期刊文献+
共找到2,605篇文章
< 1 2 131 >
每页显示 20 50 100
Assessment of radio observatory sites using a multi-threshold algorithm
1
作者 Hang Yang Liang Dong Lesheng He 《Astronomical Techniques and Instruments》 2025年第4期255-264,共10页
Radio environment plays an important role in radio astronomy observations.Further analysis is needed on the time and intensity distributions of interference signals for long-term radio environment monitoring.Sample va... Radio environment plays an important role in radio astronomy observations.Further analysis is needed on the time and intensity distributions of interference signals for long-term radio environment monitoring.Sample variance is an important estimate of the interference signal decision threshold.Here,we propose an improved algorithm for calculating data sample variance relying on four established statistical methods:the variance of the trimmed data,winsorized sample variance,median absolute deviation,and median of the trimmed data pairwise averaged squares method.The variance and decision threshold in the protected section of the radio astronomy L-band are calculated.Among the four methods,the improved median of the trimmed data pairwise averaged squares algorithm has higher accuracy,but in a comparison of overall experimental results,the cleanliness rate of all algorithms is above 96%.In a comparison between the improved algorithm and the four methods,the cleanliness rate of the improved algorithm is above 98%,verifying its feasibility.The time-intensity interference distribution in the radio protection band is also obtained.Finally,we use comprehensive monitoring data of radio astronomy protection bands,radio interference bands,and interfered frequency bands to establish a comprehensive evaluation system for radio observatory sites,including the observable time proportion in the radio astronomy protection band,the occasional time-intensity distribution in the radio interference frequency band,and the intensity distribution of the interfered frequency band. 展开更多
关键词 Radio astronomy Electromagnetic environment threshold algorithm Cleanliness rate
在线阅读 下载PDF
Quantitatively characterizing sandy soil structure altered by MICP using multi-level thresholding segmentation algorithm 被引量:1
2
作者 Jianjun Zi Tao Liu +3 位作者 Wei Zhang Xiaohua Pan Hu Ji Honghu Zhu 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第10期4285-4299,共15页
The influences of biological,chemical,and flow processes on soil structure through microbially induced carbonate precipitation(MICP)are not yet fully understood.In this study,we use a multi-level thresholding segmenta... The influences of biological,chemical,and flow processes on soil structure through microbially induced carbonate precipitation(MICP)are not yet fully understood.In this study,we use a multi-level thresholding segmentation algorithm,genetic algorithm(GA)enhanced Kapur entropy(KE)(GAE-KE),to accomplish quantitative characterization of sandy soil structure altered by MICP cementation.A sandy soil sample was treated using MICP method and scanned by the synchrotron radiation(SR)micro-CT with a resolution of 6.5 mm.After validation,tri-level thresholding segmentation using GAE-KE successfully separated the precipitated calcium carbonate crystals from sand particles and pores.The spatial distributions of porosity,pore structure parameters,and flow characteristics were calculated for quantitative characterization.The results offer pore-scale insights into the MICP treatment effect,and the quantitative understanding confirms the feasibility of the GAE-KE multi-level thresholding segmentation algorithm. 展开更多
关键词 Soil structure MICRO-CT Multi-level thresholding MICP Genetic algorithm(GA)
在线阅读 下载PDF
AMicroseismic Signal Denoising Algorithm Combining VMD and Wavelet Threshold Denoising Optimized by BWOA
3
作者 Dijun Rao Min Huang +2 位作者 Xiuzhi Shi Zhi Yu Zhengxiang He 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期187-217,共31页
The denoising of microseismic signals is a prerequisite for subsequent analysis and research.In this research,a new microseismic signal denoising algorithm called the Black Widow Optimization Algorithm(BWOA)optimized ... The denoising of microseismic signals is a prerequisite for subsequent analysis and research.In this research,a new microseismic signal denoising algorithm called the Black Widow Optimization Algorithm(BWOA)optimized VariationalMode Decomposition(VMD)jointWavelet Threshold Denoising(WTD)algorithm(BVW)is proposed.The BVW algorithm integrates VMD and WTD,both of which are optimized by BWOA.Specifically,this algorithm utilizes VMD to decompose the microseismic signal to be denoised into several Band-Limited IntrinsicMode Functions(BLIMFs).Subsequently,these BLIMFs whose correlation coefficients with the microseismic signal to be denoised are higher than a threshold are selected as the effective mode functions,and the effective mode functions are denoised using WTD to filter out the residual low-and intermediate-frequency noise.Finally,the denoised microseismic signal is obtained through reconstruction.The ideal values of VMD parameters and WTD parameters are acquired by searching with BWOA to achieve the best VMD decomposition performance and solve the problem of relying on experience and requiring a large workload in the application of the WTD algorithm.The outcomes of simulated experiments indicate that this algorithm is capable of achieving good denoising performance under noise of different intensities,and the denoising performance is significantly better than the commonly used VMD and Empirical Mode Decomposition(EMD)algorithms.The BVW algorithm is more efficient in filtering noise,the waveform after denoising is smoother,the amplitude of the waveform is the closest to the original signal,and the signal-to-noise ratio(SNR)and the root mean square error after denoising are more satisfying.The case based on Fankou Lead-Zinc Mine shows that for microseismic signals with different intensities of noise monitored on-site,compared with VMD and EMD,the BVW algorithm ismore efficient in filtering noise,and the SNR after denoising is higher. 展开更多
关键词 Variational mode decomposition microseismic signal DENOISING wavelet threshold denoising black widow optimization algorithm
在线阅读 下载PDF
A lifting-wavelet-based iterative thresholding correction for atomic force microscopy images with vertical distortion
4
作者 Yifan Bai Yinan Wu Yongchun Fang 《Nanotechnology and Precision Engineering》 2025年第3期29-40,共12页
To eliminate distortion caused by vertical drift and illusory slopes in atomic force microscopy(AFM)imaging,a lifting-wavelet-based iterative thresholding correction method is proposed in this paper.This method achiev... To eliminate distortion caused by vertical drift and illusory slopes in atomic force microscopy(AFM)imaging,a lifting-wavelet-based iterative thresholding correction method is proposed in this paper.This method achieves high-quality AFM imaging via line-by-line corrections for each distorted profile along the fast axis.The key to this line-by-line correction is to accurately simulate the profile distortion of each scanning row.Therefore,a data preprocessing approach is first developed to roughly filter out most of the height data that impairs the accuracy of distortion modeling.This process is implemented through an internal double-screening mechanism.A line-fitting method is adopted to preliminarily screen out the obvious specimens.Lifting wavelet analysis is then carried out to identify the base parts that are mistakenly filtered out as specimens so as to preserve most of the base profiles and provide a good basis for further distortion modeling.Next,an iterative thresholding algorithm is developed to precisely simulate the profile distortion.By utilizing the roughly screened base profile,the optimal threshold,which is used to screen out the pure bases suitable for distortion modeling,is determined through iteration with a specified error rule.On this basis,the profile distortion is accurately modeled through line fitting on the finely screened base data,and the correction is implemented by subtracting the modeling result from the distorted profile.Finally,the effectiveness of the proposed method is verified through experiments and applications. 展开更多
关键词 Atomic force microscopy Lifting wavelet analysis Iterative thresholding algorithm Vertical distortion
在线阅读 下载PDF
A Combined Denoising Method of Adaptive VMD and Wavelet Threshold for Gear Health Monitoring
5
作者 Guangfei Jia Jinqiu Yang Hanwen Liang 《Structural Durability & Health Monitoring》 2025年第4期1057-1072,共16页
Considering the noise problem of the acquisition signals frommechanical transmission systems,a novel denoising method is proposed that combines Variational Mode Decomposition(VMD)with wavelet thresholding.The key inno... Considering the noise problem of the acquisition signals frommechanical transmission systems,a novel denoising method is proposed that combines Variational Mode Decomposition(VMD)with wavelet thresholding.The key innovation of this method lies in the optimization of VMD parameters K and α using the improved Horned Lizard Optimization Algorithm(IHLOA).An inertia weight parameter is introduced into the random walk strategy of HLOA,and the related formula is improved.The acquisition signal can be adaptively decomposed into some Intrinsic Mode Functions(IMFs),and the high-noise IMFs are identified based on a correlation coefficient-variance method.Further noise reduction is achieved using wavelet thresholding.The proposed method is validated using simulated signals and experimental signals,and simulation results indicate that the proposed method surpasses original VMD,Empirical Mode Decomposition(EMD),and wavelet thresholding in terms of Signal-to-Noise Ratio(SNR)and Root Mean Square Error(RMSE),and experimental results indicate that the proposedmethod can effectively remove noise in terms of three evaluationmetrics.Furthermore,comparedwith FeatureModeDecomposition(FMD)andMultichannel Singular Spectrum Analysis(MSSA),this method has a better envelope spectrum.This method not only provides a solution for noise reduction in signal processing but also holds significant potential for applications in structural health monitoring and fault diagnosis. 展开更多
关键词 Improve horned lizard optimization algorithm variational mode decomposition wavelet threshold inertial weight secondary noise reduction structural health monitoring
在线阅读 下载PDF
Defect image segmentation using multilevel thresholding based on firefly algorithm with opposition-learning 被引量:3
6
作者 陈恺 戴敏 +2 位作者 张志胜 陈平 史金飞 《Journal of Southeast University(English Edition)》 EI CAS 2014年第4期434-438,共5页
To segment defects from the quad flat non-lead QFN package surface a multilevel Otsu thresholding method based on the firefly algorithm with opposition-learning is proposed. First the Otsu thresholding algorithm is ex... To segment defects from the quad flat non-lead QFN package surface a multilevel Otsu thresholding method based on the firefly algorithm with opposition-learning is proposed. First the Otsu thresholding algorithm is expanded to a multilevel Otsu thresholding algorithm. Secondly a firefly algorithm with opposition-learning OFA is proposed.In the OFA opposite fireflies are generated to increase the diversity of the fireflies and improve the global search ability. Thirdly the OFA is applied to searching multilevel thresholds for image segmentation. Finally the proposed method is implemented to segment the QFN images with defects and the results are compared with three methods i.e. the exhaustive search method the multilevel Otsu thresholding method based on particle swarm optimization and the multilevel Otsu thresholding method based on the firefly algorithm. Experimental results show that the proposed method can segment QFN surface defects images more efficiently and at a greater speed than that of the other three methods. 展开更多
关键词 quad flat non-lead QFN surface defects opposition-learning firefly algorithm multilevel Otsu thresholding algorithm
在线阅读 下载PDF
Dynamic threshold for SPWVD parameter estimation based on Otsu algorithm 被引量:11
7
作者 Ning Ma Jianxin Wang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2013年第6期919-924,共6页
Time-frequency-based methods are proven to be effective for parameter estimation of linear frequency modulation (LFM) signals. The smoothed pseudo Winger-Ville distribution (SPWVD) is used for the parameter estima... Time-frequency-based methods are proven to be effective for parameter estimation of linear frequency modulation (LFM) signals. The smoothed pseudo Winger-Ville distribution (SPWVD) is used for the parameter estimation of multi-LFM signals, and a method of the SPWVD binarization by a dynamic threshold based on the Otsu algorithm is proposed. The proposed method is effective in the demand for the estimation of different parameters and the unknown signal-to-noise ratio (SNR) circumstance. The performance of this method is confirmed by numerical simulation. 展开更多
关键词 parameter estimation smoothed pseudo Winger-Ville distribution (SPWVD) dynamic threshold Otsu algorithm
在线阅读 下载PDF
A Context Sensitive Multilevel Thresholding Using Swarm Based Algorithms 被引量:7
8
作者 Shreya Pare Anil Kumar +1 位作者 Varun Bajaj Girish Kumar Singh 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2019年第6期1471-1486,共16页
In this paper, a comprehensive energy function is used to formulate the three most popular objective functions:Kapur's, Otsu and Tsalli's functions for performing effective multilevel color image thresholding.... In this paper, a comprehensive energy function is used to formulate the three most popular objective functions:Kapur's, Otsu and Tsalli's functions for performing effective multilevel color image thresholding. These new energy based objective criterions are further combined with the proficient search capability of swarm based algorithms to improve the efficiency and robustness. The proposed multilevel thresholding approach accurately determines the optimal threshold values by using generated energy curve, and acutely distinguishes different objects within the multi-channel complex images. The performance evaluation indices and experiments on different test images illustrate that Kapur's entropy aided with differential evolution and bacterial foraging optimization algorithm generates the most accurate and visually pleasing segmented images. 展开更多
关键词 COLOR image segmentation Kapur's ENTROPY MULTILEVEL thresholdING OTSU method SWARM based optimization algorithms Tsalli's ENTROPY
在线阅读 下载PDF
An Improved Artificial Immune Algorithm with a Dynamic Threshold 被引量:5
9
作者 Zhang Qiao Xu Xu Liang Yan-chun 《Journal of Bionic Engineering》 SCIE EI CSCD 2006年第2期93-97,共5页
An improved artificial immune algorithm with a dynamic threshold is presented. The calculation for the affinity function in the real-valued coding artificial immune algorithm is modified through considering the antib... An improved artificial immune algorithm with a dynamic threshold is presented. The calculation for the affinity function in the real-valued coding artificial immune algorithm is modified through considering the antibody's fitness and setting the dynamic threshold value. Numerical experiments show that compared with the genetic algorithm and the originally real-valued coding artificial immune algorithm, the improved algorithm possesses high speed of convergence and good performance for preventing premature convergence. 展开更多
关键词 dynamic threshold artificial immune algorithm genetic algorithm ANTIBODY
在线阅读 下载PDF
Fast recursive algorithm for two-dimensional Tsallis entropy thresholding method 被引量:2
10
作者 Tang Yinggan Di Qiuyan Guan Xinping 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2009年第3期619-624,共6页
Recently, a two-dimensional (2-D) Tsallis entropy thresholding method has been proposed as a new method for image segmentation. But the computation complexity of 2-D Tsallis entropy is very large and becomes an obst... Recently, a two-dimensional (2-D) Tsallis entropy thresholding method has been proposed as a new method for image segmentation. But the computation complexity of 2-D Tsallis entropy is very large and becomes an obstacle to real time image processing systems. A fast recursive algorithm for 2-D Tsallis entropy thresholding is proposed. The key variables involved in calculating 2-D Tsallis entropy are written in recursive form. Thus, many repeating calculations are avoided and the computation complexity reduces to O(L2) from O(L4). The effectiveness of the proposed algorithm is illustrated by experimental results. 展开更多
关键词 image segmentation thresholdING Tsallis entropy fast recursive algorithm
在线阅读 下载PDF
2-D mini mumfuzzy entropy method of image thresholding based on genetic algorithm 被引量:1
11
作者 张兴会 刘玲 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2005年第3期557-560,共4页
A new image thresholding method is introduced, which is based on 2-D histgram and minimizing the measures of fuzziness of an input image. A new definition of fuzzy membership function is proposed, it denotes the chara... A new image thresholding method is introduced, which is based on 2-D histgram and minimizing the measures of fuzziness of an input image. A new definition of fuzzy membership function is proposed, it denotes the characteristic relationship between the gray level of each pixel and the average value of its neighborhood. When the threshold is not located at the obvious and deep valley of the histgram, genetic algorithm is devoted to the problem of selecting the appropriate threshold value. The experimental results indicate that the proposed method has good performance. 展开更多
关键词 image thresholding 2-D fuzzy entropy genetic algorithm.
在线阅读 下载PDF
Optimized quantum singular value thresholding algorithm based on a hybrid quantum computer 被引量:1
12
作者 Yangyang Ge Zhimin Wang +9 位作者 Wen Zheng Yu Zhang Xiangmin Yu Renjie Kang Wei Xin Dong Lan Jie Zhao Xinsheng Tan Shaoxiong Li Yang Yu 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第4期752-756,共5页
Quantum singular value thresholding(QSVT) algorithm,as a core module of many mathematical models,seeks the singular values of a sparse and low rank matrix exceeding a threshold and their associated singular vectors.Th... Quantum singular value thresholding(QSVT) algorithm,as a core module of many mathematical models,seeks the singular values of a sparse and low rank matrix exceeding a threshold and their associated singular vectors.The existing all-qubit QSVT algorithm demands lots of ancillary qubits,remaining a huge challenge for realization on nearterm intermediate-scale quantum computers.In this paper,we propose a hybrid QSVT(HQSVT) algorithm utilizing both discrete variables(DVs) and continuous variables(CVs).In our algorithm,raw data vectors are encoded into a qubit system and the following data processing is fulfilled by hybrid quantum operations.Our algorithm requires O [log(MN)] qubits with0(1) qumodes and totally performs 0(1) operations,which significantly reduces the space and runtime consumption. 展开更多
关键词 singular value thresholding algorithm hybrid quantum computation
原文传递
Study and Implementation of Web Mining Classification Algorithm Based on Building Tree of Detection Class Threshold
13
作者 陈俊杰 宋瀚涛 陆玉昌 《Journal of Beijing Institute of Technology》 EI CAS 2005年第2期126-129,共4页
A new classification algorithm for web mining is proposed on the basis of general classification algorithm for data mining in order to implement personalized information services. The building tree method of detecting... A new classification algorithm for web mining is proposed on the basis of general classification algorithm for data mining in order to implement personalized information services. The building tree method of detecting class threshold is used for construction of decision tree according to the concept of user expectation so as to find classification rules in different layers. Compared with the traditional C4.5 algorithm, the disadvantage of excessive adaptation in C4.5 has been improved so that classification results not only have much higher accuracy but also statistic meaning. 展开更多
关键词 data mining classification algorithm class threshold induced concept
在线阅读 下载PDF
Reduction of ultrasonic echo noise based on improved wavelet threshold de-noising algorithm for friction welding
14
作者 尹欣 张臻 王旻 《China Welding》 EI CAS 2010年第3期61-65,共5页
In the ultrasonic detection of defects in friction welded joints, it is difficult to exactly detect some weak bonding defects because of the noise pollution. This paper proposed an improved threshold function based on... In the ultrasonic detection of defects in friction welded joints, it is difficult to exactly detect some weak bonding defects because of the noise pollution. This paper proposed an improved threshold function based on the multi-resolution analysis wavelet threshold de-noising method which was put forward by Donoho and Johnstone, and applied this method in the de-noising of the defective signals. This threshold function overcomes the discontinuous shortcoming of the hard-threshold function and the disadvantage of soft threshold function which causes an invariable deviation between the estimated wavelet coeffwients and the decomposed wavelet coefficients. The improved threshold function is of simple expression and convenient for calculation. The actual test results of defect noise signal show that this improved method can get less mean square error ( MSE ) and higher signal-to-noise ratio of reconstructed signals than those calculated from hard threshold and soft threshold methods. The improved threshold function has excellent de-noising effect. 展开更多
关键词 wavelet threshold friction welding DE-NOISING improved algorithm
在线阅读 下载PDF
Extracting Parameters of OFET Before and After Threshold Voltage Using Genetic Algorithms
15
作者 Imad Benacer Zohir Dibi 《International Journal of Automation and computing》 EI CSCD 2016年第4期382-391,共10页
This paper presents a compact analytical model for the organic field-effect transistors (OFETs), which describes two main aspects, the first one is related to the behavior in above threshold regime, while the other ... This paper presents a compact analytical model for the organic field-effect transistors (OFETs), which describes two main aspects, the first one is related to the behavior in above threshold regime, while the other corresponds to the below threshold regime. The total drain current in the OFET device is calculated as the sum of two components, with the inclusion of a smooth transition function in order to take into account both regions using a single expression. A genetic algorithm based approach (GA) is investigated as a parameter extraction tool in the case of the compact OFET model to find the parameters' values from experimental data such as: mobility enhancement factor % threshold voltage VTh, subthreshold swing S, channel length modulation A, and knee region sharpness m. The comparison of the developed current model with the experimental data shows a good agreement in terms of the transfer and the output characteristics. Therefore, the GA based approach can be considered as a competitive candidate compared to the direct method. 展开更多
关键词 Organic field effect transistor (OFET) compact model parameter extraction genetic algorithm (GA) threshold regime.
原文传递
Implementation of Adaptive Wavelet Thresholding Denoising Algorithm Based on DSP
16
作者 张雪峰 康春霞 +1 位作者 裴峰 张志杰 《Journal of Measurement Science and Instrumentation》 CAS 2011年第3期272-275,共4页
By utilizing the capability of high-speed computing,powerful real-time processing of TMS320F2812 DSP,wavelet thresholding denoising algorithm is realized based on Digital Signal Processors.Based on the multi-resolutio... By utilizing the capability of high-speed computing,powerful real-time processing of TMS320F2812 DSP,wavelet thresholding denoising algorithm is realized based on Digital Signal Processors.Based on the multi-resolution analysis of wavelet transformation,this paper proposes a new thresholding function,to some extent,to overcome the shortcomings of discontinuity in hard-thresholding function and bias in soft-thresholding function.The threshold value can be abtained adaptively according to the characteristics of wavelet coefficients of each layer by adopting adaptive threshold algorithm and then the noise is removed.The simulation results show that the improved thresholding function and the adaptive threshold algorithm have a good effect on denoising and meet the criteria of smoothness and similarity between the original signal and denoising signal. 展开更多
关键词 Mallat algorithm wavelet denoising thresholding function adaptive threshold Digital Signal Processors
在线阅读 下载PDF
Fuzzy Hybrid Coyote Optimization Algorithm for Image Thresholding
17
作者 Linguo Li Xuwen Huang +3 位作者 Shunqiang Qian Zhangfei Li Shujing Li Romany F.Mansour 《Computers, Materials & Continua》 SCIE EI 2022年第8期3073-3090,共18页
In order to address the problems of Coyote Optimization Algorithm in image thresholding,such as easily falling into local optimum,and slow convergence speed,a Fuzzy Hybrid Coyote Optimization Algorithm(here-inafter re... In order to address the problems of Coyote Optimization Algorithm in image thresholding,such as easily falling into local optimum,and slow convergence speed,a Fuzzy Hybrid Coyote Optimization Algorithm(here-inafter referred to as FHCOA)based on chaotic initialization and reverse learning strategy is proposed,and its effect on image thresholding is verified.Through chaotic initialization,the random number initialization mode in the standard coyote optimization algorithm(COA)is replaced by chaotic sequence.Such sequence is nonlinear and long-term unpredictable,these characteristics can effectively improve the diversity of the population in the optimization algorithm.Therefore,in this paper we first perform chaotic initialization,using chaotic sequence to replace random number initialization in standard COA.By combining the lens imaging reverse learning strategy and the optimal worst reverse learning strategy,a hybrid reverse learning strategy is then formed.In the process of algorithm traversal,the best coyote and the worst coyote in the pack are selected for reverse learning operation respectively,which prevents the algorithm falling into local optimum to a certain extent and also solves the problem of premature convergence.Based on the above improvements,the coyote optimization algorithm has better global convergence and computational robustness.The simulation results show that the algorithmhas better thresholding effect than the five commonly used optimization algorithms in image thresholding when multiple images are selected and different threshold numbers are set. 展开更多
关键词 Coyote optimization algorithm image segmentation multilevel thresholding logistic chaotic map hybrid inverse learning strategy
在线阅读 下载PDF
Mean Threshold and ARNN Algorithms for Identification of Eye Commands in an EEG-Controlled Wheelchair
18
作者 Nguyen Thanh Hai Nguyen Van Trung Vo Van Toi 《Engineering(科研)》 2013年第10期284-291,共8页
This paper represented Autoregressive Neural Network (ARNN) and meant threshold methods for recognizing eye movements for control of an electrical wheelchair using EEG technology. The eye movements such as eyes open, ... This paper represented Autoregressive Neural Network (ARNN) and meant threshold methods for recognizing eye movements for control of an electrical wheelchair using EEG technology. The eye movements such as eyes open, eyes blinks, glancing left and glancing right related to a few areas of human brain were investigated. A Hamming low pass filter was applied to remove noise and artifacts of the eye signals and to extract the frequency range of the measured signals. An autoregressive model was employed to produce coefficients containing features of the EEG eye signals. The coefficients obtained were inserted the input layer of a neural network model to classify the eye activities. In addition, a mean threshold algorithm was employed for classifying eye movements. Two methods were compared to find the better one for applying in the wheelchair control to follow users to reach the desired direction. Experimental results of controlling the wheelchair in the indoor environment illustrated the effectiveness of the proposed approaches. 展开更多
关键词 AUTOREGRESSIVE NN Model threshold algorithm EEG Technology Eye Activity and Electrical WHEELCHAIR
暂未订购
Multi-Level Image Segmentation Combining Chaotic Initialized Chimp Optimization Algorithm and Cauchy Mutation
19
作者 Shujing Li Zhangfei Li +2 位作者 Wenhui Cheng Chenyang Qi Linguo Li 《Computers, Materials & Continua》 SCIE EI 2024年第8期2049-2063,共15页
To enhance the diversity and distribution uniformity of initial population,as well as to avoid local extrema in the Chimp Optimization Algorithm(CHOA),this paper improves the CHOA based on chaos initialization and Cau... To enhance the diversity and distribution uniformity of initial population,as well as to avoid local extrema in the Chimp Optimization Algorithm(CHOA),this paper improves the CHOA based on chaos initialization and Cauchy mutation.First,Sin chaos is introduced to improve the random population initialization scheme of the CHOA,which not only guarantees the diversity of the population,but also enhances the distribution uniformity of the initial population.Next,Cauchy mutation is added to optimize the global search ability of the CHOA in the process of position(threshold)updating to avoid the CHOA falling into local optima.Finally,an improved CHOA was formed through the combination of chaos initialization and Cauchy mutation(CICMCHOA),then taking fuzzy Kapur as the objective function,this paper applied CICMCHOA to natural and medical image segmentation,and compared it with four algorithms,including the improved Satin Bowerbird optimizer(ISBO),Cuckoo Search(ICS),etc.The experimental results deriving from visual and specific indicators demonstrate that CICMCHOA delivers superior segmentation effects in image segmentation. 展开更多
关键词 Image segmentation image thresholding chimp optimization algorithm chaos initialization Cauchy mutation
在线阅读 下载PDF
上一页 1 2 131 下一页 到第
使用帮助 返回顶部