Based on the superiority of adaptive filtering algorithms designed with hyperbolic function-like objective functions,this paper proposes generalized spline adaptive filtering(SAF)algorithms designed with hyperbolic fu...Based on the superiority of adaptive filtering algorithms designed with hyperbolic function-like objective functions,this paper proposes generalized spline adaptive filtering(SAF)algorithms designed with hyperbolic function-like objective functions.Specifically,a series of generalized new SAF algorithms are proposed by introducing the q-deformed hyperbolic function as the cost function,named SAF-qDHSI,SAF-qDHCO,SAFqDHTA&SAF-qDHSE algorithms,respectively.Then,the proposed algorithm is theoretically demonstrated with detailed mean convergence and computational complexity analysis;secondly,the effect of different q values on the performance of the new algorithm is verified through data simulation;the new algorithm still has better performance under the interference of Gaussian noise and non-Gaussian noise even when facing the system mutation;finally,the new algorithm is verified through the measured engineering data,and the results show that the new algorithm has better convergence and robustness compared with the existing algorithm.In conclusion,the generalized algorithm based on the new cost function proposed in this paper is more effective in nonlinear system identification.展开更多
Non-uniform algebraic-trigonometric B-splines shares most of the properties as those of the usual polynomial B-splines. But they are not orthogonai. We construct an orthogonal basis for the n-order(n ≥ 3) algebraic...Non-uniform algebraic-trigonometric B-splines shares most of the properties as those of the usual polynomial B-splines. But they are not orthogonai. We construct an orthogonal basis for the n-order(n ≥ 3) algebraic-trigonometric spline space in order to resolve the theo- retical problem that there is not an explicit orthogonai basis in the space by now. Motivated by the Legendre polynomials, we present a novel approach to define a set of auxiliary functions, which have simple and explicit expressions. Then the proposed orthogonal splines are given as the derivatives of these auxiliary functions.展开更多
A class of quasi-cubic B-spline base functions by trigonometric polynomials are established which inherit properties similar to those of cubic B-spline bases. The corresponding curves with a shape parameter a, defined...A class of quasi-cubic B-spline base functions by trigonometric polynomials are established which inherit properties similar to those of cubic B-spline bases. The corresponding curves with a shape parameter a, defined by the introduced base functions, include the B-spline curves and can approximate the B-spline curves from both sides. The curves can be adjusted easily by using the shape parameter a, where dpi(a,t) is linear with respect to da for the fixed t. With the shape parameter chosen properly, the defined curves can be used to precisely represent straight line segments, parabola segments, circular arcs and some transcendental curves, and the corresponding tensor product surfaces can also represent spherical surfaces, cylindrical surfaces and some transcendental surfaces exactly. By abandoning positive property, this paper proposes a new C^2 continuous blended interpolation spline based on piecewise trigonometric polynomials associated with a sequence of local parameters. Illustration showed that the curves and surfaces constructed by the blended spline can be adjusted easily and freely. The blended interpolation spline curves can be shape-preserving with proper local parameters since these local parameters can be considered to be the magnification ratio to the length of tangent vectors at the interpolating points. The idea is extended to produce blended spline surfaces.展开更多
基金financially supported by the National Natural Science Foundation of China (8225041038)the Sichuan Science and Technology Program (23NSFSC2916)the Fundamental Research Funds for the Central Universities, Southwest Minzu University (ZYN2024077)
文摘Based on the superiority of adaptive filtering algorithms designed with hyperbolic function-like objective functions,this paper proposes generalized spline adaptive filtering(SAF)algorithms designed with hyperbolic function-like objective functions.Specifically,a series of generalized new SAF algorithms are proposed by introducing the q-deformed hyperbolic function as the cost function,named SAF-qDHSI,SAF-qDHCO,SAFqDHTA&SAF-qDHSE algorithms,respectively.Then,the proposed algorithm is theoretically demonstrated with detailed mean convergence and computational complexity analysis;secondly,the effect of different q values on the performance of the new algorithm is verified through data simulation;the new algorithm still has better performance under the interference of Gaussian noise and non-Gaussian noise even when facing the system mutation;finally,the new algorithm is verified through the measured engineering data,and the results show that the new algorithm has better convergence and robustness compared with the existing algorithm.In conclusion,the generalized algorithm based on the new cost function proposed in this paper is more effective in nonlinear system identification.
基金Supported by the National Natural Science Foundation of China(60933008,61272300 and 11226327)the Science&Technology Program of Shanghai Maritime University(20120099)
文摘Non-uniform algebraic-trigonometric B-splines shares most of the properties as those of the usual polynomial B-splines. But they are not orthogonai. We construct an orthogonal basis for the n-order(n ≥ 3) algebraic-trigonometric spline space in order to resolve the theo- retical problem that there is not an explicit orthogonai basis in the space by now. Motivated by the Legendre polynomials, we present a novel approach to define a set of auxiliary functions, which have simple and explicit expressions. Then the proposed orthogonal splines are given as the derivatives of these auxiliary functions.
基金Project supported by the National Natural Science Foundation of China (Nos. 10171026 and 60473114), the Research Funds forYoung Innovation Group, Education Department of Anhui Prov-ince (No. 2005TD03) and the Natural Science Foundation of An-hui Provincial Education Department (No. 2006KJ252B), China
文摘A class of quasi-cubic B-spline base functions by trigonometric polynomials are established which inherit properties similar to those of cubic B-spline bases. The corresponding curves with a shape parameter a, defined by the introduced base functions, include the B-spline curves and can approximate the B-spline curves from both sides. The curves can be adjusted easily by using the shape parameter a, where dpi(a,t) is linear with respect to da for the fixed t. With the shape parameter chosen properly, the defined curves can be used to precisely represent straight line segments, parabola segments, circular arcs and some transcendental curves, and the corresponding tensor product surfaces can also represent spherical surfaces, cylindrical surfaces and some transcendental surfaces exactly. By abandoning positive property, this paper proposes a new C^2 continuous blended interpolation spline based on piecewise trigonometric polynomials associated with a sequence of local parameters. Illustration showed that the curves and surfaces constructed by the blended spline can be adjusted easily and freely. The blended interpolation spline curves can be shape-preserving with proper local parameters since these local parameters can be considered to be the magnification ratio to the length of tangent vectors at the interpolating points. The idea is extended to produce blended spline surfaces.