The distributions of framework aluminum(Al)in zeolites critically govern the location and speciation of active copper(Cu)centers,thereby influencing their performance in ammonia selective catalytic reduction(NH_(3)-SC...The distributions of framework aluminum(Al)in zeolites critically govern the location and speciation of active copper(Cu)centers,thereby influencing their performance in ammonia selective catalytic reduction(NH_(3)-SCR)of nitrogen oxides(NO_(x)).Conventional Cu-SSZ-39(Cu-SSZ-39-T)exhibits excellent hydrothermal stability but limited low-temperature activity(150–225℃)due to a low concentration of Al in 8-membered rings(8MRs)that inhibits the formation of active[Cu(OH)]^(+)-Z species.Herein,an SSZ-39 zeolite synthesized with potassium ions(SSZ-39-K)achieved a significantly higher 8MR Al fraction(37.6%).Density functional theory calculations and H_(2)-temperature-programmed reduction analyses confirmed that the increased 8MR Al population facilitated the formation of[Cu(OH)]^(+)-Z species.Aged Cu-SSZ-39-K exhibited nearly twice the NO_(x)conversion of aged Cu-SSZ-39-T in the 150–225℃range while maintaining comparable high-temperature activity(250–550℃)under a gas hourly space velocity of 250,000 h^(-1).Enhanced low-temperature performance is particularly beneficial for mitigating NO_(x)emissions during cold-start phase.Moreover,SSZ-39-K was synthesized with a high crystallization yield(~65%),nearly double the highest yield(33%)reported for direct synthesis routes.This work establishes a robust strategy for tailoring Al distributions in SSZ-39 zeolites,offering an effective pathway to improve low-temperature NH_(3)-SCR performance and promote practical implementation.展开更多
文摘The distributions of framework aluminum(Al)in zeolites critically govern the location and speciation of active copper(Cu)centers,thereby influencing their performance in ammonia selective catalytic reduction(NH_(3)-SCR)of nitrogen oxides(NO_(x)).Conventional Cu-SSZ-39(Cu-SSZ-39-T)exhibits excellent hydrothermal stability but limited low-temperature activity(150–225℃)due to a low concentration of Al in 8-membered rings(8MRs)that inhibits the formation of active[Cu(OH)]^(+)-Z species.Herein,an SSZ-39 zeolite synthesized with potassium ions(SSZ-39-K)achieved a significantly higher 8MR Al fraction(37.6%).Density functional theory calculations and H_(2)-temperature-programmed reduction analyses confirmed that the increased 8MR Al population facilitated the formation of[Cu(OH)]^(+)-Z species.Aged Cu-SSZ-39-K exhibited nearly twice the NO_(x)conversion of aged Cu-SSZ-39-T in the 150–225℃range while maintaining comparable high-temperature activity(250–550℃)under a gas hourly space velocity of 250,000 h^(-1).Enhanced low-temperature performance is particularly beneficial for mitigating NO_(x)emissions during cold-start phase.Moreover,SSZ-39-K was synthesized with a high crystallization yield(~65%),nearly double the highest yield(33%)reported for direct synthesis routes.This work establishes a robust strategy for tailoring Al distributions in SSZ-39 zeolites,offering an effective pathway to improve low-temperature NH_(3)-SCR performance and promote practical implementation.