As a useful alternative of Shewhart control chart, exponentially weighted moving average (EWMA) control chat has been applied widely to quality control, process monitoring, forecast, etc. In this paper, a method was...As a useful alternative of Shewhart control chart, exponentially weighted moving average (EWMA) control chat has been applied widely to quality control, process monitoring, forecast, etc. In this paper, a method was introduced for optimal design of EWMA and multivariate EWMA (MEWMA) control charts, in which the optimal parameter pair ( λ, k) or ( λ, h ) was searched by using the generalized regression neural network (GRNN). The results indicate that the optimal parameter pair can be obtained effectively by the proposed strategy for a given in-control average running length (ARLo) and shift to detect under any conditions, removing the drawback of incompleteness existing in the tables that had been reported.展开更多
The identification of control chart patterns is very important in statistical process control. Control chart patterns are categorized as natural and unnatural. The presence of unnatural patterns means that a process i...The identification of control chart patterns is very important in statistical process control. Control chart patterns are categorized as natural and unnatural. The presence of unnatural patterns means that a process is out of statistical control and there are assignable causes for process variation that should be investigated. This paper proposes an artificial neural network algorithm to identify the three basic control chart patterns;natural, shift, and trend. This identification is in addition to the traditional statistical detection of runs in data, since runs are one of the out of control situations. It is assumed that a process starts as a natural pattern and then may undergo only one out of control pattern at a time. The performance of the proposed algorithm was evaluated by measuring the probability of success in identifying the three basic patterns accurately, and comparing these results with previous research work. The comparison showed that the proposed algorithm realized better identification than others.展开更多
Many industrial products are normally processed through multiple manufacturing process stages before it becomes a final product.Statistical process control techniques often utilize standard Shewhart control charts to ...Many industrial products are normally processed through multiple manufacturing process stages before it becomes a final product.Statistical process control techniques often utilize standard Shewhart control charts to monitor these process stages.If the process stages are independent,this is a meaningful procedure.However,they are not independent in many manufacturing scenarios.The standard Shewhart control charts can not provide the information to determine which process stage or group of process stages has caused the problems(i.e.,standard Shewhart control charts could not diagnose dependent manufacturing process stages).This study proposes a selective neural network ensemble-based cause-selecting system of control charts to monitor these process stages and distinguish incoming quality problems and problems in the current stage of a manufacturing process.Numerical results show that the proposed method is an improvement over the use of separate Shewhart control chart for each of dependent process stages,and even ordinary quality practitioners who lack of expertise in theoretical analysis can implement regression estimation and neural computing readily.展开更多
The statistical process control techniques used in flexible manufacturing systems arestudied in this paper.Control charts which can be used in the low volume production are pro-posed.The automatic recognizer of unnatu...The statistical process control techniques used in flexible manufacturing systems arestudied in this paper.Control charts which can be used in the low volume production are pro-posed.The automatic recognizer of unnatural patterns for the control chart by using back-propagation neural network is also presented.展开更多
基金Funded by the National Key Technologies R&D Programs of China (No.2002BA105C)
文摘As a useful alternative of Shewhart control chart, exponentially weighted moving average (EWMA) control chat has been applied widely to quality control, process monitoring, forecast, etc. In this paper, a method was introduced for optimal design of EWMA and multivariate EWMA (MEWMA) control charts, in which the optimal parameter pair ( λ, k) or ( λ, h ) was searched by using the generalized regression neural network (GRNN). The results indicate that the optimal parameter pair can be obtained effectively by the proposed strategy for a given in-control average running length (ARLo) and shift to detect under any conditions, removing the drawback of incompleteness existing in the tables that had been reported.
文摘The identification of control chart patterns is very important in statistical process control. Control chart patterns are categorized as natural and unnatural. The presence of unnatural patterns means that a process is out of statistical control and there are assignable causes for process variation that should be investigated. This paper proposes an artificial neural network algorithm to identify the three basic control chart patterns;natural, shift, and trend. This identification is in addition to the traditional statistical detection of runs in data, since runs are one of the out of control situations. It is assumed that a process starts as a natural pattern and then may undergo only one out of control pattern at a time. The performance of the proposed algorithm was evaluated by measuring the probability of success in identifying the three basic patterns accurately, and comparing these results with previous research work. The comparison showed that the proposed algorithm realized better identification than others.
基金supported in part by the National Natural Science Foundation of China(No.51775279)the Fundamental Research Funds for the Central Universities(Nos. 1005-YAH15055,NS2017034)+2 种基金the China Postdoctoral Science Foundation(No.2016M591838)the Natural Science Foundation of Jiangsu Province (No.BK20150745)the Postdoctoral Science Foundation of of Jiangsu Province(No.1501024C)
文摘Many industrial products are normally processed through multiple manufacturing process stages before it becomes a final product.Statistical process control techniques often utilize standard Shewhart control charts to monitor these process stages.If the process stages are independent,this is a meaningful procedure.However,they are not independent in many manufacturing scenarios.The standard Shewhart control charts can not provide the information to determine which process stage or group of process stages has caused the problems(i.e.,standard Shewhart control charts could not diagnose dependent manufacturing process stages).This study proposes a selective neural network ensemble-based cause-selecting system of control charts to monitor these process stages and distinguish incoming quality problems and problems in the current stage of a manufacturing process.Numerical results show that the proposed method is an improvement over the use of separate Shewhart control chart for each of dependent process stages,and even ordinary quality practitioners who lack of expertise in theoretical analysis can implement regression estimation and neural computing readily.
基金Supported bv the Commission of Science,Technology and Industry for National Defence of China.
文摘The statistical process control techniques used in flexible manufacturing systems arestudied in this paper.Control charts which can be used in the low volume production are pro-posed.The automatic recognizer of unnatural patterns for the control chart by using back-propagation neural network is also presented.