In this study,thermo-fluid characteristics of elliptical annular finned tube heat exchanger were numerically studied in detail.Transition SST model was utilized to simulate turbulent flow.Effects of air velocities,hor...In this study,thermo-fluid characteristics of elliptical annular finned tube heat exchanger were numerically studied in detail.Transition SST model was utilized to simulate turbulent flow.Effects of air velocities,horizontal to vertical fin diameter ratios,and fin densities were examined in detail.The simulations indicate superior performance of elliptical fin layout.It was shown that pressure drop of annular elliptical fin can be only one half of that of a circular annular fin while containing comparable heat transfer performance.The vertical elliptical annular fin may even contain a higher heat transfer performance over circular fin.Correlations are proposed to estimate the Nu number and pressure drop based on the annular circular fin.The maximum deviations between the proposed correlations and simulations regarding pressure drop and heat transfer coefficient are 5.6%and 3.2%,respectively.For further elaboration of the superiority of the elliptical layout from the second law perspective,normalized entropy generation was also studied.In all cases,the entropy generation rate in circular fin was higher than that of an elliptical fin.展开更多
The shear-stress transport(SST)turbulence model is incorporated into Navier-Stokes equations to simulate a turbomachinery flowfield.A staggered finite volume method is used to make the mean flow equations and turbulen...The shear-stress transport(SST)turbulence model is incorporated into Navier-Stokes equations to simulate a turbomachinery flowfield.A staggered finite volume method is used to make the mean flow equations and turbulence model equations strongly coupled and enhance the stability of the numerical computation.The implicit treatment of the source terms is applied to the SST model.A steady state solution is obtained using five-stage Runge-Kutta time-stepping scheme with local time stepping and residual smoothing to accelerate convergence. The wall distance d,a key parameter in the SST model,is solved by a partial differential equation.The validations of the code are conducted on rotor 37,wp11 at design and off-design conditions by comparison with measurements and the Spalart-Allmaras(SA)turbulence model.The flow within the tip is calculated with a multi-block grid.展开更多
Based on the historical and RCP8.5 runs of the multi-model ensemble of 32 models participating in CMIP5, the present study evaluates the formation mechanisms for the patterns of changes in equatorial Pacific SST under...Based on the historical and RCP8.5 runs of the multi-model ensemble of 32 models participating in CMIP5, the present study evaluates the formation mechanisms for the patterns of changes in equatorial Pacific SST under global warming. Two features with complex formation processes, the zonal E1 Nifio-like pattern and the meridional equatorial peak warm- ing (EPW), are investigated. The climatological evaporation is the main contributor to the E1 Nifio-like pattern, while the ocean dynamical thermostat effect plays a comparable negative role. The cloud-shortwave-radiation-SST feedback and the weakened Walker circulation play a small positive role in the E1 Nifio-like pattern. The processes associated with ocean dynamics are confined to the equator. The climatological evaporation is also the dominant contributor to the EPW pattern, as suggested in previous studies. However, the effects of some processes are inconsistent with previous studies. For example, changes in the zonal heat advection due to the weakened Walker circulation have a remarkable positive contribution to the EPW pattern, and changes in the shortwave radiation play a negative role in the EPW pattern.展开更多
-Starting from physical oceanology characteristics of the China seas and for the short-term operational prediction of SST in the region, a two-dimensional (vertically integrated) primitive equation model, physically r...-Starting from physical oceanology characteristics of the China seas and for the short-term operational prediction of SST in the region, a two-dimensional (vertically integrated) primitive equation model, physically reasonable and operationally feasible,on the upper mixed layer is constructed and given here, which consists of three parts, the nondivergent residual current (the monthly mean field of the Kuroshio and its branches) equations, the dynamic forecasting equations, and the equation of model's physics consisting of surface heat flux, coolings of the upper mixed layer due to the Ekman pumping and the entrainment by gale. This model may be used primarily to forecast the sea surface temperature, and to give estimations of the mean wind-driven current and the sea level, for a period of 3-5 d. In part 1 of this series, the physical conditions for establishing model equations are discussed first, that is, 1. the existence of the upper well mixed layer in the region; 2. the distinguishability of currents of all kinds; 3. the splitting of thermodynamical equation. The equations of nondivergent residual current, and the dynamic forecasting equations with initial values and boundary conditions are also discussed.展开更多
RANS是工程中常用的CFD数值模拟模型,文中基于该模型对SUBOFF裸艇体的水动力特性开展数值模拟研究.传统SST(shear stress transport model)湍流模型采用了线性涡黏假设,难以描述复杂流场的各向异性流动现象.另外,传统SST模型对分离点的...RANS是工程中常用的CFD数值模拟模型,文中基于该模型对SUBOFF裸艇体的水动力特性开展数值模拟研究.传统SST(shear stress transport model)湍流模型采用了线性涡黏假设,难以描述复杂流场的各向异性流动现象.另外,传统SST模型对分离点的预测还可能出现延迟,使阻力预测值偏小.针对传统SST湍流模型的缺陷,提出使用各向异性的ASST(anisotropic shear stress transport)湍流模型及其再附修正来研究SUBOFF裸艇体的数值模拟计算问题,并对SST、SST(Reattach)、ASST及ASST(Reattach)4种湍流模型进行了比较研究.结果表明,相较于传统SST模型,ASST模型在预测SUBOFF裸艇的阻力上具有更高精确度,再附修正可有效克服阻力预测值偏小的问题,ASST(Reattach)模型在4种湍流模型中阻力预报性能最优.另外,针对不同站位的轴向及径向平均速度分布特性问题,4种湍流模型均能够取得与模型试验一致的数值模拟结果.展开更多
文摘In this study,thermo-fluid characteristics of elliptical annular finned tube heat exchanger were numerically studied in detail.Transition SST model was utilized to simulate turbulent flow.Effects of air velocities,horizontal to vertical fin diameter ratios,and fin densities were examined in detail.The simulations indicate superior performance of elliptical fin layout.It was shown that pressure drop of annular elliptical fin can be only one half of that of a circular annular fin while containing comparable heat transfer performance.The vertical elliptical annular fin may even contain a higher heat transfer performance over circular fin.Correlations are proposed to estimate the Nu number and pressure drop based on the annular circular fin.The maximum deviations between the proposed correlations and simulations regarding pressure drop and heat transfer coefficient are 5.6%and 3.2%,respectively.For further elaboration of the superiority of the elliptical layout from the second law perspective,normalized entropy generation was also studied.In all cases,the entropy generation rate in circular fin was higher than that of an elliptical fin.
基金supported by the National Natural Science Foundation of China under Contract 50676004 and 50736007
文摘The shear-stress transport(SST)turbulence model is incorporated into Navier-Stokes equations to simulate a turbomachinery flowfield.A staggered finite volume method is used to make the mean flow equations and turbulence model equations strongly coupled and enhance the stability of the numerical computation.The implicit treatment of the source terms is applied to the SST model.A steady state solution is obtained using five-stage Runge-Kutta time-stepping scheme with local time stepping and residual smoothing to accelerate convergence. The wall distance d,a key parameter in the SST model,is solved by a partial differential equation.The validations of the code are conducted on rotor 37,wp11 at design and off-design conditions by comparison with measurements and the Spalart-Allmaras(SA)turbulence model.The flow within the tip is calculated with a multi-block grid.
基金supported by the National Basic Research Program of China (Grant Nos. 2014CB953903 and 2012CB955604)the National Natural Science Foundation of China (Grant Nos. 41575088 and 41461164005)
文摘Based on the historical and RCP8.5 runs of the multi-model ensemble of 32 models participating in CMIP5, the present study evaluates the formation mechanisms for the patterns of changes in equatorial Pacific SST under global warming. Two features with complex formation processes, the zonal E1 Nifio-like pattern and the meridional equatorial peak warm- ing (EPW), are investigated. The climatological evaporation is the main contributor to the E1 Nifio-like pattern, while the ocean dynamical thermostat effect plays a comparable negative role. The cloud-shortwave-radiation-SST feedback and the weakened Walker circulation play a small positive role in the E1 Nifio-like pattern. The processes associated with ocean dynamics are confined to the equator. The climatological evaporation is also the dominant contributor to the EPW pattern, as suggested in previous studies. However, the effects of some processes are inconsistent with previous studies. For example, changes in the zonal heat advection due to the weakened Walker circulation have a remarkable positive contribution to the EPW pattern, and changes in the shortwave radiation play a negative role in the EPW pattern.
文摘-Starting from physical oceanology characteristics of the China seas and for the short-term operational prediction of SST in the region, a two-dimensional (vertically integrated) primitive equation model, physically reasonable and operationally feasible,on the upper mixed layer is constructed and given here, which consists of three parts, the nondivergent residual current (the monthly mean field of the Kuroshio and its branches) equations, the dynamic forecasting equations, and the equation of model's physics consisting of surface heat flux, coolings of the upper mixed layer due to the Ekman pumping and the entrainment by gale. This model may be used primarily to forecast the sea surface temperature, and to give estimations of the mean wind-driven current and the sea level, for a period of 3-5 d. In part 1 of this series, the physical conditions for establishing model equations are discussed first, that is, 1. the existence of the upper well mixed layer in the region; 2. the distinguishability of currents of all kinds; 3. the splitting of thermodynamical equation. The equations of nondivergent residual current, and the dynamic forecasting equations with initial values and boundary conditions are also discussed.