期刊文献+
共找到64篇文章
< 1 2 4 >
每页显示 20 50 100
An SPH Framework for Earthquake-Induced Liquefaction Hazard Assessment of Geotechnical Structures
1
作者 Sourabh Mhaski G.V.Ramana 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期251-277,共27页
Earthquake-induced soil liquefaction poses significant risks to the stability of geotechnical structures worldwide.An understanding of the liquefaction triggering,and the post-failure large deformation behaviour is es... Earthquake-induced soil liquefaction poses significant risks to the stability of geotechnical structures worldwide.An understanding of the liquefaction triggering,and the post-failure large deformation behaviour is essential for designing resilient infrastructure.The present study develops a Smoothed Particle Hydrodynamics(SPH)framework for earthquake-induced liquefaction hazard assessment of geotechnical structures.The coupled flowdeformation behaviour of soils subjected to cyclic loading is described using the PM4Sand model implemented in a three-phase,single-layer SPH framework.A staggered discretisation scheme based on the stress particle SPH approach is adopted to minimise numerical inaccuracies caused by zero-energy modes and tensile instability.Further,non-reflecting boundary conditions for seismic analysis of semi-infinite soil domains using the SPH method are proposed.The numerical framework is employed for the analysis of cyclic direct simple shear test,seismic analysis of a level ground site,and liquefaction-induced failure of the Lower San Fernando Dam.Satisfactory agreement for liquefaction triggering and post-failure behaviour demonstrates that the SPH framework can be utilised to assess the effect of seismic loading on field-scale geotechnical structures.The present study also serves as the basis for future advancements of the SPH method for applications related to earthquake geotechnical engineering. 展开更多
关键词 EARTHQUAKE SEISMIC LIQUEFACTION stress particle PM4Sand smoothed particle hydrodynamics(sph)
在线阅读 下载PDF
Study of the Boundary Pressure Instability of the SPH Method Based on Fan-Free Surface Detection
2
作者 ZHAO Jie ZHENG Xiong-bo +2 位作者 MU Tong-yao LENG Yue-yue ZHAO Hao-yu 《China Ocean Engineering》 2025年第2期340-353,共14页
The weakly compressible smooth particle hydrodynamics(WCSPH)model is studied to address the boundary pressure instability of the SPH method,resulting in the development of the SPH method with improved dynamic boundary... The weakly compressible smooth particle hydrodynamics(WCSPH)model is studied to address the boundary pressure instability of the SPH method,resulting in the development of the SPH method with improved dynamic boundary conditions.This method employs the‘fan’search method for free surface detection,effectively identifying cavity interface particles with diameters smaller than the support domain’s radius,thereby indirectly enhancing the algorithm’s accuracy.On this basis,an improved dynamic boundary condition is proposed by updating the boundary particle pressure calculation scheme to achieve a more stable and continuous pressure field,thereby effectively preventing particles from penetrating the boundary.The SPH method with improved dynamic boundary conditions is used to simulate typical high-speed impact problems such as wedge entry and dam break.The simulation results are in good agreement with the experimental data and other numerical results. 展开更多
关键词 smoothed particle hydrodynamics(sph) free surface detection improved dynamic boundary highspeed impact
在线阅读 下载PDF
Smoothed Particle Hydrodynamics(SPH)Simulations of Drop Evaporation:A Comprehensive Overview of Methods and Applications
3
作者 Leonardo Di G.Sigalotti Carlos A.Vargas 《Computer Modeling in Engineering & Sciences》 2025年第3期2281-2337,共57页
The evaporation ofmicrometer and millimeter liquid drops,involving a liquid-to-vapor phase transition accompanied by mass and energy transfer through the liquid-vapor interface,is encountered in many natural and indus... The evaporation ofmicrometer and millimeter liquid drops,involving a liquid-to-vapor phase transition accompanied by mass and energy transfer through the liquid-vapor interface,is encountered in many natural and industrial processes as well as in numerous engineering applications.Therefore,understanding and predicting the dynamics of evaporating flows have become of primary importance.Recent efforts have been addressed using the method of Smoothed Particle Hydrodynamics(SPH),which has proven to be very efficient in correctly handling the intrinsic complexity introduced by the multiscale nature of the evaporation process.This paper aims to provide an overview of published work on SPH-based simulations related to the evaporation of drops suspended in static and convective environments and impacting on heated solid surfaces.After a brief theoretical account of the main ingredients necessary for the modeling of drop evaporation,the fundamental aspects of SPH are revisited along with the various existing formulations that have been implemented to address the challenges imposed by the physics of evaporating flows.In the following sections,the paper summarizes the results of SPH-based simulations of drop evaporation and ends with a few comments on the limitations of the current state-of-the-art SPHsimulations and future lines of research. 展开更多
关键词 Drop evaporation surface tension heat and mass transfer phase separation smoothed particle hydrodynamics(sph) boiling evaporation explosive vaporization droplet/wall interaction
在线阅读 下载PDF
Numerical investigation on a comprehensive high-order finite particle scheme
4
作者 Yudong LI Yan LI +2 位作者 Chunfa WANG PJOLI Zhiqiang FENG 《Applied Mathematics and Mechanics(English Edition)》 2025年第6期1187-1214,共28页
In the field of discretization-based meshfree/meshless methods,the improvements in the higher-order consistency,stability,and computational efficiency are of great concerns in computational science and numerical solut... In the field of discretization-based meshfree/meshless methods,the improvements in the higher-order consistency,stability,and computational efficiency are of great concerns in computational science and numerical solutions to partial differential equations.Various alternative numerical methods of the finite particle method(FPM)frame have been extended from mathematical theories to numerical applications separately.As a comprehensive numerical scheme,this study suggests a unified resolved program for numerically investigating their accuracy,stability,consistency,computational efficiency,and practical applicability in industrial engineering contexts.The high-order finite particle method(HFPM)and corrected methods based on the multivariate Taylor series expansion are constructed and analyzed to investigate the whole applicability in different benchmarks of computational fluid dynamics.Specifically,four benchmarks are designed purposefully from statical exact solutions to multifaceted hydrodynamic tests,which possess different numerical performances on the particle consistency,numerical discretized forms,particle distributions,and transient time evolutional stabilities.This study offers a numerical reference for the current unified resolved program. 展开更多
关键词 numerical method high-order finite particle method(HFPM) kernel gradient correction(KGC) decoupled finite particle method(DFPM) weakly compressible smoothed particle hydrodynamics(sph)
在线阅读 下载PDF
Analysis of structural response under blast loads using the coupled SPH-FEM approach 被引量:12
5
作者 Jun-xiang XU Xi-la LIU 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2008年第9期1184-1192,共9页
A numerical model using the coupled smoothed panicle hydrodynamics-finite element method (SPH-FEM) approach is presented for analysis of structures under blast loads. The analyses on two numerical cases, one for fre... A numerical model using the coupled smoothed panicle hydrodynamics-finite element method (SPH-FEM) approach is presented for analysis of structures under blast loads. The analyses on two numerical cases, one for free field explosive and the other for structural response under blast loads, are performed to model the whole processes from the propagation of the pressure wave to the response of structures. Based on the simulation, it is concluded that this model can be used for reasonably accurate explosive analysis of structures. The resulting information would be valuable for protecting structures under blast loads. 展开更多
关键词 Smoothed particle hydrodynamics sph Finite element method (FEM) Reinforced concrete structure Explosion
在线阅读 下载PDF
A SPH simulation on large-amplitude sloshing for fluids in a two-dimensional tank 被引量:4
6
作者 Wang Lishi Wang Zhuang Li Yuchun 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2013年第1期135-142,共8页
Smoothed particle hydrodynamics(SPH) is a mesh-free adaptive Lagrangian particle method with attractive features for dealing with the free surface flow.This paper applies the SPH method to simulate the large-amplitu... Smoothed particle hydrodynamics(SPH) is a mesh-free adaptive Lagrangian particle method with attractive features for dealing with the free surface flow.This paper applies the SPH method to simulate the large-amplitude lateral sloshing both with and without a floating body,and the vertical parametrically-excited sloshing in a two-dimensional tank.The numerical results show that the SPH approach has an obvious advantage over conventional mesh-based methods in handling nonlinear sloshing problems such as violent fluid-solid interaction,and flow separation and wave-breaking on the free fluid surface.The SPH method provides a new alternative and an effective way to solve these special strong nonlinear sloshing problems. 展开更多
关键词 smoothed particle hydrodynamics sph LARGE-AMPLITUDE fluid sloshing floating body
在线阅读 下载PDF
Numerical Simulation of Water Mitigation Effects on Shock Wave with SPH Method 被引量:3
7
作者 毛益明 方秦 +1 位作者 张亚栋 高振儒 《Transactions of Tianjin University》 EI CAS 2008年第5期387-390,共4页
The water mitigation effect on the propagation of shock wave was investigated numerically. The traditional smoothed particle hydrodynamics (SPH) method was modified based on Riemann solution. The comparison of numeric... The water mitigation effect on the propagation of shock wave was investigated numerically. The traditional smoothed particle hydrodynamics (SPH) method was modified based on Riemann solution. The comparison of numerical results with the analytical solution indicated that the modified SPH method has more advantages than the traditional SPH method. Using the modified SPH algorithm, a series of one-dimensional planar wave propagation problems were investigated, focusing on the influence of the air-gap between the high-pressure air and water and the thickness of water. The numerical results showed that water mitigation effect is significant. Up to 60% shock wave pressure reduction could be achieved with the existence of water, and the shape of shock wave was also changed greatly. It is seemly that the small air-gap between the high-pressure air and water has more influence on water mitigation effect. 展开更多
关键词 water mitigation Riemann solution smoothed particle hydrodynamics sph method shock wave
在线阅读 下载PDF
Numerical Simulation of Shaped Charge Jet Using Multi-Phase SPH Method 被引量:2
8
作者 强洪夫 王坤鹏 高巍然 《Transactions of Tianjin University》 EI CAS 2008年第B10期495-499,共5页
Since the jets and detonation gaseous products are separated by sharp interfaces, the traditional smoothed particle hydrodynamics (SPH) method is difficult to avoid the computational instability at interfaces. The mul... Since the jets and detonation gaseous products are separated by sharp interfaces, the traditional smoothed particle hydrodynamics (SPH) method is difficult to avoid the computational instability at interfaces. The multi-phase SPH (MSPH) method was applied to improving the stabil-ity, which smoothes the particle density and makes pressure continuous at interfaces. Numericalexamples of jet forming process were used to test capability of the MSPH method. The results show that the method remains algorithm stability for large density gradient between the jets and gaseous products and has potential application to both the explosion and the jet problems. The effect of initiation ways of the shaped charge was discussed as well. 展开更多
关键词 smoothed particle hydrodynamics sph MULTI-PHASE large deformation shaped charge jet INITIATION
在线阅读 下载PDF
Numerical study on the dynamic characteristics of water entry of cavity body using two-phase SPH method 被引量:1
9
作者 Qiuzu Yang Fei Xu +3 位作者 Yang Yang Jingyu Wang Anwen Wang Chunhao Ma 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2021年第7期1072-1089,I0002,共19页
The air usually has a major influence on the water entry of a typical cavity body(cavity body is a hollow,cylindrical,semiclosed structure),which not only lowers the slamming load but also affects the dynamic characte... The air usually has a major influence on the water entry of a typical cavity body(cavity body is a hollow,cylindrical,semiclosed structure),which not only lowers the slamming load but also affects the dynamic characteristics of water entry.In this paper,a two-phase smoothed particle hydrodynamics(SPH)model for simulating the water entry of cavity body is presented.The SPH model combined with Riemann solver is improved to deal with the two-phase flows with the discontinuous quantities across the interface.One-sided Riemann problem is used to impose the fluid–structure interaction and a switchfunction-based Riemann solver dissipation is formulated to improve the interfacial instability owing to the strong impact.The motion equations of rigid body are incorporated into two-phase SPH model to describe the motion of cavity body.The proposed model is validated by research on the test cases in the published literature.Finally,this work presents a study of water entry of cavity body by experiment and this two-phase SPH method.The dynamics phenomena in the coupling process between cavity body and two-phase flow are investigated.And the effects of air,mass,the sizes and incline angles of cavity body on the dynamic characteristics of cavity body and two-phase flows are shown. 展开更多
关键词 Water entry Cavity body Dynamic characteristics Multi-phase flow Smoothed particle hydrodynamics(sph)
原文传递
Numerical analysis of slope collapse using SPH and the SIMSAND critical state model 被引量:1
10
作者 Zhao Lu Zhuang Jin Panagiotis Kotronis 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第1期169-179,共11页
Geological disasters such as slope failure and landslides can cause loss of life and property.Therefore,reproducing their evolution process is of great importance for risk assessment and mitigation.The recently develo... Geological disasters such as slope failure and landslides can cause loss of life and property.Therefore,reproducing their evolution process is of great importance for risk assessment and mitigation.The recently developed SIMSAND critical state sand model combined with the smoothed particle hydrodynamics(SPH)method is adopted in this work to study slope failure under large deformations.To illustrate the efficiency and accuracy of the SIMSAND-SPH approach,a series of slope collapse studies using the discrete element method(DEM)considering various particle shapes(i.e.spherical,tetrahedral and elongated)is adopted as benchmarks.The parameters of the SIMSAND model are calibrated using DEM triaxial tests.In comparison to the DEM simulations,the runout distance and final slope height are well characterized with the SIMSAND-SPH approach with less computational cost.All comparisons show that the SIMSAND-SPH approach is highly efficient and accurate,which can be an alternative numerical tool to simulate real scale granular flow. 展开更多
关键词 Granular material Smoothed particle hydrodynamics(sph) Large deformations LANDSLIDE Critical state Slope failure SAND
在线阅读 下载PDF
Comparative Study of Different SPH Schemes on Simulating Violent Water Wave Impact Flows 被引量:1
11
作者 郑兴 马庆位 段文洋 《China Ocean Engineering》 SCIE EI CSCD 2014年第6期791-806,共16页
Free surface flows are of significant interest in Computational Fluid Dynamics(CFD). However, violent water wave impact simulation especially when free surface breaks or impacts on solid wall can be a big challenge ... Free surface flows are of significant interest in Computational Fluid Dynamics(CFD). However, violent water wave impact simulation especially when free surface breaks or impacts on solid wall can be a big challenge for many CFD techniques. Smoothed Particle Hydrodynamics(SPH) has been reported as a robust and reliable method for simulating violent free surface flows. Weakly compressible SPH(WCSPH) uses an equation of state with a large sound speed, and the results of the WCSPH can induce a noisy pressure field and spurious oscillation of pressure in time history for wave impact problem simulation. As a remedy, the truly incompressible SPH(ISPH) technique was introduced, which uses a pressure Poisson equation to calculate the pressure. Although the pressure distribution in the whole field obtained by ISPH is smooth, the stability of the techniques is still an open discussion. In this paper, a new free surface identification scheme and solid boundary handling method are introduced to improve the accuracy of ISPH. This modified ISPH is used to study dam breaking flow and violent tank sloshing flows. On the comparative study of WCSPH and ISPH, the accuracy and efficiency are assessed and the results are compared with the experimental data. 展开更多
关键词 smoothed particle hydrodynamics(sph Isph water wave impact
在线阅读 下载PDF
SPH-FEM simulations of microwave-treated basalt strength
12
作者 Chun YANG Ferri HASSANI +2 位作者 Ke-ping ZHOU Feng GAO Ameen TOPA 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2022年第6期2003-2018,共16页
Microwave precondition has been highlighted as a promising technology for softening the rock mass prior to rock breakage by machine to reduce drill bit/cutter wear as well as inverse production rate.To numerically exp... Microwave precondition has been highlighted as a promising technology for softening the rock mass prior to rock breakage by machine to reduce drill bit/cutter wear as well as inverse production rate.To numerically explore the effect of numerical parameters on rock static strength simulation,and determine the numerical mechanical parameters of microwave-treated basalts for future drilling and cutting simulations,numerical models of uniaxial compression strength(UCS)and Brazilian tensile strength(BTS)were established with the coupling of smoothed particle hydrodynamics and finite element method(SPH-FEM).To eliminate the large rock strength errors caused by microwave-induced damage,the cohesion and internal friction angle of microwave-treated basalt specimens with the same microwave treatment parameters were calibrated based on a linear Mohr-Coulomb theory.Based on parametric sensitivity analysis of SPH simulation of UCS and BTS,experimental UCS and BTS values were simultaneously captured according to the same set of calibrated cohesion and internal friction angle data,and the UCS modeling results are in good agreement with experimental tests.Furthermore,the effect of microwave irradiation parameter on the basalt mechanical behaviors was evaluated. 展开更多
关键词 microwave irradiation microwave-assisted rock breakage rock mechanics smoothed particle hydrodynamics(sph) parametric sensitivity analysis
在线阅读 下载PDF
Smoothed-Particle Hydrodynamics Simulation of Ship Motion and Tank Sloshing under the Effect of Regular Waves 被引量:1
13
作者 Mingming Zhao Jialong Jiao 《Fluid Dynamics & Materials Processing》 EI 2024年第5期1045-1061,共17页
Predicting the response of liquefied natural gas(LNG)contained in vessels subjected to external waves is extremely important to ensure the safety of the transportation process.In this study,the coupled behavior due to... Predicting the response of liquefied natural gas(LNG)contained in vessels subjected to external waves is extremely important to ensure the safety of the transportation process.In this study,the coupled behavior due to ship motion and liquid tank sloshing has been simulated by the Smoothed-Particle Hydrodynamics(SPH)method.Firstly,the sloshing flow in a rectangular tank was simulated and the related loads were analyzed to verify and validate the accuracy of the present SPH solver.Then,a three-dimensional simplified LNG carrier model,including two prismatic liquid tanks and a wave tank,was introduced.Different conditions were examined corresponding to different wave lengths,wave heights,wave heading angles,and tank loading rates.Finally,the effects of liquid tank loading rate on LNG ship motions and sloshing loading were analyzed,thereby showing that the SPH method can effectively provide useful indications for the design of liquid cargo ships. 展开更多
关键词 LNG carrier tank sloshing SEAKEEPING inner and external fluid coupling Smoothed Particle Hydrodynamics(sph)
在线阅读 下载PDF
A flexible multiscale algorithm based on an improved smoothed particle hydrodynamics method for complex viscoelastic flows
14
作者 Jinlian REN Peirong LU +2 位作者 Tao JIANG Jianfeng LIU Weigang LU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2024年第8期1387-1402,共16页
Viscoelastic flows play an important role in numerous engineering fields,and the multiscale algorithms for simulating viscoelastic flows have received significant attention in order to deepen our understanding of the ... Viscoelastic flows play an important role in numerous engineering fields,and the multiscale algorithms for simulating viscoelastic flows have received significant attention in order to deepen our understanding of the nonlinear dynamic behaviors of viscoelastic fluids.However,traditional grid-based multiscale methods are confined to simple viscoelastic flows with short relaxation time,and there is a lack of uniform multiscale scheme available for coupling different solvers in the simulations of viscoelastic fluids.In this paper,a universal multiscale method coupling an improved smoothed particle hydrodynamics(SPH)and multiscale universal interface(MUI)library is presented for viscoelastic flows.The proposed multiscale method builds on an improved SPH method and leverages the MUI library to facilitate the exchange of information among different solvers in the overlapping domain.We test the capability and flexibility of the presented multiscale method to deal with complex viscoelastic flows by solving different multiscale problems of viscoelastic flows.In the first example,the simulation of a viscoelastic Poiseuille flow is carried out by two coupled improved SPH methods with different spatial resolutions.The effects of exchanging different physical quantities on the numerical results in both the upper and lower domains are also investigated as well as the absolute errors in the overlapping domain.In the second example,the complex Wannier flow with different Weissenberg numbers is further simulated by two improved SPH methods and coupling the improved SPH method and the dissipative particle dynamics(DPD)method.The numerical results show that the physical quantities for viscoelastic flows obtained by the presented multiscale method are in consistence with those obtained by a single solver in the overlapping domain.Moreover,transferring different physical quantities has an important effect on the numerical results. 展开更多
关键词 multiscale method improved smoothed particle hydrodynamics(sph) dissipative particle dynamics(DPD) multiscale universal interface(MUI) complex viscoelastic flow
在线阅读 下载PDF
Simulation of mould filling process using smoothed particle hydrodynamics 被引量:4
15
作者 何毅 周照耀 +1 位作者 曹文炅 陈维平 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第12期2684-2692,共9页
The implementation of high pressure die casting (HPDC) filling process modeling based on smoothed particle hydrodynamics (SPH) was discussed. A new treatment of inlet boundary was established by discriminating flu... The implementation of high pressure die casting (HPDC) filling process modeling based on smoothed particle hydrodynamics (SPH) was discussed. A new treatment of inlet boundary was established by discriminating fluid particles from inlet particles. The roles of artificial viscosity and moving least squares method in the present model were compared in the handling pressure oscillation. The final model was substantiated by simulating filling process in HPDC in both two and three dimensions. The simulated results from SPH and finite difference method (FDM) were compared with the experiments. The results show the former is in a better agreement with experiments. It demonstrates the efficiency and precision of this SPH model in describing flow pattern in filling process. 展开更多
关键词 high pressure die casting (HPDC) smoothed particle hydrodynamics sph filling process moving least squares method
在线阅读 下载PDF
Comparison of explosive welding of pure titanium/SUS 304 austenitic stainless steel and pure titanium/SUS 821L1 duplex stainless steel 被引量:13
16
作者 Xiang CHEN Daisuke INAO +3 位作者 Shigeru TANAKA Xiao-jie LI I.A.BATAEV Kazuyuki HOKAMOTO 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第9期2687-2702,共16页
Pure commercial titanium was welded with two types of stainless steel,namely SUS 304 austenitic stainless steel and SUS 821L1 duplex stainless steel.The wavy interface of SUS 821L1 was smaller than that of SUS 304.The... Pure commercial titanium was welded with two types of stainless steel,namely SUS 304 austenitic stainless steel and SUS 821L1 duplex stainless steel.The wavy interface of SUS 821L1 was smaller than that of SUS 304.The vortex zone was observed from both longitudinal and transverse directions,and its composition was analyzed.The interface of Ti/SUS 821L11 was able to bear 401−431 MPa shear load while that of Ti/SUS 304 could withstand 352−387 MPa.The weldability window was used to analyze experimental phenomenon.Furthermore,the smoothed particle hydrodynamics(SPH)numerical simulation method was used to simulate the wavy interface.The trend of wavelength and amplitude change with strength and the stand-offs was consistent with the experimental results. 展开更多
关键词 explosive welding TITANIUM duplex stainless steel tensile shear test weldability window smoothed particle hydrodynamics(sph)
在线阅读 下载PDF
A numerical model for bird strike on sidewall structure of an aircraft nose 被引量:5
17
作者 Liu Jun Li Yulong +1 位作者 Gao Xiaosheng Yu Xiancheng 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2014年第3期542-549,共8页
In order to examine the potential of using the coupled smooth particles hydrodynamic (SPH) and finite element (FE) method to predict the dynamic responses of aircraft structures in bird strike events, bird-strike ... In order to examine the potential of using the coupled smooth particles hydrodynamic (SPH) and finite element (FE) method to predict the dynamic responses of aircraft structures in bird strike events, bird-strike tests on the sidewall structure of an aircraft nose are carried out and numerically simulated. The bird is modeled with SPH and described by the Murnaghan equation of state, while the structure is modeled with finite elements. A coupled SPH-FE method is developed to simulate the bird-strike tests and a numerical model is established using a commercial software PAM-CRASH. The bird model shows no signs of instability and correctly modeled the break-up of the bird into particles. Finally the dynamic response such as strains in the skin is simulated and compared with test results, and the simulated deformation and fracture process of the sidewall structure is compared with images recorded by a high speed camera. Good agreement between the simulation results and test data indicates that the coupled SPH-FE method can provide a very powerful tool in predicting the dynamic responses of aircraft structures in events of bird strike. 展开更多
关键词 Bird strike Experiment Sidewall structure Simulation Smooth particles hydrodynamic sph method
原文传递
Mass and performance optimization of an airplane wing leading edge structure against bird strike using Taguchi-based grey relational analysis 被引量:8
18
作者 Hassan Pahange Mohammad Hossein Abolbashari 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2016年第4期934-944,共11页
Collisions between birds and aircraft are one of the most dangerous threats to flight safety. In this study, smoothed particles hydrodynamics(SPH) method is used for simulating the bird strike to an airplane wing lead... Collisions between birds and aircraft are one of the most dangerous threats to flight safety. In this study, smoothed particles hydrodynamics(SPH) method is used for simulating the bird strike to an airplane wing leading edge structure. In order to verify the model, first, experiment of bird strike to a flat aluminum plate is simulated, and then bird impact on an airplane wing leading edge structure is investigated. After that, considering dimensions of wing internal structural components like ribs, skin and spar as design variables, we try to minimize structural mass and wing skin deformation simultaneously. To do this, bird strike simulations to 18 different wing structures are made based on Taguchi’s L18 factorial design of experiment. Then grey relational analysis is used to minimize structural mass and wing skin deformation due to the bird strike. The analysis of variance(ANOVA) is also applied and it is concluded that the most significant parameter for the performance of wing structure against impact is the skin thickness. Finally, a validation simulation is conducted under the optimal condition to show the improvement of performance of the wing structure. 展开更多
关键词 Bird strike Grey relational analysis Multi-objective optimization Smooth particle hydrody namics(sph) Wing leading edge structure
原文传递
Numerical Simulation of Dam Breaking Using Smoothed Particle Hydrodynamics and Viscosity Behavior 被引量:4
19
作者 郑兴 段文洋 《Journal of Marine Science and Application》 2010年第1期34-41,共8页
Smoothed particle hydrodynamics (SPH) is a Lagrangian meshless particle method. It is one of the best method for simulating violent free surface flows in fluids and solving large fluid deformations. Dam breaking is a ... Smoothed particle hydrodynamics (SPH) is a Lagrangian meshless particle method. It is one of the best method for simulating violent free surface flows in fluids and solving large fluid deformations. Dam breaking is a typical example of these problems. The basis of SPH was reviewed, including some techniques for governing equation resolution, such as the stepping method and the boundary handling method. Then numerical results of a dam breaking simulation were discussed, and the benefits of concepts like artificial viscosity and position correction were analyzed in detail. When compared with dam breaking simulated by the volume of fluid (VOF) method, the wave profile generated by SPH had good agreement, but the pressure had only reasonable agreement. Improving pressure results is clearly an important next step for research. 展开更多
关键词 meshless method smoothed particle hydrodynamics sph dam breaking free surface flow
在线阅读 下载PDF
Experimental and numerical investigations of interface properties of Ti6Al4V/CP-Ti/Copper composite plate prepared by explosive welding 被引量:5
20
作者 Yasir Mahmood Peng-wan Chen +1 位作者 I.A.Bataev Xin Gao 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第5期1592-1601,共10页
Explosive welding technique is widely used in many industries.This technique is useful to weld different kinds of metal alloys that are not easily welded by any other welding methods.Interlayer plays an important role... Explosive welding technique is widely used in many industries.This technique is useful to weld different kinds of metal alloys that are not easily welded by any other welding methods.Interlayer plays an important role to improve the welding quality and control energy loss during the collision process.In this paper,the Ti6Al4V plate was welded with a copper plate in the presence of a commercially pure titanium interlayer.Microstructure details of welded composite plate were observed through optical and scanning electron microscope.Interlayer-base plate interface morphology showed a wavy structure with solid melted regions inside the vortices.Moreover,the energy dispersive spectroscopy analysis in the interlayer-base interface reveals that there are some identified regions of different kinds of chemical equilibrium phases of CueTi,i.e.CuTi,Cu_(2)Ti,CuTi_(2),Cu_(4)Ti,etc.To study the mechanical properties of composite plates,mechanical tests were conducted,including the tensile test,bending test,shear test and Vickers hardness test.Numerical simulation of explosive welding process was performed with coupled Smooth Particle Hydrodynamic method,Euler and Arbitrary Lagrangian-Eulerian method.The multi-physics process of explosive welding,including detonation,jetting and interface morphology,was observed with simulation.Moreover,simulated plastic strain,temperature and pressure profiles were analysed to understand the welding conditions.Simulated results show that the interlayer base plate interface was created due to the high plastic deformation and localized melting of the parent plates.At the collision point,both alloys behave like fluids,resulting in the formation of a wavy morphology with vortices,which is in good agreement with the experimental results. 展开更多
关键词 Explosive welding Ti6Al4V/CP-Ti/Cu Smooth particle hydrodynamic(sph) Microstructure Mechanical properties
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部