A multi-resolution smoothed particle hydrodynamics and peridynamics(SPH-PD)coupling model is proposed in this study for simulating the fracture characteristics of ice plates exposed to underwater blast loads.The SPH m...A multi-resolution smoothed particle hydrodynamics and peridynamics(SPH-PD)coupling model is proposed in this study for simulating the fracture characteristics of ice plates exposed to underwater blast loads.The SPH model employs a volume adaptive scheme(VAS)and a multi-resolution particle technique to accurately simulate explosive charge detonation and shock wave propagation.This approach addresses numerical challenges from charge expansion and significant size disparity between the charge and the fluid particles.The model captures the full underwater explosion process,covering both the shock wave phase and the bubble expansion stage,by applying appropriate equations of state for each respective phase.To analyze ice plate damage and crack propagation influenced by temperature changes,an ordinary state-based PD(OSB-PD)formulation with coupled mechanical and thermodynamic models is used.Numerical results show that the proposed coupling method demonstrates good agreement with reference solutions and experimental data.展开更多
基金partially funded by the National Natural Science Foundation of China(Grant No.52171329)the Guangdong Basic and Applied Basic Research Foundation(Grant No.2024B1515020107)+1 种基金the Young Elite Scientist Sponsorship Program by CAST(Grant No.2022QNRC001)Characteristic Innovation Project of Universities in Guangdong Province(Grant No.2023KTSCX005).
文摘A multi-resolution smoothed particle hydrodynamics and peridynamics(SPH-PD)coupling model is proposed in this study for simulating the fracture characteristics of ice plates exposed to underwater blast loads.The SPH model employs a volume adaptive scheme(VAS)and a multi-resolution particle technique to accurately simulate explosive charge detonation and shock wave propagation.This approach addresses numerical challenges from charge expansion and significant size disparity between the charge and the fluid particles.The model captures the full underwater explosion process,covering both the shock wave phase and the bubble expansion stage,by applying appropriate equations of state for each respective phase.To analyze ice plate damage and crack propagation influenced by temperature changes,an ordinary state-based PD(OSB-PD)formulation with coupled mechanical and thermodynamic models is used.Numerical results show that the proposed coupling method demonstrates good agreement with reference solutions and experimental data.