The temperate virus SSV1 from the hyper-thermophilic archaeon Sulfolobus shibatae provides a useful model system for the study of archaeal DNA replication. Southern hybridization showed that SSV1 existed primarily as ...The temperate virus SSV1 from the hyper-thermophilic archaeon Sulfolobus shibatae provides a useful model system for the study of archaeal DNA replication. Southern hybridization showed that SSV1 existed primarily as a provirus in its host that was grown without shaking. Upon UV or mitomycin C induction, the cellular level of free SSV1 DNA increased drastically whereas that of integrated viral DNA remained unchanged. The results of mitomycin C induction were more reproducible than those of UV induction. We found that, when the cells that had been grown without shaking were shaken, the replication of SSV1 DNA was also induced. Based on our results, we developed a method for the induction of SSY1 DNA replication by mitomycin C. When the S. shibatae virus production was induced using this method, the cellular level of free SSV1 DNA started to increase 10 h after induction, and peaked after 12-15 h. A fully induced S. shibatae cell contained -50 molecules of free SSV1 DNA. The development of this induction展开更多
基金This work was supported by the National Natural Science Foundation of China (Grant Nos. 39770009 and 39925001)the fund for Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. KSCX2-3-01-02).
文摘The temperate virus SSV1 from the hyper-thermophilic archaeon Sulfolobus shibatae provides a useful model system for the study of archaeal DNA replication. Southern hybridization showed that SSV1 existed primarily as a provirus in its host that was grown without shaking. Upon UV or mitomycin C induction, the cellular level of free SSV1 DNA increased drastically whereas that of integrated viral DNA remained unchanged. The results of mitomycin C induction were more reproducible than those of UV induction. We found that, when the cells that had been grown without shaking were shaken, the replication of SSV1 DNA was also induced. Based on our results, we developed a method for the induction of SSY1 DNA replication by mitomycin C. When the S. shibatae virus production was induced using this method, the cellular level of free SSV1 DNA started to increase 10 h after induction, and peaked after 12-15 h. A fully induced S. shibatae cell contained -50 molecules of free SSV1 DNA. The development of this induction