Simultaneously integrating heterogeneous interface,element doping,and metal decorating was a promising strategy to promote the visible-light-driven photocatalytic activity.Herein,we demonstrated a facile solvothermal ...Simultaneously integrating heterogeneous interface,element doping,and metal decorating was a promising strategy to promote the visible-light-driven photocatalytic activity.Herein,we demonstrated a facile solvothermal route for Ni-doped BiOBr/Bi^(0) with ZnO 3D hierarchical heterojunction(denoted as Z@B/BiNi).The optimal photocatalysts of Z@B/Bi-Ni sample presented a remarkable catalytic performance of high concentrations of tetracycline solution(40 mg/L)than those of the Z@B/Bi,Z@B,BOB and ZnO photocatalysts toward the visible-light-driven degradation.The enhanced photocatalytic mechanism can be proposed as follows:(ⅰ)3D hierarchical heterojunction provided more active sites and accelerated the separation of charge carriers for photocatalytic TC;(ⅱ)formation of oxygen vacancies on the surface over Z@B/Bi-Ni by in-situ reduction of Bi^(0) and Ni doping could serve as the active sites for oxygen activation to adsorb free O_(2) and generate more superoxide radicals;(ⅲ)SPR effect of Bi metal were beneficial to carrier separation and also act as the active site to trap O_(2) molecules.This work clarified the role of unique morphologies,surface plasmonic resonance(SPR)effect of metal Bi,and Ni doping in Z@B/Bi-Ni,and its photocatalytic reaction mechanism was proposed by a series of experiments,characterization and DFT calculations,arousing a new perspective to design hierarchical heterojunction photocatalysts.展开更多
Highly competent and economical photocatalysts are one of the most charming targets in environmental restoration and clean production.Herein,a novel sulfur-vacancy-rich Bi/Bi_(2)S_(3)/SnS_(2)Z-scheme heterostruc-ture ...Highly competent and economical photocatalysts are one of the most charming targets in environmental restoration and clean production.Herein,a novel sulfur-vacancy-rich Bi/Bi_(2)S_(3)/SnS_(2)Z-scheme heterostruc-ture was constructed in situ and applied for the photoreduction Cr(VI)and nitrogen fixation.The fab-ricated Bi/Bi_(2)S_(3)/SnS_(2)-2 exhibits the optimum photoreduction Cr(VI)performance with the efficiency of 94.5%within 15 min visible light irradiation.The remarkably enhanced catalytic efficiency derived from the synergistic effect of the construction of intimate contacted interface,abundant sulfur vacancy and surface plasmon resonance(SPR)effect of metal Bi.Meanwhile,the excellent photocatalytic nitrogen fix-ation property(96.4μmol g^(-1)h^(-1))was achieved by Bi/Bi_(2)S_(3)/SnS_(2)-2 under full solar illumination because sulfur vacancy could provide sufficient catalytic sites to accelerate the adsorption and nitrogen activation.The Z-scheme heterostructure was proposed to expound the photocatalytic mechanism.This work offers a new perspective on hierarchical heterostructure with plentiful vacancies for environmental remediation and energy development.展开更多
In a surface plasmon resonant (SPR) configuration, real part in refraction coefficient of modulation layer material is monotonic with resonant wave length, while imaginary part is monotonic with resonant magnitude. Ba...In a surface plasmon resonant (SPR) configuration, real part in refraction coefficient of modulation layer material is monotonic with resonant wave length, while imaginary part is monotonic with resonant magnitude. Based on the fact above, a new type of display is proposed and designed. Firstly, a display pixel with either controllable color or controllable brightness is discussed, and then a display pixel with both controllable color and brightness is proposed in detail. At last, an SPR display with 8×8 pixels is developed and simulated. The results show that color and brightness of each display pixel in an SPR display can be tuned directly, with no need of synthesizing three basic colors, traditionally. Moreover, the display has many merits, such as high color resolution, high contrast, high brightness, fast re-sponse, etc. Yet practical usage of SPR display demands deeper study on properties of modulation layer material and fabrication techniques.展开更多
基金supported by the National Natural Science Foundation of China(No.21576211)Tianjin Program of Science and Technology(No.21ZYJDJC00100)+1 种基金Tianjin Innovative Research Team in Universities(No.TD13-5031)Tianjin 131 Research Team of Innovative Talents。
文摘Simultaneously integrating heterogeneous interface,element doping,and metal decorating was a promising strategy to promote the visible-light-driven photocatalytic activity.Herein,we demonstrated a facile solvothermal route for Ni-doped BiOBr/Bi^(0) with ZnO 3D hierarchical heterojunction(denoted as Z@B/BiNi).The optimal photocatalysts of Z@B/Bi-Ni sample presented a remarkable catalytic performance of high concentrations of tetracycline solution(40 mg/L)than those of the Z@B/Bi,Z@B,BOB and ZnO photocatalysts toward the visible-light-driven degradation.The enhanced photocatalytic mechanism can be proposed as follows:(ⅰ)3D hierarchical heterojunction provided more active sites and accelerated the separation of charge carriers for photocatalytic TC;(ⅱ)formation of oxygen vacancies on the surface over Z@B/Bi-Ni by in-situ reduction of Bi^(0) and Ni doping could serve as the active sites for oxygen activation to adsorb free O_(2) and generate more superoxide radicals;(ⅲ)SPR effect of Bi metal were beneficial to carrier separation and also act as the active site to trap O_(2) molecules.This work clarified the role of unique morphologies,surface plasmonic resonance(SPR)effect of metal Bi,and Ni doping in Z@B/Bi-Ni,and its photocatalytic reaction mechanism was proposed by a series of experiments,characterization and DFT calculations,arousing a new perspective to design hierarchical heterojunction photocatalysts.
基金supported by the National Natural Science Foun-dation of China(Nos.22178038 and 21878031)Innovation Supporting Plan for High-level Talents of Dalian(No.2021RQ116).
文摘Highly competent and economical photocatalysts are one of the most charming targets in environmental restoration and clean production.Herein,a novel sulfur-vacancy-rich Bi/Bi_(2)S_(3)/SnS_(2)Z-scheme heterostruc-ture was constructed in situ and applied for the photoreduction Cr(VI)and nitrogen fixation.The fab-ricated Bi/Bi_(2)S_(3)/SnS_(2)-2 exhibits the optimum photoreduction Cr(VI)performance with the efficiency of 94.5%within 15 min visible light irradiation.The remarkably enhanced catalytic efficiency derived from the synergistic effect of the construction of intimate contacted interface,abundant sulfur vacancy and surface plasmon resonance(SPR)effect of metal Bi.Meanwhile,the excellent photocatalytic nitrogen fix-ation property(96.4μmol g^(-1)h^(-1))was achieved by Bi/Bi_(2)S_(3)/SnS_(2)-2 under full solar illumination because sulfur vacancy could provide sufficient catalytic sites to accelerate the adsorption and nitrogen activation.The Z-scheme heterostructure was proposed to expound the photocatalytic mechanism.This work offers a new perspective on hierarchical heterostructure with plentiful vacancies for environmental remediation and energy development.
基金the National Natural Science Foundation of China (Grant No. 60621002)
文摘In a surface plasmon resonant (SPR) configuration, real part in refraction coefficient of modulation layer material is monotonic with resonant wave length, while imaginary part is monotonic with resonant magnitude. Based on the fact above, a new type of display is proposed and designed. Firstly, a display pixel with either controllable color or controllable brightness is discussed, and then a display pixel with both controllable color and brightness is proposed in detail. At last, an SPR display with 8×8 pixels is developed and simulated. The results show that color and brightness of each display pixel in an SPR display can be tuned directly, with no need of synthesizing three basic colors, traditionally. Moreover, the display has many merits, such as high color resolution, high contrast, high brightness, fast re-sponse, etc. Yet practical usage of SPR display demands deeper study on properties of modulation layer material and fabrication techniques.