Positron annihilation lifetime spectroscopy (PALS) is a powerful technique for the study of free volume in polymers. The lifetime of ortho-positronium (o-Ps), a bound state of an electron and a positron, can be us...Positron annihilation lifetime spectroscopy (PALS) is a powerful technique for the study of free volume in polymers. The lifetime of ortho-positronium (o-Ps), a bound state of an electron and a positron, can be used to assess the pore size, while the intensity can be used to characterize the number of pores. Based on the values of the long-lived o-Ps components in the lifetime spectra, the radii and fractional free volumes of sulfonated poly (2,6-dimethyl-1,4- phenyleneoxide) (SPPO) membranes with added LiCl and SPPO-PES (Polyethersulfone) blend were compared. Free volume radii in both kinds of membranes are discussed.展开更多
Positron annihilation lifetime spectroscopy (PALS) is a powerful technique to study the free volume in polymers. The lifetime of ortho-positronium (o-Ps), a bound state of an electron and a positron, can be used t...Positron annihilation lifetime spectroscopy (PALS) is a powerful technique to study the free volume in polymers. The lifetime of ortho-positronium (o-Ps), a bound state of an electron and a positron, can be used to assess the pore size while the intensity can be used to characterize the number of pores. On the basis of the values of the long-lived o-Ps components in the lifetime spectra, the radii and fractional free volumes in the sulfonated poly (2,6-dimethyl-1,4- phenyleneoxide) (SPPO) membranes with different amounts of LiCl were calculated. It was found that, with the increasing amount of LiCl, the free volume radius and the fractional free volume firstly increased and then decreased. After immersing the membranes in distilled water, the free volume radius and the fractional free volume changed with different water concentrations in the membrane.展开更多
基金supported by National Natural Science Foundation (No. 60602065)Innovation Funds of University of Science and Technology of China for Graduate Student (No.KD2006009)
文摘Positron annihilation lifetime spectroscopy (PALS) is a powerful technique for the study of free volume in polymers. The lifetime of ortho-positronium (o-Ps), a bound state of an electron and a positron, can be used to assess the pore size, while the intensity can be used to characterize the number of pores. Based on the values of the long-lived o-Ps components in the lifetime spectra, the radii and fractional free volumes of sulfonated poly (2,6-dimethyl-1,4- phenyleneoxide) (SPPO) membranes with added LiCl and SPPO-PES (Polyethersulfone) blend were compared. Free volume radii in both kinds of membranes are discussed.
基金supported by "Hundred Talents Program Fund" of Chinese Academy of Sciences
文摘Positron annihilation lifetime spectroscopy (PALS) is a powerful technique to study the free volume in polymers. The lifetime of ortho-positronium (o-Ps), a bound state of an electron and a positron, can be used to assess the pore size while the intensity can be used to characterize the number of pores. On the basis of the values of the long-lived o-Ps components in the lifetime spectra, the radii and fractional free volumes in the sulfonated poly (2,6-dimethyl-1,4- phenyleneoxide) (SPPO) membranes with different amounts of LiCl were calculated. It was found that, with the increasing amount of LiCl, the free volume radius and the fractional free volume firstly increased and then decreased. After immersing the membranes in distilled water, the free volume radius and the fractional free volume changed with different water concentrations in the membrane.