期刊文献+
共找到146,983篇文章
< 1 2 250 >
每页显示 20 50 100
基于SRP模型的黄河流域中段生态脆弱性评价及驱动因素分析 被引量:1
1
作者 张艳 苏兰欣 《环境科学》 北大核心 2025年第8期5134-5144,共11页
生态环境脆弱性深刻制约区域经济的可持续发展,进行生态脆弱性评价是生态治理和修复的重要前提.在多源数据的支撑下,以典型生态敏感区黄河流域中段为研究区,针对其生态本底特征选取地形、气象、地表、土壤、植被、生物丰度、人口密度和... 生态环境脆弱性深刻制约区域经济的可持续发展,进行生态脆弱性评价是生态治理和修复的重要前提.在多源数据的支撑下,以典型生态敏感区黄河流域中段为研究区,针对其生态本底特征选取地形、气象、地表、土壤、植被、生物丰度、人口密度和GDP等13种指标构建SRP模型评价指标体系,基于全局Moran.s I指数以及LISA聚类图对2000年、2010年和2020年研究区生态脆弱性进行评价,同时借助地理探测器对其驱动因素进行分析.结果表明:(1)黄河流域中段生态环境以重度脆弱性和中度脆弱性为主,占比超过50%,空间分布上呈现明显“西北高东南低”的格局,2000~2020年生态脆弱性综合指数依次为2.84、2.79和2.58,生态脆弱性等级呈稳中下降的趋势;(2)生态脆弱性表现出较为明显的空间聚集特征,高高聚集区主要分布在人口活动相对剧烈的极度脆弱区和重度脆弱区,低低聚集区主要集中在生态状况较好的一般脆弱区;(3)影响黄河流域中段生态脆弱性的空间分异的主导因素包括植被覆盖度、植被净初级生产力、气温、生物丰度和GDP,各驱动因子交互作用后的q值均表现为不同程度地增大.研究结果可以为黄河流域中段的生态保护与环境治理提供借鉴. 展开更多
关键词 生态脆弱性 srp模型 地理探测器 空间自相关 黄河流域中段
原文传递
基于SRP的长江经济带江苏段生态脆弱性评价与分析
2
作者 汪媛媛 臧协超 +4 位作者 许伟伟 阳昌霞 金洋 任静华 贺新星 《自然资源遥感》 北大核心 2025年第3期170-182,共13页
随着社会经济发展和城镇化率不断提高,人类赖以生存的生态环境受到影响,尤其是长江经济带江苏段受城市化和土地开发等影响,生态质量面临严峻挑战,生态脆弱性评价已成为研究热点之一。该文以长江经济带江苏段2005—2020年4个时期生态脆... 随着社会经济发展和城镇化率不断提高,人类赖以生存的生态环境受到影响,尤其是长江经济带江苏段受城市化和土地开发等影响,生态质量面临严峻挑战,生态脆弱性评价已成为研究热点之一。该文以长江经济带江苏段2005—2020年4个时期生态脆弱性为研究对象,采用灵敏度弹性压力(sensitivity resilience pressure,SRP)模型,选取生态恢复力、生态压力度和生态敏感性3类16项指标,基于结合层次分析法与空间主成分分析法(analytic hierarchy process-spatial principal component analysis,AHP-SPCA)权重计算方法和地理探测器,研究生态脆弱性特征和影响因素。研究发现:(1)研究区生态脆弱性呈现出从南京向南通逐渐增加趋势;(2)生态脆弱性等级之间转变主要发生在相邻等级之间,中度和重度脆弱性减小,轻度、微度和潜在脆弱性增加;(3)耕地占比、人口密度和生物丰度是主要驱动因素,植被覆盖与耕地占比的交互作用具有最大解释力。研究结果对江苏省长江沿岸生态环境保护和可持续发展提供了重要参考。 展开更多
关键词 长江经济带 生态敏感性-生态恢复力-生态压力度模型 地理探测器 生态脆弱性 驱动力
在线阅读 下载PDF
基于SRP模型的金沙江流域生态脆弱性评价及驱动力分析
3
作者 朱李英 史雯雨 +1 位作者 王巧霞 卫仁娟 《四川水利》 2025年第1期15-19,共5页
金沙江是长江上游一级支流,研究金沙江流域生态脆弱性可为流域生态修复及环境保护提供科学依据。本次从生态敏感性、生态恢复力、生态压力度等3个方面出发,利用主成分分析法,选择21个评价指标,基于SRP模型,构建金沙江流域生态脆弱性评... 金沙江是长江上游一级支流,研究金沙江流域生态脆弱性可为流域生态修复及环境保护提供科学依据。本次从生态敏感性、生态恢复力、生态压力度等3个方面出发,利用主成分分析法,选择21个评价指标,基于SRP模型,构建金沙江流域生态脆弱性评价指标体系,分析金沙江流域2020年生态脆弱性空间分布;并通过地理探测器研究生态脆弱性驱动力因素。结果表明:(1)金沙江流域生态脆弱性以重度脆弱为主,面积比重42.50%,主要分布在流域上游地区,轻度脆弱区和微度脆弱区集中分布在流域中下游区域;(2)影响研究区生态环境脆弱性空间分布变化的主要驱动因素包括高程、地形起伏度、气温和人均GDP,且多因子之间的交互作用对金沙江流域生态脆弱性空间分异特征起到了明显的增强作用。 展开更多
关键词 srp模型 金沙江 生态脆弱性 地理探测器 主成分分析
在线阅读 下载PDF
基于SRP模型的中原城市群生态脆弱性分析与预测 被引量:4
4
作者 赵宗泽 马倩 +2 位作者 王一 马超 王宏涛 《环境科学》 北大核心 2025年第3期1621-1632,共12页
中原城市群作为绿色生态发展示范规划区,研究其生态脆弱性对于了解该地区生态环境的现状和未来发展趋势具有重要意义.基于“敏感性-恢复力-压力”模型,选取多源遥感空间统计数据,采用熵权法求取各指标的权重,构建中原城市群生态脆弱性... 中原城市群作为绿色生态发展示范规划区,研究其生态脆弱性对于了解该地区生态环境的现状和未来发展趋势具有重要意义.基于“敏感性-恢复力-压力”模型,选取多源遥感空间统计数据,采用熵权法求取各指标的权重,构建中原城市群生态脆弱性评价指标体系;分析研究区2005~2020年的生态脆弱性的空间分布和时间变化特征;借助地理探测器模型,探究研究区生态脆弱性的驱动因素;并结合CA-Markov模型预测2025年的生态脆弱性状况.结果表明:①中原城市群以轻度脆弱性为主,在空间上呈现西北高、东南低的趋势,在时间上,呈现先增加后下降的演变趋势.②无论生态脆弱性的等级是上升还是下降,各等级都倾向于向最近的等级方向大规模转变,且重度脆弱性等级变化最为剧烈.③建成区占比、生物丰度、植被覆盖度、人口密度和国内生产总值是造成中原城市群生态脆弱性的主要影响因素,且所有指标之间的交互作用明显增强.④2025年的预测结果表明生态脆弱性呈下降趋势,生态环境有所改善. 展开更多
关键词 生态脆弱性 srp评价 地理探测器 动态度 CA-Markov模型
原文传递
前后端分离环境下Spring Security权限系统构建与实现
5
作者 何立富 《电脑编程技巧与维护》 2025年第10期3-7,共5页
通过引入JWT认证机制,解决了前后端分离架构下Spring Security在跨域、兼容性及分布式部署中的认证和授权难题,构建了一套动态权限管理系统,实现了用户身份的精准识别与验证。在系统架构设计层面,通过自定义登录接口、缓存技术、拦截器... 通过引入JWT认证机制,解决了前后端分离架构下Spring Security在跨域、兼容性及分布式部署中的认证和授权难题,构建了一套动态权限管理系统,实现了用户身份的精准识别与验证。在系统架构设计层面,通过自定义登录接口、缓存技术、拦截器及自定义表达式逻辑权限控制等规划,有效提升了系统的性能、安全性与灵活性。基于角色的访问控制权限(RBAC)的功能设计,借助可视化配置界面进一步增强了系统的易操作性。经测试验证,该系统具备高度的稳定性与有效性,能够精准地控制访问权限,为相关应用系统的权限管理提供了切实可靠的解决方案。 展开更多
关键词 Spring security工具 前后端分离架构 动态化权限管理 JWT标准 基于角色的访问控制权限
在线阅读 下载PDF
The Looming Threat Blackout of the National Grid and Critical Infrastructure (A National Security Crisis) 被引量:1
6
作者 Bahman Zohuri 《Journal of Energy and Power Engineering》 2025年第1期31-35,共5页
The national grid and other life-sustaining critical infrastructures face an unprecedented threat from prolonged blackouts,which could last over a year and pose a severe risk to national security.Whether caused by phy... The national grid and other life-sustaining critical infrastructures face an unprecedented threat from prolonged blackouts,which could last over a year and pose a severe risk to national security.Whether caused by physical attacks,EMP(electromagnetic pulse)events,or cyberattacks,such disruptions could cripple essential services like water supply,healthcare,communication,and transportation.Research indicates that an attack on just nine key substations could result in a coast-to-coast blackout lasting up to 18 months,leading to economic collapse,civil unrest,and a breakdown of public order.This paper explores the key vulnerabilities of the grid,the potential impacts of prolonged blackouts,and the role of AI(artificial intelligence)and ML(machine learning)in mitigating these threats.AI-driven cybersecurity measures,predictive maintenance,automated threat response,and EMP resilience strategies are discussed as essential solutions to bolster grid security.Policy recommendations emphasize the need for hardened infrastructure,enhanced cybersecurity,redundant power systems,and AI-based grid management to ensure national resilience.Without proactive measures,the nation remains exposed to a catastrophic power grid failure that could have dire consequences for society and the economy. 展开更多
关键词 National grid blackout critical infrastructure security EMP cyberattack resilience AI-powered grid protection ML in energy security power grid vulnerabilities physical attacks on infrastructure predictive maintenance for power grids energy crisis and national security
在线阅读 下载PDF
A Lightweight IoT Data Security Sharing Scheme Based on Attribute-Based Encryption and Blockchain 被引量:1
7
作者 Hongliang Tian Meiruo Li 《Computers, Materials & Continua》 2025年第6期5539-5559,共21页
The accelerated advancement of the Internet of Things(IoT)has generated substantial data,including sensitive and private information.Consequently,it is imperative to guarantee the security of data sharing.While facili... The accelerated advancement of the Internet of Things(IoT)has generated substantial data,including sensitive and private information.Consequently,it is imperative to guarantee the security of data sharing.While facilitating fine-grained access control,Ciphertext Policy Attribute-Based Encryption(CP-ABE)can effectively ensure the confidentiality of shared data.Nevertheless,the conventional centralized CP-ABE scheme is plagued by the issues of keymisuse,key escrow,and large computation,which will result in security risks.This paper suggests a lightweight IoT data security sharing scheme that integrates blockchain technology and CP-ABE to address the abovementioned issues.The integrity and traceability of shared data are guaranteed by the use of blockchain technology to store and verify access transactions.The encryption and decryption operations of the CP-ABE algorithm have been implemented using elliptic curve scalarmultiplication to accommodate lightweight IoT devices,as opposed to themore arithmetic bilinear pairing found in the traditional CP-ABE algorithm.Additionally,a portion of the computation is delegated to the edge nodes to alleviate the computational burden on users.A distributed key management method is proposed to address the issues of key escrow andmisuse.Thismethod employs the edge blockchain to facilitate the storage and distribution of attribute private keys.Meanwhile,data security sharing is enhanced by combining off-chain and on-chain ciphertext storage.The security and performance analysis indicates that the proposed scheme is more efficient and secure. 展开更多
关键词 Edge blockchain CP-ABE data security sharing IOT
在线阅读 下载PDF
On large language models safety,security,and privacy:A survey 被引量:1
8
作者 Ran Zhang Hong-Wei Li +2 位作者 Xin-Yuan Qian Wen-Bo Jiang Han-Xiao Chen 《Journal of Electronic Science and Technology》 2025年第1期1-21,共21页
The integration of artificial intelligence(AI)technology,particularly large language models(LLMs),has become essential across various sectors due to their advanced language comprehension and generation capabilities.De... The integration of artificial intelligence(AI)technology,particularly large language models(LLMs),has become essential across various sectors due to their advanced language comprehension and generation capabilities.Despite their transformative impact in fields such as machine translation and intelligent dialogue systems,LLMs face significant challenges.These challenges include safety,security,and privacy concerns that undermine their trustworthiness and effectiveness,such as hallucinations,backdoor attacks,and privacy leakage.Previous works often conflated safety issues with security concerns.In contrast,our study provides clearer and more reasonable definitions for safety,security,and privacy within the context of LLMs.Building on these definitions,we provide a comprehensive overview of the vulnerabilities and defense mechanisms related to safety,security,and privacy in LLMs.Additionally,we explore the unique research challenges posed by LLMs and suggest potential avenues for future research,aiming to enhance the robustness and reliability of LLMs in the face of emerging threats. 展开更多
关键词 Large language models Privacy issues Safety issues security issues
在线阅读 下载PDF
When Software Security Meets Large Language Models:A Survey 被引量:1
9
作者 Xiaogang Zhu Wei Zhou +3 位作者 Qing-Long Han Wanlun Ma Sheng Wen Yang Xiang 《IEEE/CAA Journal of Automatica Sinica》 2025年第2期317-334,共18页
Software security poses substantial risks to our society because software has become part of our life. Numerous techniques have been proposed to resolve or mitigate the impact of software security issues. Among them, ... Software security poses substantial risks to our society because software has become part of our life. Numerous techniques have been proposed to resolve or mitigate the impact of software security issues. Among them, software testing and analysis are two of the critical methods, which significantly benefit from the advancements in deep learning technologies. Due to the successful use of deep learning in software security, recently,researchers have explored the potential of using large language models(LLMs) in this area. In this paper, we systematically review the results focusing on LLMs in software security. We analyze the topics of fuzzing, unit test, program repair, bug reproduction, data-driven bug detection, and bug triage. We deconstruct these techniques into several stages and analyze how LLMs can be used in the stages. We also discuss the future directions of using LLMs in software security, including the future directions for the existing use of LLMs and extensions from conventional deep learning research. 展开更多
关键词 Large language models(LLMs) software analysis software security software testing
在线阅读 下载PDF
A Robust Security Detection Strategy for Next Generation IoT Networks
10
作者 Hafida Assmi Azidine Guezzaz +4 位作者 Said Benkirane Mourade Azrour Said Jabbour Nisreen Innab Abdulatif Alabdulatif 《Computers, Materials & Continua》 SCIE EI 2025年第1期443-466,共24页
Internet of Things(IoT)refers to the infrastructures that connect smart devices to the Internet,operating autonomously.This connectivitymakes it possible to harvest vast quantities of data,creating new opportunities f... Internet of Things(IoT)refers to the infrastructures that connect smart devices to the Internet,operating autonomously.This connectivitymakes it possible to harvest vast quantities of data,creating new opportunities for the emergence of unprecedented knowledge.To ensure IoT securit,various approaches have been implemented,such as authentication,encoding,as well as devices to guarantee data integrity and availability.Among these approaches,Intrusion Detection Systems(IDS)is an actual security solution,whose performance can be enhanced by integrating various algorithms,including Machine Learning(ML)and Deep Learning(DL),enabling proactive and accurate detection of threats.This study proposes to optimize the performance of network IDS using an ensemble learning method based on a voting classification algorithm.By combining the strengths of three powerful algorithms,Random Forest(RF),K-Nearest Neighbors(KNN),and Support Vector Machine(SVM)to detect both normal behavior and different categories of attack.Our analysis focuses primarily on the NSL-KDD dataset,while also integrating the recent Edge-IIoT dataset,tailored to industrial IoT environments.Experimental results show significant enhancements on the Edge-IIoT and NSL-KDD datasets,reaching accuracy levels between 72%to 99%,with precision between 87%and 99%,while recall values and F1-scores are also between 72%and 99%,for both normal and attack detection.Despite the promising results of this study,it suffers from certain limitations,notably the use of specific datasets and the lack of evaluations in a variety of environments.Future work could include applying this model to various datasets and evaluating more advanced ensemble strategies,with the aim of further enhancing the effectiveness of IDS. 展开更多
关键词 IoT security intrusion detection RF KNN SVM EL NSL-KDD Edge-IIoT
在线阅读 下载PDF
The Security of Using Large Language Models:A Survey With Emphasis on ChatGPT 被引量:1
11
作者 Wei Zhou Xiaogang Zhu +4 位作者 Qing-Long Han Lin Li Xiao Chen Sheng Wen Yang Xiang 《IEEE/CAA Journal of Automatica Sinica》 2025年第1期1-26,共26页
ChatGPT is a powerful artificial intelligence(AI)language model that has demonstrated significant improvements in various natural language processing(NLP) tasks. However, like any technology, it presents potential sec... ChatGPT is a powerful artificial intelligence(AI)language model that has demonstrated significant improvements in various natural language processing(NLP) tasks. However, like any technology, it presents potential security risks that need to be carefully evaluated and addressed. In this survey, we provide an overview of the current state of research on security of using ChatGPT, with aspects of bias, disinformation, ethics, misuse,attacks and privacy. We review and discuss the literature on these topics and highlight open research questions and future directions.Through this survey, we aim to contribute to the academic discourse on AI security, enriching the understanding of potential risks and mitigations. We anticipate that this survey will be valuable for various stakeholders involved in AI development and usage, including AI researchers, developers, policy makers, and end-users. 展开更多
关键词 Artificial intelligence(AI) ChatGPT large language models(LLMs) security
在线阅读 下载PDF
Review of Techniques for Integrating Security in Software Development Lifecycle
12
作者 Hassan Saeed Imran Shafi +3 位作者 Jamil Ahmad Adnan Ahmed Khan Tahir Khurshaid Imran Ashraf 《Computers, Materials & Continua》 SCIE EI 2025年第1期139-172,共34页
Software-related security aspects are a growing and legitimate concern,especially with 5G data available just at our palms.To conduct research in this field,periodic comparative analysis is needed with the new techniq... Software-related security aspects are a growing and legitimate concern,especially with 5G data available just at our palms.To conduct research in this field,periodic comparative analysis is needed with the new techniques coming up rapidly.The purpose of this study is to review the recent developments in the field of security integration in the software development lifecycle(SDLC)by analyzing the articles published in the last two decades and to propose a way forward.This review follows Kitchenham’s review protocol.The review has been divided into three main stages including planning,execution,and analysis.From the selected 100 articles,it becomes evident that need of a collaborative approach is necessary for addressing critical software security risks(CSSRs)through effective risk management/estimation techniques.Quantifying risks using a numeric scale enables a comprehensive understanding of their severity,facilitating focused resource allocation and mitigation efforts.Through a comprehensive understanding of potential vulnerabilities and proactive mitigation efforts facilitated by protection poker,organizations can prioritize resources effectively to ensure the successful outcome of projects and initiatives in today’s dynamic threat landscape.The review reveals that threat analysis and security testing are needed to develop automated tools for the future.Accurate estimation of effort required to prioritize potential security risks is a big challenge in software security.The accuracy of effort estimation can be further improved by exploring new techniques,particularly those involving deep learning.It is also imperative to validate these effort estimation methods to ensure all potential security threats are addressed.Another challenge is selecting the right model for each specific security threat.To achieve a comprehensive evaluation,researchers should use well-known benchmark checklists. 展开更多
关键词 Software development lifecycle systematic literature review critical software security risks national institute of standards and technology DevSecOps open web application security project McGraw’s touch points
在线阅读 下载PDF
基于SRP模型的高寒区生态脆弱性评价与影响因素分析——以雅鲁藏布江泽当宽谷为例
13
作者 刘申怡 《河南科学》 2025年第5期673-684,共12页
全球气候变化与人类活动对高寒区生态系统结构和功能的胁迫作用逐渐加强,剖析高寒区生态脆弱性的时空演变特征及其影响因素,对于实现区域高质量、可持续发展至关重要。以雅鲁藏布江泽当宽谷为研究区,通过敏感性-恢复力-压力度(SRP)模型... 全球气候变化与人类活动对高寒区生态系统结构和功能的胁迫作用逐渐加强,剖析高寒区生态脆弱性的时空演变特征及其影响因素,对于实现区域高质量、可持续发展至关重要。以雅鲁藏布江泽当宽谷为研究区,通过敏感性-恢复力-压力度(SRP)模型构建了具有高寒特色的生态脆弱性评价指标体系,运用Sen-MK趋势分析法分析了2000—2022年研究区生态脆弱性的时空变化特征,运用残差分析法定量剖析了气候变化与人类活动对研究区生态脆弱性变化的影响。结果表明:①2000—2022年研究区生态脆弱性指数整体呈波动下降趋势,说明研究区生态环境质量在不断提升。②研究区生态脆弱性空间分异显著,除了流域南部河谷农业带及其周边地区和北部景观破碎程度高的零星地区的生态脆弱性呈显著升高趋势外,研究区其余大部分区域的生态脆弱性呈降低趋势。③研究区生态脆弱性升高的大部分区域主要受气候变化与人类活动的共同影响,人类活动对流域南部河谷生态脆弱性升高的影响更加显著;气候变化是研究区生态脆弱性降低的主要因素,大范围影响人类活动较少的高海拔地区。④根据气候变化与人类活动对研究区生态脆弱性变化的贡献率,将研究区划分为生态保育区、生态巩固区、生态控制区、生态修复区,并针对性地提出了生态环境保护与修复建议。研究结果可为经济快速发展的高寒区生态环境综合治理与区域可持续发展提供参考和决策依据。 展开更多
关键词 生态脆弱性 srp模型 气候变化 人类活动 高寒区
在线阅读 下载PDF
Security Strategy of Digital Medical Contents Based on Blockchain in Generative AI Model
14
作者 Hoon Ko Marek R.Ogiela 《Computers, Materials & Continua》 SCIE EI 2025年第1期259-278,共20页
This study presents an innovative approach to enhancing the security of visual medical data in the generative AI environment through the integration of blockchain technology.By combining the strengths of blockchain an... This study presents an innovative approach to enhancing the security of visual medical data in the generative AI environment through the integration of blockchain technology.By combining the strengths of blockchain and generative AI,the research team aimed to address the timely challenge of safeguarding visual medical content.The participating researchers conducted a comprehensive analysis,examining the vulnerabilities of medical AI services,personal information protection issues,and overall security weaknesses.This multi faceted exploration led to an indepth evaluation of the model’s performance and security.Notably,the correlation between accuracy,detection rate,and error rate was scrutinized.This analysis revealed insights into the model’s strengths and limitations,while the consideration of standard deviation shed light on the model’s stability and performance variability.The study proposed practical improvements,emphasizing the reduction of false negatives to enhance detection rate and leveraging blockchain technology to ensure visual data integrity in medical applications.Applying blockchain to generative AI-created medical content addresses key personal information protection issues.By utilizing the distributed ledger system of blockchain,the research team aimed to protect the privacy and integrity of medical data especially medical images.This approach not only enhances security but also enables transparent and tamperproof record-keeping.Additionally,the use of generative AI models ensures the creation of novel medical content without compromising personal information,further safeguarding patient privacy.In conclusion,this study showcases the potential of blockchain-based solutions in the medical field,particularly in securing sensitive medical data and protecting patient privacy.The proposed approach,combining blockchain and generative AI,offers a promising direction toward more robust and secure medical content management.Further research and advancements in this area will undoubtedly contribute to the development of robust and privacy-preserving healthcare systems,and visual diagnostic systems. 展开更多
关键词 Digitalmedical content medical diagnostic visualization security analysis generativeAI blockchain VULNERABILITY pattern recognition
在线阅读 下载PDF
基于SRP模型的哈尔滨市生态脆弱性评价
15
作者 李巍 叶俊 《黑龙江科技大学学报》 2025年第5期862-868,共7页
为构建合理的生态脆弱性评价体系,基于“敏感度-恢复力-压力度”模型(SRP模型)选取15个指标构建评价体系,运用空间主成分分析法确定各指标权重,从时空尺度分析哈尔滨市生态脆弱性的变化特征与集聚特征,并利用地理探测器探究其驱动因素... 为构建合理的生态脆弱性评价体系,基于“敏感度-恢复力-压力度”模型(SRP模型)选取15个指标构建评价体系,运用空间主成分分析法确定各指标权重,从时空尺度分析哈尔滨市生态脆弱性的变化特征与集聚特征,并利用地理探测器探究其驱动因素。结果表明:2000—2020年,哈尔滨市生态脆弱性水平总体较低,以轻度和微度为主;生态脆弱性高高集聚和低低集聚的热点区域分布在北部、中部和东南部,中部和东部面积占比53.63%的区域生态脆弱性降低,生态环境的稳定性增强;净第一生产力和生物丰度指数为生态脆弱性的两个驱动因素,哈尔滨市整体生态脆弱性在20年间得到改善,仅有西部六个市辖区有恶化现象。该研究结果可为开展生态保护和修复工作提供参考。 展开更多
关键词 生态脆弱性 srp模型 空间主成分 地理探测器
在线阅读 下载PDF
基于SRP模型的京津冀地区土地生态脆弱性评价
16
作者 王鑫 白龙 《安徽农业科学》 2025年第12期41-45,共5页
以京津冀为研究区,借助SRP模型与GIS技术,从自然、社会等方面入手选取11个具有代表性的指标,利用土地生态脆弱性指数、热点分析等方法对2020、2015、2020年3期土地生态脆弱性进行综合分析。结果表明:2010—2020年京津冀地区的中度脆弱... 以京津冀为研究区,借助SRP模型与GIS技术,从自然、社会等方面入手选取11个具有代表性的指标,利用土地生态脆弱性指数、热点分析等方法对2020、2015、2020年3期土地生态脆弱性进行综合分析。结果表明:2010—2020年京津冀地区的中度脆弱及以上面积表现出先增后减的趋势,总体上呈现减少的态势。2010、2015、2020年中度及以上脆弱面积占比分别为56.87%、57.79%、56.61%。在空间上,研究区土地生态脆弱性呈现自东南向西北逐渐减小的分布特征;微度脆弱性主要集中在承德及太行山一带,重度和极度脆弱区主要集中在滨海平原地区。研究区土地生态脆弱性整体上空间差异性显著,生态保护措施需进一步加强,以期为京津冀土地生态保护制定提供理论依据。 展开更多
关键词 土地脆弱性 srp模型 京津冀地区
在线阅读 下载PDF
基于SRP模型的黄河流域(聊城-济南段)生态地质脆弱性评价
17
作者 李宁 黄伟荣 +3 位作者 蒋超华 徐秀凤 王璨 富隋小庆 《山东国土资源》 2025年第6期64-71,共8页
黄河流域(聊城—济南段)作为生态屏障与经济活动密集区的复合型区域,其生态地质脆弱性评价对协调区域可持续发展具有重要意义。针对传统研究多聚焦单一生态地质问题、忽略多因素耦合效应的不足,本研究以SRP(敏感性—恢复力—压力度)模... 黄河流域(聊城—济南段)作为生态屏障与经济活动密集区的复合型区域,其生态地质脆弱性评价对协调区域可持续发展具有重要意义。针对传统研究多聚焦单一生态地质问题、忽略多因素耦合效应的不足,本研究以SRP(敏感性—恢复力—压力度)模型为理论框架,集成层次分析法(AHP)与GIS空间分析技术,构建包含3个维度13项指标的生态地质脆弱性评价体系。通过量化地形地貌、工程地质、生态地质、人类活动等关键因子交互作用,揭示研究区脆弱性空间分异规律。结果表明:研究区脆弱性呈现显著空间分异,脆弱性低及轻度脆弱区占主导地位,合计占比63.55%,主要分布于黄河以北平原(如德州乐陵市、济南平阴县),该区域地形平坦、地层稳定、植被覆盖良好,因而生态恢复力较强;高度脆弱区及较高脆弱区占比19.34%,集中分布于断裂带密集区(聊城中部)、基岩山区(莱芜、钢城区)及大城市中心(济南历下区、德州德城区),占比分别为4.03%和15.31%;断裂带密集区(如聊城中部)及基岩山区(如莱芜)因地质结构破碎、人类活动干扰强烈,呈现高度脆弱性;大城市中心(如济南)因高人口密度与经济压力,生态恢复能力弱,脆弱性较高。 展开更多
关键词 黄河流域 生态地质脆弱性评价 srp模型 生态保护与修复
在线阅读 下载PDF
武汉大学科研成果被USENIX Security 2025录用
18
作者 《信息网络安全》 北大核心 2025年第8期1327-1327,共1页
近日,武汉大学国家网络安全学院2023级硕士研究生闫楠作为第一作者撰写的论文被第34届USENIX安全研讨会(The34th USENIX Security Symposium 2025)录用。论文题目为“Embed X:Embedding-Based Cross-Trigger Backdoor Attack Against La... 近日,武汉大学国家网络安全学院2023级硕士研究生闫楠作为第一作者撰写的论文被第34届USENIX安全研讨会(The34th USENIX Security Symposium 2025)录用。论文题目为“Embed X:Embedding-Based Cross-Trigger Backdoor Attack Against Large Language Models”(《Embed X:基于嵌入的跨触发器大语言模型后门攻击》),指导老师为国家网络安全学院副研究员李雨晴(通信作者)、教授陈晶(通信作者)、副教授何琨。华中科技大学副教授王雄、香港科技大学教授李波参与合作。 展开更多
关键词 闫楠 USENIX security 2025
在线阅读 下载PDF
Weighted Voting Ensemble Model Integrated with IoT for Detecting Security Threats in Satellite Systems and Aerial Vehicles
19
作者 Raed Alharthi 《Journal of Computer and Communications》 2025年第2期250-281,共32页
Small-drone technology has opened a range of new applications for aerial transportation. These drones leverage the Internet of Things (IoT) to offer cross-location services for navigation. However, they are susceptibl... Small-drone technology has opened a range of new applications for aerial transportation. These drones leverage the Internet of Things (IoT) to offer cross-location services for navigation. However, they are susceptible to security and privacy threats due to hardware and architectural issues. Although small drones hold promise for expansion in both civil and defense sectors, they have safety, security, and privacy threats. Addressing these challenges is crucial to maintaining the security and uninterrupted operations of these drones. In this regard, this study investigates security, and preservation concerning both the drones and Internet of Drones (IoD), emphasizing the significance of creating drone networks that are secure and can robustly withstand interceptions and intrusions. The proposed framework incorporates a weighted voting ensemble model comprising three convolutional neural network (CNN) models to enhance intrusion detection within the network. The employed CNNs are customized 1D models optimized to obtain better performance. The output from these CNNs is voted using a weighted criterion using a 0.4, 0.3, and 0.3 ratio for three CNNs, respectively. Experiments involve using multiple benchmark datasets, achieving an impressive accuracy of up to 99.89% on drone data. The proposed model shows promising results concerning precision, recall, and F1 as indicated by their obtained values of 99.92%, 99.98%, and 99.97%, respectively. Furthermore, cross-validation and performance comparison with existing works is also carried out. Findings indicate that the proposed approach offers a prospective solution for detecting security threats for aerial systems and satellite systems with high accuracy. 展开更多
关键词 Intrusion Detection Cyber-Physical Systems Drone security Weighted Ensemble Voting Unmanned Vehicles security Strategies
在线阅读 下载PDF
基于SRP模型的綦江流域(重庆段)生态脆弱性评价
20
作者 李清泉 徐金鸿 《林业调查规划》 2025年第4期76-84,共9页
为探究綦江流域(重庆段)生态脆弱性状况,基于SRP模型,选取高程等14个评价指标,利用层次分析法与变异系数法联合确定指标权重,进行生态脆弱性评价。结果表明,区域内生态敏感性不高,中度和重度区主要分布在东部和西北部,主要影响要素为植... 为探究綦江流域(重庆段)生态脆弱性状况,基于SRP模型,选取高程等14个评价指标,利用层次分析法与变异系数法联合确定指标权重,进行生态脆弱性评价。结果表明,区域内生态敏感性不高,中度和重度区主要分布在东部和西北部,主要影响要素为植被覆盖度和土地利用类型;生态恢复力潜在和轻微脆弱区占比超过1/2,中度和重度区主要分布在西部和綦江沿岸,主要影响要素为景观破碎度;生态压力度的中度和重度区在中部、南部和西部,西北部有少许分布,主要影响要素为人口分布;区域生态脆弱性较低,中度和重度脆弱区主要分布在中部、南部和东部,主要影响要素为人口分布和景观破碎度。生态压力度准则占主导作用。 展开更多
关键词 生态脆弱性 srp模型 层次分析法 变异系数法 綦江流域(重庆段)
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部