In order to slove the large-scale nonlinear programming (NLP) problems efficiently, an efficient optimization algorithm based on reduced sequential quadratic programming (rSQP) and automatic differentiation (AD)...In order to slove the large-scale nonlinear programming (NLP) problems efficiently, an efficient optimization algorithm based on reduced sequential quadratic programming (rSQP) and automatic differentiation (AD) is presented in this paper. With the characteristics of sparseness, relatively low degrees of freedom and equality constraints utilized, the nonlinear programming problem is solved by improved rSQP solver. In the solving process, AD technology is used to obtain accurate gradient information. The numerical results show that the combined algorithm, which is suitable for large-scale process optimization problems, can calculate more efficiently than rSQP itself.展开更多
This study presents a hybrid algorithm obtained by combining a genetic algorithm (GA) with successive quadratic sequential programming (SQP), namely GA-SQP. GA is the main optimizer, whereas SQP is used to refine the ...This study presents a hybrid algorithm obtained by combining a genetic algorithm (GA) with successive quadratic sequential programming (SQP), namely GA-SQP. GA is the main optimizer, whereas SQP is used to refine the results of GA, further improving the solution quality. The problem formulation is done in the framework named RUNE (fRamework for aUtomated aNalog dEsign), which targets solving nonlinear mono-objective and multi-objective optimization problems for analog circuits design. Two circuits are presented: a transimpedance amplifier (TIA) and an optical driver (Driver), which are both part of an Optical Network-on-Chip (ONoC). Furthermore, convergence characteristics and robustness of the proposed method have been explored through comparison with results obtained with SQP algorithm. The outcome is very encouraging and suggests that the hybrid proposed method is very efficient in solving analog design problems.展开更多
文摘In order to slove the large-scale nonlinear programming (NLP) problems efficiently, an efficient optimization algorithm based on reduced sequential quadratic programming (rSQP) and automatic differentiation (AD) is presented in this paper. With the characteristics of sparseness, relatively low degrees of freedom and equality constraints utilized, the nonlinear programming problem is solved by improved rSQP solver. In the solving process, AD technology is used to obtain accurate gradient information. The numerical results show that the combined algorithm, which is suitable for large-scale process optimization problems, can calculate more efficiently than rSQP itself.
文摘This study presents a hybrid algorithm obtained by combining a genetic algorithm (GA) with successive quadratic sequential programming (SQP), namely GA-SQP. GA is the main optimizer, whereas SQP is used to refine the results of GA, further improving the solution quality. The problem formulation is done in the framework named RUNE (fRamework for aUtomated aNalog dEsign), which targets solving nonlinear mono-objective and multi-objective optimization problems for analog circuits design. Two circuits are presented: a transimpedance amplifier (TIA) and an optical driver (Driver), which are both part of an Optical Network-on-Chip (ONoC). Furthermore, convergence characteristics and robustness of the proposed method have been explored through comparison with results obtained with SQP algorithm. The outcome is very encouraging and suggests that the hybrid proposed method is very efficient in solving analog design problems.