Aiming at the problem of low surface defect detection accuracy of industrial products, an object detection method based on simplified spatial pyramid pooling fast(Sim SPPF) hybrid pooling improved you only look once v...Aiming at the problem of low surface defect detection accuracy of industrial products, an object detection method based on simplified spatial pyramid pooling fast(Sim SPPF) hybrid pooling improved you only look once version 5s(YOLOV5s) model is proposed. The algorithm introduces channel attention(CA) module, simplified SPPF feature vector pyramid and efficient intersection over union(EIOU) loss function. Feature vector pyramids fuse high-dimensional and low-dimensional features, which makes semantic information richer. The CA mechanism performs maximum pooling and average pooling operations on the feature map. Hybrid pooling comprehensively improves detection computing efficiency and accurate deployment ability. The results show that the improved YOLOV5s model is better than the original YOLOV5s model. The average test accuracy(mAP) can reach 91.8%, which can be increased by 17.4%, and the detection speed can reach 108 FPS, which can be increased by 18 FPS. The improved model is practicable, and the overall performance is better than other conventional models.展开更多
为提高自然环境中玉米害虫识别的准确性,开发一种基于优化YOLOv8的深度学习模型YOLOv8-LAP。该模型将大型可分离卷积核注意力(LSKA)机制引入特征融合模块空间快速金字塔池化(SPPF),增强多尺度特征提取能力,提升检测性能。针对玉米害虫...为提高自然环境中玉米害虫识别的准确性,开发一种基于优化YOLOv8的深度学习模型YOLOv8-LAP。该模型将大型可分离卷积核注意力(LSKA)机制引入特征融合模块空间快速金字塔池化(SPPF),增强多尺度特征提取能力,提升检测性能。针对玉米害虫图像检测中小目标难以捕捉、背景复杂和光照变化等挑战,在主干网络中加入AFGC(Attention for Fine-Grained Categorization)层,以进一步增强图像特征提取的效果,提升模型的泛化能力和鲁棒性。为保证实时检测和模型轻量化,引入可编程梯度信息(PGI)技术,通过辅助监督优化训练过程,减少参数并加速推理。在9种常见玉米害虫的检测中,YOLOv8-LAP模型的平均精度均值(mAP0.5)达到了95.7%,相较于原始YOLOv8模型提高了4.9个百分点。此外,为验证YOLOv8-LAP模型的效果,开发一款基于PySide6的应用程序,该应用拥有用户友好的图形用户界面(GUI),具有实时图像处理和视频分析功能,并支持静态图像、动态视频和摄像头实时目标检测。可见,YOLOv8-LAP模型在降低漏检率和误检率方面表现突出,目标定位更精准,适用于自然环境下的玉米害虫识别,并为精准施药提供技术支持。展开更多
基于深度学习的图像目标检测方法具有检测精度高、检测速度快等优点,广泛应用于路面病害检测中,目前研究多关注俯视影像的路面病害检测,前视影像中复杂场景对检测精度影响的研究尚不足。本文基于YOLOv8(you only look once version 8)...基于深度学习的图像目标检测方法具有检测精度高、检测速度快等优点,广泛应用于路面病害检测中,目前研究多关注俯视影像的路面病害检测,前视影像中复杂场景对检测精度影响的研究尚不足。本文基于YOLOv8(you only look once version 8)提出一种路面病害检测模型YOLO-RMID(road maintenance inspection detection)。利用Mask掩模将天空与地面分隔开,屏蔽空中悬挂输电线区域;将注意力机制融入主干特征提取部分中的快速空间金字塔池化(spatial pyramid pooling fast,SPPF)模块,提高裂缝所在区域权重;在特征融合部分中通过将BiFusion模块与RepBlock模块相结合,构建多尺度融合特征BFRB(BiFusion RepBlock)结构,提高模型对路面病害的感知能力;为验证方法可行性,制作路面病害数据集LNTU_RMID,结合公开数据集RDD2022,与常用的MUENet、CrackYOLO及DGE-YOLO-P模型进行对比评价。结果表明,本方法的综合性能相对最优,平均精度分别提高了约6.7%、5.4%、6.6%。展开更多
Urban underground pipelines are an important infrastructure in cities,and timely investigation of problems in underground pipelines can help ensure the normal operation of cities.Owing to the growing demand for defect...Urban underground pipelines are an important infrastructure in cities,and timely investigation of problems in underground pipelines can help ensure the normal operation of cities.Owing to the growing demand for defect detection in urban underground pipelines,this study developed an improved defect detection method for urban underground pipelines based on fully convolutional one-stage object detector(FCOS),called spatial pyramid pooling-fast(SPPF)feature fusion and dual detection heads based on FCOS(SDH-FCOS)model.This study improved the feature fusion component of the model network based on FCOS,introduced an SPPF network structure behind the last output feature layer of the backbone network,fused the local and global features,added a top-down path to accelerate the circulation of shallowinformation,and enriched the semantic information acquired by shallow features.The ability of the model to detect objects with multiple morphologies was strengthened by introducing dual detection heads.The experimental results using an open dataset of underground pipes show that the proposed SDH-FCOS model can recognize underground pipe defects more accurately;the average accuracy was improved by 2.7% compared with the original FCOS model,reducing the leakage rate to a large extent and achieving real-time detection.Also,our model achieved a good trade-off between accuracy and speed compared with other mainstream methods.This proved the effectiveness of the proposed model.展开更多
基金supported by the Tianjin Postgraduate Research Innovation Project (No.2022SKY286)the National Science and the National Key Research and Development Program (No.2022YFF0706000)。
文摘Aiming at the problem of low surface defect detection accuracy of industrial products, an object detection method based on simplified spatial pyramid pooling fast(Sim SPPF) hybrid pooling improved you only look once version 5s(YOLOV5s) model is proposed. The algorithm introduces channel attention(CA) module, simplified SPPF feature vector pyramid and efficient intersection over union(EIOU) loss function. Feature vector pyramids fuse high-dimensional and low-dimensional features, which makes semantic information richer. The CA mechanism performs maximum pooling and average pooling operations on the feature map. Hybrid pooling comprehensively improves detection computing efficiency and accurate deployment ability. The results show that the improved YOLOV5s model is better than the original YOLOV5s model. The average test accuracy(mAP) can reach 91.8%, which can be increased by 17.4%, and the detection speed can reach 108 FPS, which can be increased by 18 FPS. The improved model is practicable, and the overall performance is better than other conventional models.
文摘为提高自然环境中玉米害虫识别的准确性,开发一种基于优化YOLOv8的深度学习模型YOLOv8-LAP。该模型将大型可分离卷积核注意力(LSKA)机制引入特征融合模块空间快速金字塔池化(SPPF),增强多尺度特征提取能力,提升检测性能。针对玉米害虫图像检测中小目标难以捕捉、背景复杂和光照变化等挑战,在主干网络中加入AFGC(Attention for Fine-Grained Categorization)层,以进一步增强图像特征提取的效果,提升模型的泛化能力和鲁棒性。为保证实时检测和模型轻量化,引入可编程梯度信息(PGI)技术,通过辅助监督优化训练过程,减少参数并加速推理。在9种常见玉米害虫的检测中,YOLOv8-LAP模型的平均精度均值(mAP0.5)达到了95.7%,相较于原始YOLOv8模型提高了4.9个百分点。此外,为验证YOLOv8-LAP模型的效果,开发一款基于PySide6的应用程序,该应用拥有用户友好的图形用户界面(GUI),具有实时图像处理和视频分析功能,并支持静态图像、动态视频和摄像头实时目标检测。可见,YOLOv8-LAP模型在降低漏检率和误检率方面表现突出,目标定位更精准,适用于自然环境下的玉米害虫识别,并为精准施药提供技术支持。
文摘基于深度学习的图像目标检测方法具有检测精度高、检测速度快等优点,广泛应用于路面病害检测中,目前研究多关注俯视影像的路面病害检测,前视影像中复杂场景对检测精度影响的研究尚不足。本文基于YOLOv8(you only look once version 8)提出一种路面病害检测模型YOLO-RMID(road maintenance inspection detection)。利用Mask掩模将天空与地面分隔开,屏蔽空中悬挂输电线区域;将注意力机制融入主干特征提取部分中的快速空间金字塔池化(spatial pyramid pooling fast,SPPF)模块,提高裂缝所在区域权重;在特征融合部分中通过将BiFusion模块与RepBlock模块相结合,构建多尺度融合特征BFRB(BiFusion RepBlock)结构,提高模型对路面病害的感知能力;为验证方法可行性,制作路面病害数据集LNTU_RMID,结合公开数据集RDD2022,与常用的MUENet、CrackYOLO及DGE-YOLO-P模型进行对比评价。结果表明,本方法的综合性能相对最优,平均精度分别提高了约6.7%、5.4%、6.6%。
基金supported by the National Natural Science Foundation of China under Grant No.61976226the Research and Academic Team of South-CentralMinzu University under Grant No.KTZ20050.
文摘Urban underground pipelines are an important infrastructure in cities,and timely investigation of problems in underground pipelines can help ensure the normal operation of cities.Owing to the growing demand for defect detection in urban underground pipelines,this study developed an improved defect detection method for urban underground pipelines based on fully convolutional one-stage object detector(FCOS),called spatial pyramid pooling-fast(SPPF)feature fusion and dual detection heads based on FCOS(SDH-FCOS)model.This study improved the feature fusion component of the model network based on FCOS,introduced an SPPF network structure behind the last output feature layer of the backbone network,fused the local and global features,added a top-down path to accelerate the circulation of shallowinformation,and enriched the semantic information acquired by shallow features.The ability of the model to detect objects with multiple morphologies was strengthened by introducing dual detection heads.The experimental results using an open dataset of underground pipes show that the proposed SDH-FCOS model can recognize underground pipe defects more accurately;the average accuracy was improved by 2.7% compared with the original FCOS model,reducing the leakage rate to a large extent and achieving real-time detection.Also,our model achieved a good trade-off between accuracy and speed compared with other mainstream methods.This proved the effectiveness of the proposed model.