Virtualization is an indispensable part of the cloud for the objective of deploying different virtual servers over the same physical layer.However,the increase in the number of applications executing on the repositori...Virtualization is an indispensable part of the cloud for the objective of deploying different virtual servers over the same physical layer.However,the increase in the number of applications executing on the repositories results in increased overload due to the adoption of cloud services.Moreover,the migration of applications on the cloud with optimized resource allocation is a herculean task even though it is employed for minimizing the dilemma of allocating resources.In this paper,a Fire Hawk Optimization enabled Deep Learning Scheme(FHOEDLS)is proposed for minimizing the overload and optimizing the resource allocation on the hybrid cloud container architecture for migrating interoperability based applications This FHOEDLS achieves the load prediction through the utilization of deep CNN-GRU-AM model for attaining resource allocation and better migration of applications.It specifically adopted the Fire Hawk Optimization Algorithm(FHOA)for optimizing the parameters that influence the factors that aid in better interoperable application migration with improved resource allocation and minimized overhead.It considered the factors of resource capacity,transmission cost,demand,and predicted load into account during the formulation of the objective function utilized for resource allocation and application migration.The cloud simulation of this FHOEDLS is achieved using a container,Virtual Machine(VM),and Physical Machine(PM).The results of this proposed FHOEDLS confirmed a better resource capability of 0.418 and a minimized load of 0.0061.展开更多
Particle Swarm Optimization(PSO)has been utilized as a useful tool for solving intricate optimization problems for various applications in different fields.This paper attempts to carry out an update on PSO and gives a...Particle Swarm Optimization(PSO)has been utilized as a useful tool for solving intricate optimization problems for various applications in different fields.This paper attempts to carry out an update on PSO and gives a review of its recent developments and applications,but also provides arguments for its efficacy in resolving optimization problems in comparison with other algorithms.Covering six strategic areas,which include Data Mining,Machine Learning,Engineering Design,Energy Systems,Healthcare,and Robotics,the study demonstrates the versatility and effectiveness of the PSO.Experimental results are,however,used to show the strong and weak parts of PSO,and performance results are included in tables for ease of comparison.The results stress PSO’s efficiency in providing optimal solutions but also show that there are aspects that need to be improved through combination with algorithms or tuning to the parameters of the method.The review of the advantages and limitations of PSO is intended to provide academics and practitioners with a well-rounded view of the methods of employing such a tool most effectively and to encourage optimized designs of PSO in solving theoretical and practical problems in the future.展开更多
In this study, three methods such as CTAB,SDS and Shanlichun methods were used to extract genomic DNA from the seedling of rape to find the best method. The principle, characters and application of SRAP were introduce...In this study, three methods such as CTAB,SDS and Shanlichun methods were used to extract genomic DNA from the seedling of rape to find the best method. The principle, characters and application of SRAP were introduced. In order to obtain the optimal SRAP reaction system, the factors including concentrations of DNA, dNTP, etc. of reaction system were modified to better the system of rape. Th9 result showed that the optimum concentrations were 15ng DNA template, 0.2mM dNTP, 1.0μM primer and 2.0U Taq enzyme in this 25μL SRAP-PCR system.展开更多
This paper examines strategies for optimizing front-end page loading speed in complex Single-Page Applications(SPAs).Through quantitative analysis,it evaluates the effectiveness of various optimization techniques,incl...This paper examines strategies for optimizing front-end page loading speed in complex Single-Page Applications(SPAs).Through quantitative analysis,it evaluates the effectiveness of various optimization techniques,including resource compression,code-splitting,and network caching.Key findings reveal that intelligent resource preloading,adaptive frameworks,and cross-device optimization significantly enhance loading speed and user experience.The study underscores the importance of combining these strategies to address the challenges posed by complex SPAs and achieve robust performance improvements.Additionally,it explores how emerging technologies like machine learning and server-side rendering can further refine optimization practices.展开更多
Intelligent optimization algorithm belongs to a kind of emerging technology,show good characteristics,such as high performance,applicability,its algorithm includes many contents,including genetic,particle swarm and ar...Intelligent optimization algorithm belongs to a kind of emerging technology,show good characteristics,such as high performance,applicability,its algorithm includes many contents,including genetic,particle swarm and artificial neural network algorithm,compared with the traditional optimization way,these algorithms can be applied to a variety of situations,meet the demand of solution,in the mechanical design industry has wide application prospects.This paper analyzes the application of the algorithm in mechanical design and the comparison of the results to verify the significance of the intelligent optimization algorithm in mechanical design.展开更多
A single factor design was applied to optimize five factors influencing SRAP system, including Taq DNA polymerase, template DNA concentration, dNTPs, primer and Mg2+, each at four levels. The optimal SRAP-PCR system ...A single factor design was applied to optimize five factors influencing SRAP system, including Taq DNA polymerase, template DNA concentration, dNTPs, primer and Mg2+, each at four levels. The optimal SRAP-PCR system for Lonicera caerulea L. was 20 ktL SRAP-PCR amplification reaction solution containing 2.0 μL 10×PCR buffer, 1.0 U Taq DNA polymerase, 30 ng template DNA, 0.2 mmol·L-1 dNTPs, 2.0 mmol·L-1 Mg2+ and 0.2μmol·L-1 primer. The suitable amplification procedure consisted of an initial denaturation at 94℃ for 5 min; denaturation at 94℃ for 1 min, annealing at 35℃ for 1 rain, extension at 72℃ for 90 s and in total five cycles; denaturation at 94℃ for 1 min, annealing at 50℃ for 1 min, extension at 72℃ for 90 s and in total 35 cycles; extension at 72℃ for 8 rain; preservation at 4℃. The procedures and systems could meet the demand for SRAP amplification of Lonicera caerulea L. and would play an important role in Lonicera caerulea L. germplasm identification and genetic diversity analysis.展开更多
Thin films of cadmium sulphide and cadmium telluride have been prepared by thermal evaporation under various conditions of deposition. These films have been characterized optically. electrically and for structure dete...Thin films of cadmium sulphide and cadmium telluride have been prepared by thermal evaporation under various conditions of deposition. These films have been characterized optically. electrically and for structure determination. The results of these characterizations along with the initial results of all thin film CdS/CdTe solar cells are presented in this paper展开更多
The current status of university computer teaching, taking fully into account the differences between students, competency-based education philosophy as a guide, this paper discusses the application of modular and hie...The current status of university computer teaching, taking fully into account the differences between students, competency-based education philosophy as a guide, this paper discusses the application of modular and hierarchical optimization problems in teaching computer courses in colleges and universities, and in-depth analyzes the basic content and implementation strategies of module level teaching.展开更多
The so-called construction scheme optimization is to adjust the original good construction scheme, such as eliminating hidden dangers, simplifying the structure, reducing the cost, etc., thus simplifying the original ...The so-called construction scheme optimization is to adjust the original good construction scheme, such as eliminating hidden dangers, simplifying the structure, reducing the cost, etc., thus simplifying the original scheme and reducing the construction cost. Because the construction plan is different, the construction period will be different and the machines and tools required will be different, thus the expenses incurred will also be different. Therefore, the on-site technical engineer should put forward a technically advanced, technically reasonable and organizationally capable construction plan based on the contract period, taking into account factors such as the scale, nature, complexity, site conditions, equipment conditions and personnel quality of the project, and strive to reduce the project cost. In this paper, from the aspects of the determination of construction methods, the selection of construction machines and tools, the arrangement of construction sequence and the organization and arrangement of construction, the application of the optimization method of construction scheme in the cost management of engineering projects, such as the formulation of advanced, economical and reasonable construction scheme, the rational selection of machinery and the full play of the efficiency of machinery, is analyzed, and the importance of construction scheme in the cost management of projects is expounded.展开更多
Lithium argyrodite electrolytes (Li_(6)PS_(5)X (X=Cl, Br, I))have received tremendous attention due to their low cost and high conductivity among sulfide electrolytes. However,the synthesis details and application of ...Lithium argyrodite electrolytes (Li_(6)PS_(5)X (X=Cl, Br, I))have received tremendous attention due to their low cost and high conductivity among sulfide electrolytes. However,the synthesis details and application of Li_(6)PS_(5)I in solidstate batteries have not been fully investigated yet. Here.展开更多
In this paper, we conduct research on the golden thoughts and topology optimization and the applications on the environment space design. Environmental art and a science and art, is to create lasting and harmonious an...In this paper, we conduct research on the golden thoughts and topology optimization and the applications on the environment space design. Environmental art and a science and art, is to create lasting and harmonious and the urban design, architectural design, murals, such as urban planning belong to the scope of environmental art and the people’s life, work, production and leisure are closely linked, along with people living standard and the improvement of living level, people have higher request for all kinds of the environmental quality. Our research combines the general principles of the related theories to propose the novel perspective that is innovative.展开更多
Underwater charging stations allow Autonomous Underwater Vehicles(AUVs)to recharge batteries,extending missions and reducing surface support.However,efficient wireless power transfer requires overcoming alignment chal...Underwater charging stations allow Autonomous Underwater Vehicles(AUVs)to recharge batteries,extending missions and reducing surface support.However,efficient wireless power transfer requires overcoming alignment challenges and environmental variations in conductive seawater.This paper employs Particle Swarm Optimization(PSO)to design coupling coils specifically applied for underwater wireless charging station systems.The establishment of underwater charging stations enables Autonomous Underwater Vehicles(AUVs)to recharge batteries underwater,extending mission duration and reducing reliance on surface-based resupply operations.The proposed charging system is designed to address the unique challenges of the underwater environment,such as alignment disruptions and performance degradation caused by seawater conductivity and environmental fluctuations.Given these distinctive underwater conditions,this study explores coupling coil design comprehensively.COMSOL Multiphysics and MATLAB software were integrated to develop an automated coil evaluation platform,effectively assessing coil coupling under varying misalignment conditions.PSO was employed to optimize coil inner diameters,simulating coupling performance across different misalignment scenarios to achieve high misalignment tolerance.The optimized coils were subsequently implemented in a full-bridge series-series resonant converter and compared with control group coils.Results confirmed the PSO-optimized coils enhanced misalignment resistance,exhibiting a variation of coupling coefficient as low as 4.26%,while the control group coils have a variation of 10.34%.In addition,compared to control group coils,PSO-optimized coils achieved an average efficiency of 71%in air and 67%in seawater,outperforming the control group coils at 66%and 60%,respectively.These findings demonstrate the effectiveness of the proposed PSO-based coil design in improving underwater wireless power transfer reliability and efficiency.展开更多
Additive Manufacturing(AM)has significantly impacted the development of high-performance materials and structures,offering new possibilities for industries ranging from aerospace to biomedicine.This special issue feat...Additive Manufacturing(AM)has significantly impacted the development of high-performance materials and structures,offering new possibilities for industries ranging from aerospace to biomedicine.This special issue features pioneering research that integrates AI-driven methods with AM,enabling the design and fabrication of complex,optimized structures with enhanced properties.展开更多
With the improvement of China's urbanization development level, large cities continue to add high-rise buildings, which can alleviate the problem of land shortage in large cities. The structural design of high-ris...With the improvement of China's urbanization development level, large cities continue to add high-rise buildings, which can alleviate the problem of land shortage in large cities. The structural design of high-rise buildings has always been the focus of attention in this field. If it is not handled properly, it may affect the structural stability and even cause serious problems. In order to promote the design of high-rise building structure more scientific, this paper deeply studies the common problems in its design process, and gives appropriate solutions, hoping to provide some reference value for improving the quality of high-rise building structure design.展开更多
This paper introduces a video application-aware cross-layer framework for joint performance-energy optimization,considering the scenario of multiple users upstreaming real-time Motion JPEG2000 video streams to the acc...This paper introduces a video application-aware cross-layer framework for joint performance-energy optimization,considering the scenario of multiple users upstreaming real-time Motion JPEG2000 video streams to the access point of a WiFi wireless local area network and extends the PHY-MAC run-time cross-layer scheduling strategy that we introduced in (Mangharam et al., 2005; Pollin et al., 2005) to also consider congested network situations where video packets have to be dropped. We show that an optimal solution at PHY-MAC level can be highly suboptimal at application level, and then show that making the cross-layer framework application-aware through a prioritized dropping policy capitalizing on the inherent scalability of Motion JPEG2000 video streams leads to drastic average video quality improvements and inter-user quality variation reductions of as much as 10 dB PSNR, without affecting the overall energy consumption requirements.展开更多
With the rapid advancements in technology and science,optimization theory and algorithms have become increasingly important.A wide range of real-world problems is classified as optimization challenges,and meta-heurist...With the rapid advancements in technology and science,optimization theory and algorithms have become increasingly important.A wide range of real-world problems is classified as optimization challenges,and meta-heuristic algorithms have shown remarkable effectiveness in solving these challenges across diverse domains,such as machine learning,process control,and engineering design,showcasing their capability to address complex optimization problems.The Stochastic Fractal Search(SFS)algorithm is one of the most popular meta-heuristic optimization methods inspired by the fractal growth patterns of natural materials.Since its introduction by Hamid Salimi in 2015,SFS has garnered significant attention from researchers and has been applied to diverse optimization problems acrossmultiple disciplines.Its popularity can be attributed to several factors,including its simplicity,practical computational efficiency,ease of implementation,rapid convergence,high effectiveness,and ability to address singleandmulti-objective optimization problems,often outperforming other established algorithms.This review paper offers a comprehensive and detailed analysis of the SFS algorithm,covering its standard version,modifications,hybridization,and multi-objective implementations.The paper also examines several SFS applications across diverse domains,including power and energy systems,image processing,machine learning,wireless sensor networks,environmental modeling,economics and finance,and numerous engineering challenges.Furthermore,the paper critically evaluates the SFS algorithm’s performance,benchmarking its effectiveness against recently published meta-heuristic algorithms.In conclusion,the review highlights key findings and suggests potential directions for future developments and modifications of the SFS algorithm.展开更多
During the last few years we have witnessed impressive developments in the area of stochastic local search techniques for intelligent optimization and Reactive Search Optimization. In order to handle the complexity, i...During the last few years we have witnessed impressive developments in the area of stochastic local search techniques for intelligent optimization and Reactive Search Optimization. In order to handle the complexity, in the framework of stochastic local search optimization, learning and optimization has been deeply interconnected through interaction with the decision maker via the visualization approach of the online graphs. Consequently a number of complex optimization problems, in particular multiobjective optimization problems, arising in widely different contexts have been effectively treated within the general framework of RSO. In solving real-life multiobjective optimization problems often most emphasis are spent on finding the complete Pareto-optimal set and less on decision-making. However the com-plete task of multiobjective optimization is considered as a combined task of optimization and decision-making. In this paper, we suggest an interactive procedure which will involve the decision-maker in the optimization process helping to choose a single solution at the end. Our proposed method works on the basis of Reactive Search Optimization (RSO) algorithms and available software architecture packages. The procedure is further compared with the excising novel method of Interactive Multiobjective Optimization and Decision-Making, using Evolutionary method (I-MODE). In order to evaluate the effectiveness of both methods the well-known study case of welded beam design problem is reconsidered.展开更多
文摘Virtualization is an indispensable part of the cloud for the objective of deploying different virtual servers over the same physical layer.However,the increase in the number of applications executing on the repositories results in increased overload due to the adoption of cloud services.Moreover,the migration of applications on the cloud with optimized resource allocation is a herculean task even though it is employed for minimizing the dilemma of allocating resources.In this paper,a Fire Hawk Optimization enabled Deep Learning Scheme(FHOEDLS)is proposed for minimizing the overload and optimizing the resource allocation on the hybrid cloud container architecture for migrating interoperability based applications This FHOEDLS achieves the load prediction through the utilization of deep CNN-GRU-AM model for attaining resource allocation and better migration of applications.It specifically adopted the Fire Hawk Optimization Algorithm(FHOA)for optimizing the parameters that influence the factors that aid in better interoperable application migration with improved resource allocation and minimized overhead.It considered the factors of resource capacity,transmission cost,demand,and predicted load into account during the formulation of the objective function utilized for resource allocation and application migration.The cloud simulation of this FHOEDLS is achieved using a container,Virtual Machine(VM),and Physical Machine(PM).The results of this proposed FHOEDLS confirmed a better resource capability of 0.418 and a minimized load of 0.0061.
文摘Particle Swarm Optimization(PSO)has been utilized as a useful tool for solving intricate optimization problems for various applications in different fields.This paper attempts to carry out an update on PSO and gives a review of its recent developments and applications,but also provides arguments for its efficacy in resolving optimization problems in comparison with other algorithms.Covering six strategic areas,which include Data Mining,Machine Learning,Engineering Design,Energy Systems,Healthcare,and Robotics,the study demonstrates the versatility and effectiveness of the PSO.Experimental results are,however,used to show the strong and weak parts of PSO,and performance results are included in tables for ease of comparison.The results stress PSO’s efficiency in providing optimal solutions but also show that there are aspects that need to be improved through combination with algorithms or tuning to the parameters of the method.The review of the advantages and limitations of PSO is intended to provide academics and practitioners with a well-rounded view of the methods of employing such a tool most effectively and to encourage optimized designs of PSO in solving theoretical and practical problems in the future.
文摘In this study, three methods such as CTAB,SDS and Shanlichun methods were used to extract genomic DNA from the seedling of rape to find the best method. The principle, characters and application of SRAP were introduced. In order to obtain the optimal SRAP reaction system, the factors including concentrations of DNA, dNTP, etc. of reaction system were modified to better the system of rape. Th9 result showed that the optimum concentrations were 15ng DNA template, 0.2mM dNTP, 1.0μM primer and 2.0U Taq enzyme in this 25μL SRAP-PCR system.
文摘This paper examines strategies for optimizing front-end page loading speed in complex Single-Page Applications(SPAs).Through quantitative analysis,it evaluates the effectiveness of various optimization techniques,including resource compression,code-splitting,and network caching.Key findings reveal that intelligent resource preloading,adaptive frameworks,and cross-device optimization significantly enhance loading speed and user experience.The study underscores the importance of combining these strategies to address the challenges posed by complex SPAs and achieve robust performance improvements.Additionally,it explores how emerging technologies like machine learning and server-side rendering can further refine optimization practices.
文摘Intelligent optimization algorithm belongs to a kind of emerging technology,show good characteristics,such as high performance,applicability,its algorithm includes many contents,including genetic,particle swarm and artificial neural network algorithm,compared with the traditional optimization way,these algorithms can be applied to a variety of situations,meet the demand of solution,in the mechanical design industry has wide application prospects.This paper analyzes the application of the algorithm in mechanical design and the comparison of the results to verify the significance of the intelligent optimization algorithm in mechanical design.
基金Supported by Postdoctoral Science-research Foundation (LBH-Q09170)
文摘A single factor design was applied to optimize five factors influencing SRAP system, including Taq DNA polymerase, template DNA concentration, dNTPs, primer and Mg2+, each at four levels. The optimal SRAP-PCR system for Lonicera caerulea L. was 20 ktL SRAP-PCR amplification reaction solution containing 2.0 μL 10×PCR buffer, 1.0 U Taq DNA polymerase, 30 ng template DNA, 0.2 mmol·L-1 dNTPs, 2.0 mmol·L-1 Mg2+ and 0.2μmol·L-1 primer. The suitable amplification procedure consisted of an initial denaturation at 94℃ for 5 min; denaturation at 94℃ for 1 min, annealing at 35℃ for 1 rain, extension at 72℃ for 90 s and in total five cycles; denaturation at 94℃ for 1 min, annealing at 50℃ for 1 min, extension at 72℃ for 90 s and in total 35 cycles; extension at 72℃ for 8 rain; preservation at 4℃. The procedures and systems could meet the demand for SRAP amplification of Lonicera caerulea L. and would play an important role in Lonicera caerulea L. germplasm identification and genetic diversity analysis.
文摘Thin films of cadmium sulphide and cadmium telluride have been prepared by thermal evaporation under various conditions of deposition. These films have been characterized optically. electrically and for structure determination. The results of these characterizations along with the initial results of all thin film CdS/CdTe solar cells are presented in this paper
文摘The current status of university computer teaching, taking fully into account the differences between students, competency-based education philosophy as a guide, this paper discusses the application of modular and hierarchical optimization problems in teaching computer courses in colleges and universities, and in-depth analyzes the basic content and implementation strategies of module level teaching.
文摘The so-called construction scheme optimization is to adjust the original good construction scheme, such as eliminating hidden dangers, simplifying the structure, reducing the cost, etc., thus simplifying the original scheme and reducing the construction cost. Because the construction plan is different, the construction period will be different and the machines and tools required will be different, thus the expenses incurred will also be different. Therefore, the on-site technical engineer should put forward a technically advanced, technically reasonable and organizationally capable construction plan based on the contract period, taking into account factors such as the scale, nature, complexity, site conditions, equipment conditions and personnel quality of the project, and strive to reduce the project cost. In this paper, from the aspects of the determination of construction methods, the selection of construction machines and tools, the arrangement of construction sequence and the organization and arrangement of construction, the application of the optimization method of construction scheme in the cost management of engineering projects, such as the formulation of advanced, economical and reasonable construction scheme, the rational selection of machinery and the full play of the efficiency of machinery, is analyzed, and the importance of construction scheme in the cost management of projects is expounded.
基金financially supported by the National Natural Science Foundation of China (Nos. 51821005, U1966214 and 51902116)the Certificate of China Postdoctoral Science Foundation Grant (No. 2019M652634)。
文摘Lithium argyrodite electrolytes (Li_(6)PS_(5)X (X=Cl, Br, I))have received tremendous attention due to their low cost and high conductivity among sulfide electrolytes. However,the synthesis details and application of Li_(6)PS_(5)I in solidstate batteries have not been fully investigated yet. Here.
文摘In this paper, we conduct research on the golden thoughts and topology optimization and the applications on the environment space design. Environmental art and a science and art, is to create lasting and harmonious and the urban design, architectural design, murals, such as urban planning belong to the scope of environmental art and the people’s life, work, production and leisure are closely linked, along with people living standard and the improvement of living level, people have higher request for all kinds of the environmental quality. Our research combines the general principles of the related theories to propose the novel perspective that is innovative.
基金supported by the National Science and Technology Council(NSTC),Taiwan[Project code MOST 110-2222-E-019-005-MY3].
文摘Underwater charging stations allow Autonomous Underwater Vehicles(AUVs)to recharge batteries,extending missions and reducing surface support.However,efficient wireless power transfer requires overcoming alignment challenges and environmental variations in conductive seawater.This paper employs Particle Swarm Optimization(PSO)to design coupling coils specifically applied for underwater wireless charging station systems.The establishment of underwater charging stations enables Autonomous Underwater Vehicles(AUVs)to recharge batteries underwater,extending mission duration and reducing reliance on surface-based resupply operations.The proposed charging system is designed to address the unique challenges of the underwater environment,such as alignment disruptions and performance degradation caused by seawater conductivity and environmental fluctuations.Given these distinctive underwater conditions,this study explores coupling coil design comprehensively.COMSOL Multiphysics and MATLAB software were integrated to develop an automated coil evaluation platform,effectively assessing coil coupling under varying misalignment conditions.PSO was employed to optimize coil inner diameters,simulating coupling performance across different misalignment scenarios to achieve high misalignment tolerance.The optimized coils were subsequently implemented in a full-bridge series-series resonant converter and compared with control group coils.Results confirmed the PSO-optimized coils enhanced misalignment resistance,exhibiting a variation of coupling coefficient as low as 4.26%,while the control group coils have a variation of 10.34%.In addition,compared to control group coils,PSO-optimized coils achieved an average efficiency of 71%in air and 67%in seawater,outperforming the control group coils at 66%and 60%,respectively.These findings demonstrate the effectiveness of the proposed PSO-based coil design in improving underwater wireless power transfer reliability and efficiency.
文摘Additive Manufacturing(AM)has significantly impacted the development of high-performance materials and structures,offering new possibilities for industries ranging from aerospace to biomedicine.This special issue features pioneering research that integrates AI-driven methods with AM,enabling the design and fabrication of complex,optimized structures with enhanced properties.
文摘With the improvement of China's urbanization development level, large cities continue to add high-rise buildings, which can alleviate the problem of land shortage in large cities. The structural design of high-rise buildings has always been the focus of attention in this field. If it is not handled properly, it may affect the structural stability and even cause serious problems. In order to promote the design of high-rise building structure more scientific, this paper deeply studies the common problems in its design process, and gives appropriate solutions, hoping to provide some reference value for improving the quality of high-rise building structure design.
文摘This paper introduces a video application-aware cross-layer framework for joint performance-energy optimization,considering the scenario of multiple users upstreaming real-time Motion JPEG2000 video streams to the access point of a WiFi wireless local area network and extends the PHY-MAC run-time cross-layer scheduling strategy that we introduced in (Mangharam et al., 2005; Pollin et al., 2005) to also consider congested network situations where video packets have to be dropped. We show that an optimal solution at PHY-MAC level can be highly suboptimal at application level, and then show that making the cross-layer framework application-aware through a prioritized dropping policy capitalizing on the inherent scalability of Motion JPEG2000 video streams leads to drastic average video quality improvements and inter-user quality variation reductions of as much as 10 dB PSNR, without affecting the overall energy consumption requirements.
基金supported by Prince Sattam bin Abdulaziz University for funding this research work through the project number(2024/RV/06).
文摘With the rapid advancements in technology and science,optimization theory and algorithms have become increasingly important.A wide range of real-world problems is classified as optimization challenges,and meta-heuristic algorithms have shown remarkable effectiveness in solving these challenges across diverse domains,such as machine learning,process control,and engineering design,showcasing their capability to address complex optimization problems.The Stochastic Fractal Search(SFS)algorithm is one of the most popular meta-heuristic optimization methods inspired by the fractal growth patterns of natural materials.Since its introduction by Hamid Salimi in 2015,SFS has garnered significant attention from researchers and has been applied to diverse optimization problems acrossmultiple disciplines.Its popularity can be attributed to several factors,including its simplicity,practical computational efficiency,ease of implementation,rapid convergence,high effectiveness,and ability to address singleandmulti-objective optimization problems,often outperforming other established algorithms.This review paper offers a comprehensive and detailed analysis of the SFS algorithm,covering its standard version,modifications,hybridization,and multi-objective implementations.The paper also examines several SFS applications across diverse domains,including power and energy systems,image processing,machine learning,wireless sensor networks,environmental modeling,economics and finance,and numerous engineering challenges.Furthermore,the paper critically evaluates the SFS algorithm’s performance,benchmarking its effectiveness against recently published meta-heuristic algorithms.In conclusion,the review highlights key findings and suggests potential directions for future developments and modifications of the SFS algorithm.
文摘During the last few years we have witnessed impressive developments in the area of stochastic local search techniques for intelligent optimization and Reactive Search Optimization. In order to handle the complexity, in the framework of stochastic local search optimization, learning and optimization has been deeply interconnected through interaction with the decision maker via the visualization approach of the online graphs. Consequently a number of complex optimization problems, in particular multiobjective optimization problems, arising in widely different contexts have been effectively treated within the general framework of RSO. In solving real-life multiobjective optimization problems often most emphasis are spent on finding the complete Pareto-optimal set and less on decision-making. However the com-plete task of multiobjective optimization is considered as a combined task of optimization and decision-making. In this paper, we suggest an interactive procedure which will involve the decision-maker in the optimization process helping to choose a single solution at the end. Our proposed method works on the basis of Reactive Search Optimization (RSO) algorithms and available software architecture packages. The procedure is further compared with the excising novel method of Interactive Multiobjective Optimization and Decision-Making, using Evolutionary method (I-MODE). In order to evaluate the effectiveness of both methods the well-known study case of welded beam design problem is reconsidered.