffic forecasting,paving the way for intelligent transportation management and urban planning.
基金funded by the National Natural Science Foundation of China,grant number 624010funded by the Natural Science Foundation of Anhui Province,grant number 2408085QF202+1 种基金funded by the Anhui Future Technology Research Institute Industry Guidance Fund Project,grant number 2023cyyd04funded by the Project of Research of Anhui Polytechnic University,grant number Xjky2022150.
文摘Pedestrian trajectory prediction is pivotal and challenging in applications such as autonomous driving,social robotics,and intelligent surveillance systems.Pedestrian trajectory is governed not only by individual intent but also by interactions with surrounding agents.These interactions are critical to trajectory prediction accuracy.While prior studies have employed Convolutional Neural Networks(CNNs)and Graph Convolutional Networks(GCNs)to model such interactions,these methods fail to distinguish varying influence levels among neighboring pedestrians.To address this,we propose a novel model based on a bidirectional graph attention network and spatio-temporal graphs to capture dynamic interactions.Specifically,we construct temporal and spatial graphs encoding the sequential evolution and spatial proximity among pedestrians.These features are then fused and processed by the Bidirectional Graph Attention Network(Bi-GAT),which models the bidirectional interactions between the target pedestrian and its neighbors.The model computes node attention weights(i.e.,similarity scores)to differentially aggregate neighbor information,enabling fine-grained interaction representations.Extensive experiments conducted on two widely used pedestrian trajectory prediction benchmark datasets demonstrate that our approach outperforms existing state-of-theartmethods regarding Average Displacement Error(ADE)and Final Displacement Error(FDE),highlighting its strong prediction accuracy and generalization capability.
基金This work was supported by the Kyonggi University Research Grant 2022.
文摘Recommendation Information Systems(RIS)are pivotal in helping users in swiftly locating desired content from the vast amount of information available on the Internet.Graph Convolution Network(GCN)algorithms have been employed to implement the RIS efficiently.However,the GCN algorithm faces limitations in terms of performance enhancement owing to the due to the embedding value-vanishing problem that occurs during the learning process.To address this issue,we propose a Weighted Forwarding method using the GCN(WF-GCN)algorithm.The proposed method involves multiplying the embedding results with different weights for each hop layer during graph learning.By applying the WF-GCN algorithm,which adjusts weights for each hop layer before forwarding to the next,nodes with many neighbors achieve higher embedding values.This approach facilitates the learning of more hop layers within the GCN framework.The efficacy of the WF-GCN was demonstrated through its application to various datasets.In the MovieLens dataset,the implementation of WF-GCN in LightGCN resulted in significant performance improvements,with recall and NDCG increasing by up to+163.64%and+132.04%,respectively.Similarly,in the Last.FM dataset,LightGCN using WF-GCN enhanced with WF-GCN showed substantial improvements,with the recall and NDCG metrics rising by up to+174.40%and+169.95%,respectively.Furthermore,the application of WF-GCN to Self-supervised Graph Learning(SGL)and Simple Graph Contrastive Learning(SimGCL)also demonstrated notable enhancements in both recall and NDCG across these datasets.
文摘Hepatology encompasses various aspects,such as metabolic-associated fatty liver disease,viral hepatitis,alcoholic liver disease,liver cirrhosis,liver failure,liver tumors,and liver transplantation.The global epidemiological situation of liver diseases is grave,posing a substantial threat to human health and quality of life.Characterized by high incidence and mortality rates,liver diseases have emerged as a prominent global public health concern.In recent years,the rapid advan-cement of artificial intelligence(AI),deep learning,and radiomics has transfor-med medical research and clinical practice,demonstrating considerable potential in hepatology.AI is capable of automatically detecting abnormal cells in liver tissue sections,enhancing the accu-racy and efficiency of pathological diagnosis.Deep learning models are able to extract features from computed tomography and magnetic resonance imaging images to facilitate liver disease classification.Machine learning models are capable of integrating clinical data to forecast disease progression and treatment responses,thus supporting clinical decision-making for personalized medicine.Through the analysis of imaging data,laboratory results,and genomic information,AI can assist in diagnosis,forecast disease progression,and optimize treatment plans,thereby improving clinical outcomes for liver disease patients.This minireview intends to comprehensively summarize the state-of-the-art theories and applications of AI in hepatology,explore the opportunities and challenges it presents in clinical practice,basic research,and translational medicine,and propose future research directions to guide the advancement of hepatology and ultimately improve patient outcomes.
基金supported by the National Natural Science Foundation of China(No.52161135202)Hangzhou Key Scientific Research Plan Project(No.2023SZD0028)+1 种基金the Basic Research Funds for the Central Government‘Innovative Team of Zhejiang University’(No.2022FZZX01-09)China Scholarship Fund.
文摘Uncertainty quantification of building design loads is essential to efficient and reliable building energy planning in the design stage.Current data-driven methods struggle to generalize across buildings with diverse shapes due to limitations in representing complex geometric structures.To tackle this issue,a graph convolutional networks(GCN)-based uncertainty quantification method is proposed.This graph-based approach is introduced to represent building shapes by dividing them into blocks and defining their spatial relationships through nodes and edges.The method effectively captures complex building characteristics,enhancing the generalization abilities.An approach leveraging GCN could estimate design loads by understanding the impact of diverse uncertain factors.Additionally,a class activation map is formulated to identify key uncertain factors,guiding the selection of important design parameters during the building design stage.The effectiveness of this method is evaluated through comparison with four widely-used data-driven techniques.Results indicate that the mean absolute percentage errors(MAPE)for statistical indicators of uncertainty quantification are under 6.0%and 4.0%for cooling loads and heating loads,respectively.The proposed method is demonstrated to quantify uncertainty in building design loads with outstanding generalization abilities.With regard to time costs,the computation time of the proposed method is reduced from 331 hours to 30 seconds for a twenty-floor building compared to a conventional physics-based method.
基金supported by the Program of Support Xinjiang by Technology(2024E02028,B2-2024-0359)Xinjiang Tianchi Talent Program of 2024,the Foundation of Chinese Academy of Sciences(B2-2023-0239)the Youth Foundation of Shandong Natural Science(ZR2023QD070).
文摘As one of the main characteristics of atmospheric pollutants,PM_(2.5) severely affects human health and has received widespread attention in recent years.How to predict the variations of PM_(2.5) concentrations with high accuracy is an important topic.The PM_(2.5) monitoring stations in Xinjiang Uygur Autonomous Region,China,are unevenly distributed,which makes it challenging to conduct comprehensive analyses and predictions.Therefore,this study primarily addresses the limitations mentioned above and the poor generalization ability of PM_(2.5) concentration prediction models across different monitoring stations.We chose the northern slope of the Tianshan Mountains as the study area and took the January−December in 2019 as the research period.On the basis of data from 21 PM_(2.5) monitoring stations as well as meteorological data(temperature,instantaneous wind speed,and pressure),we developed an improved model,namely GCN−TCN−AR(where GCN is the graph convolution network,TCN is the temporal convolutional network,and AR is the autoregression),for predicting PM_(2.5) concentrations on the northern slope of the Tianshan Mountains.The GCN−TCN−AR model is composed of an improved GCN model,a TCN model,and an AR model.The results revealed that the R2 values predicted by the GCN−TCN−AR model at the four monitoring stations(Urumqi,Wujiaqu,Shihezi,and Changji)were 0.93,0.91,0.93,and 0.92,respectively,and the RMSE(root mean square error)values were 6.85,7.52,7.01,and 7.28μg/m^(3),respectively.The performance of the GCN−TCN−AR model was also compared with the currently neural network models,including the GCN−TCN,GCN,TCN,Support Vector Regression(SVR),and AR.The GCN−TCN−AR outperformed the other current neural network models,with high prediction accuracy and good stability,making it especially suitable for the predictions of PM_(2.5)concentrations.This study revealed the significant spatiotemporal variations of PM_(2.5)concentrations.First,the PM_(2.5) concentrations exhibited clear seasonal fluctuations,with higher levels typically observed in winter and differences presented between months.Second,the spatial distribution analysis revealed that cities such as Urumqi and Wujiaqu have high PM_(2.5) concentrations,with a noticeable geographical clustering of pollutions.Understanding the variations in PM_(2.5) concentrations is highly important for the sustainable development of ecological environment in arid areas.
基金This work was supported by the National Key Research and Development Program of China under Grant 2018YFF0214704.
文摘We present a novel transient fault detection and classification approach in power transmission lines based on graph convolutional neural network.Compared with the existing techniques,the proposed approach considers explicit spatial information in sampling sequences as prior knowledge and it has stronger feature extraction ability.On this basis,a framework for transient fault detection and classification is created.Graph structure is generated to provide topology information to the task.Our approach takes the adjacency matrix of topology graph and the bus voltage signals during a sampling period after transient faults as inputs,and outputs the predicted classification results rapidly.Furthermore,the proposed approach is tested in various situations and its generalization ability is verified by experimental results.The results show that the proposed approach can detect and classify transient faults more effectively than the existing techniques,and it is practical for online transmission line protection for its rapidness,high robustness and generalization ability.
文摘In order to address the issues of predefined adjacency matrices inadequately representing information in road networks,insufficiently capturing spatial dependencies of traffic networks,and the potential problem of excessive smoothing or neglecting initial node information as the layers of graph convolutional neural networks increase,thus affecting traffic prediction performance,this paper proposes a prediction model based on Adaptive Multi-channel Graph Convolutional Neural Networks(AMGCN).The model utilizes an adaptive adjacency matrix to automatically learn implicit graph structures from data,introduces a mixed skip propagation graph convolutional neural network model,which retains the original node states and selectively acquires outputs of convolutional layers,thus avoiding the loss of node initial states and comprehensively capturing spatial correlations of traffic flow.Finally,the output is fed into Long Short-Term Memory networks to capture temporal correlations.Comparative experiments on two real datasets validate the effectiveness of the proposed model.