期刊文献+
共找到825篇文章
< 1 2 42 >
每页显示 20 50 100
Sparseness-controlled non-negative tensor factorization and its application in machinery fault diagnosis 被引量:1
1
作者 彭森 许飞云 +1 位作者 贾民平 胡建中 《Journal of Southeast University(English Edition)》 EI CAS 2009年第3期346-350,共5页
Aiming at the problems of bispectral analysis when applied to machinery fault diagnosis, a machinery fault feature extraction method based on sparseness-controlled non-negative tensor factorization (SNTF) is propose... Aiming at the problems of bispectral analysis when applied to machinery fault diagnosis, a machinery fault feature extraction method based on sparseness-controlled non-negative tensor factorization (SNTF) is proposed. First, a non-negative tensor factorization(NTF) algorithm is improved by imposing sparseness constraints on it. Secondly, the bispectral images of mechanical signals are obtained and stacked to form a third-order tensor. Thirdly, the improved algorithm is used to extract features, which are represented by a series of basis images from this tensor. Finally, coefficients indicating these basis images' weights in constituting original bispectral images are calculated for fault classification. Experiments on fault diagnosis of gearboxes show that the extracted features can not only reveal some nonlinear characteristics of the system, but also have intuitive meanings with regard to fault characteristic frequencies. These features provide great convenience for the interpretation of the relationships between machinery faults and corresponding bispectra. 展开更多
关键词 non-negative tensor factorization sparseness feature extraction bispectrum gearbox
在线阅读 下载PDF
Robustness Assessment of Asynchronous Advantage Actor-Critic Based on Dynamic Skewness and Sparseness Computation: A Parallel Computing View
2
作者 Tong Chen Ji-Qiang Liu +6 位作者 He Li Shuo-Ru Wang Wen-Jia Niu En-Dong Tong Liang Chang Qi Alfred Chen Gang Li 《Journal of Computer Science & Technology》 SCIE EI CSCD 2021年第5期1002-1021,共20页
Reinforcement learning as autonomous learning is greatly driving artificial intelligence(AI)development to practical applications.Having demonstrated the potential to significantly improve synchronously parallel learn... Reinforcement learning as autonomous learning is greatly driving artificial intelligence(AI)development to practical applications.Having demonstrated the potential to significantly improve synchronously parallel learning,the parallel computing based asynchronous advantage actor-critic(A3C)opens a new door for reinforcement learning.Unfortunately,the acceleration's influence on A3C robustness has been largely overlooked.In this paper,we perform the first robustness assessment of A3C based on parallel computing.By perceiving the policy's action,we construct a global matrix of action probability deviation and define two novel measures of skewness and sparseness to form an integral robustness measure.Based on such static assessment,we then develop a dynamic robustness assessing algorithm through situational whole-space state sampling of changing episodes.Extensive experiments with different combinations of agent number and learning rate are implemented on an A3C-based pathfinding application,demonstrating that our proposed robustness assessment can effectively measure the robustness of A3C,which can achieve an accuracy of 83.3%. 展开更多
关键词 robustness assessment SKEWNESS sparseness asynchronous advantage actor-critic reinforcement learning
原文传递
Centralized Circumcentered-Reection Method for Solving the Convex Feasibility Problem in Sparse Signal Recovery
3
作者 Chunmei LI Bangjun CHEN Xuefeng DUAN 《Journal of Mathematical Research with Applications》 2026年第1期119-133,共15页
Convex feasibility problems are widely used in image reconstruction,sparse signal recovery,and other areas.This paper is devoted to considering a class of convex feasibility problem arising from sparse signal recovery... Convex feasibility problems are widely used in image reconstruction,sparse signal recovery,and other areas.This paper is devoted to considering a class of convex feasibility problem arising from sparse signal recovery.We rst derive the projection formulas for a vector onto the feasible sets.The centralized circumcentered-reection method is designed to solve the convex feasibility problem.Some numerical experiments demonstrate the feasibility and e ectiveness of the proposed algorithm,showing superior performance compared to conventional alternating projection methods. 展开更多
关键词 convex feasibility problem centralized circumcentered-re ection method sparse signal recovery compressed sensing
原文传递
Seismic wave simulation of near-fault seismic intensity field for the 2025 Myanmar M_(w)7.7 earthquake constrained by mid-to far-field CENC seismic network data 被引量:1
4
作者 Xie Zhinan Wang Shuai +4 位作者 Yuan Yangtao Zhang Wenyue Zhou Tianyu Ma Qiang Li Shanyou 《Earthquake Engineering and Engineering Vibration》 2025年第3期629-640,I0001,共13页
The 2025 M_(w)7.7 Myanmar earthquake highlighted the challenge of near-fault seismic intensity field reconstruction due to sparse seismic networks.To address this limitation,a framework was proposed integrating seismi... The 2025 M_(w)7.7 Myanmar earthquake highlighted the challenge of near-fault seismic intensity field reconstruction due to sparse seismic networks.To address this limitation,a framework was proposed integrating seismic wave simulation with a data-constrained finite-fault rupture model.The constraint is implemented by identifying the optimal ground motion models(GMMs)through a scoring system that selects the best-fit GMMs to mid-and far-field China Earthquake Networks Center(CENC)seismic network data;and applying the optimal GMMs to refine the rupture model parameters for near-fault intensity field simulation.The simulated near-fault seismic intensity field reproduces seismic intensities collected from Myanmar’s sparse seismic network and concentrated in≥Ⅷintensity zones within 50 km of the projected fault plane;and identifies abnormal intensity regions exhibiting≥Ⅹintensity along the Meiktila-Naypyidaw corridor and near Shwebo that are attributed to soft soil amplification effects and near-fault directivity.This framework can also be applied to post-earthquake assessments in other similar regions. 展开更多
关键词 seismic wave simulation sparse seismic networks ground motion models seismic intensity feld finite-fault rupture model
在线阅读 下载PDF
A Bilinear Sparse Domination for the Maximal Calder´on Commutator with Rough Kernel
5
作者 WANG Meizhong ZHAO Junyan 《数学进展》 北大核心 2025年第5期1059-1074,共16页
LetΩbe homogeneous of degree zero,integrable on S^(d−1) and have vanishing moment of order one,a be a function on R^(d) such that ∇a∈L^(∞)(R^(d)).Let T*_(Ω,a) be the maximaloperator associated with the d-dimensional... LetΩbe homogeneous of degree zero,integrable on S^(d−1) and have vanishing moment of order one,a be a function on R^(d) such that ∇a∈L^(∞)(R^(d)).Let T*_(Ω,a) be the maximaloperator associated with the d-dimensional Calder´on commutator defined by T*_(Ωa)f(x):=sup_(ε>0)|∫_(|x-y|>ε)^Ω(x-y)/|x-y|^(d+1)(a(x)-a(y))f(y)dy.In this paper,the authors establish bilinear sparse domination for T*_(Ω,a) under the assumption Ω∈L∞(Sd−1).As applications,some quantitative weighted bounds for T*_(Ω,a) are obtained. 展开更多
关键词 Calderon commutator Fourier transform multiplier operator approximation bilinear sparse domination rough kernel
原文传递
Co-phasing method for sparse aperture optical systems based on multichannel fringe tracking
6
作者 AN Qi-chang WANG Kun +2 位作者 LIU Xin-yue LI Hong-wen ZHU Jia-kang 《中国光学(中英文)》 北大核心 2025年第2期401-413,共13页
To realize effective co-phasing adjustment in large-aperture sparse-aperture telescopes,a multichannel stripe tracking approach is employed,allowing simultaneous interferometric measurements of multiple optical paths ... To realize effective co-phasing adjustment in large-aperture sparse-aperture telescopes,a multichannel stripe tracking approach is employed,allowing simultaneous interferometric measurements of multiple optical paths and circumventing the need for pairwise measurements along the mirror boundaries in traditional interferometric methods.This approach enhances detection efficiency and reduces system complexity.Here,the principles of the multibeam interference process and construction of a co-phasing detection module based on direct optical fiber connections were analyzed using wavefront optics theory.Error analysis was conducted on the system surface obtained through multipath interference.Potential applications of the interferometric method were explored.Finally,the principle was verified by experiment,an interferometric fringe contrast better than 0.4 is achieved through flat field calibration and incoherent digital synthesis.The dynamic range of the measurement exceeds 10 times of the center wavelength of the working band(1550 nm).Moreover,a resolution better than one-tenth of the working center wavelength(1550 nm)was achieved.Simultaneous three-beam interference can be achieved,leading to a 50%improvement in detection efficiency.This method can effectively enhance the efficiency of sparse aperture telescope co-phasing,meeting the requirements for observations of 8-10 m telescopes.This study provides a technological foundation for observing distant and faint celestial objects. 展开更多
关键词 stripe tracking wavefront aberration sparse aperture telescope co-phasing adjustment
在线阅读 下载PDF
Block sparse compressed sensing with frames:Null space property and l_(2)/l_(q)(0
7
作者 WU Fengong ZHONG Penghong QIN Yuehai 《中山大学学报(自然科学版)(中英文)》 北大核心 2025年第3期173-182,共10页
This paper explores the recovery of block sparse signals in frame-based settings using the l_(2)/l_(q)-synthesis technique(0<q≤1).We propose a new null space property,referred to as block D-NSP_(q),which is based ... This paper explores the recovery of block sparse signals in frame-based settings using the l_(2)/l_(q)-synthesis technique(0<q≤1).We propose a new null space property,referred to as block D-NSP_(q),which is based on the dictionary D.We establish that matrices adhering to the block D-NSP_(q)condition are both necessary and sufficient for the exact recovery of block sparse signals via l_(2)/l_(q)-synthesis.Additionally,this condition is essential for the stable recovery of signals that are block-compressible with respect to D.This D-NSP_(q)property is identified as the first complete condition for successful signal recovery using l_(2)/l_(q)-synthesis.Furthermore,we assess the theoretical efficacy of the l2/lq-synthesis method under conditions of measurement noise. 展开更多
关键词 Compressed sensing block sparse l2/lq-synthesis method null space property
在线阅读 下载PDF
Sparse graph neural network aided efficient decoder for polar codes under bursty interference
8
作者 Shengyu Zhang Zhongxiu Feng +2 位作者 Zhe Peng Lixia Xiao Tao Jiang 《Digital Communications and Networks》 2025年第2期359-364,共6页
In this paper,a sparse graph neural network-aided(SGNN-aided)decoder is proposed for improving the decoding performance of polar codes under bursty interference.Firstly,a sparse factor graph is constructed using the e... In this paper,a sparse graph neural network-aided(SGNN-aided)decoder is proposed for improving the decoding performance of polar codes under bursty interference.Firstly,a sparse factor graph is constructed using the encoding characteristic to achieve high-throughput polar decoding.To further improve the decoding performance,a residual gated bipartite graph neural network is designed for updating embedding vectors of heterogeneous nodes based on a bidirectional message passing neural network.This framework exploits gated recurrent units and residual blocks to address the gradient disappearance in deep graph recurrent neural networks.Finally,predictions are generated by feeding the embedding vectors into a readout module.Simulation results show that the proposed decoder is more robust than the existing ones in the presence of bursty interference and exhibits high universality. 展开更多
关键词 Sparse graph neural network Polar codes Bursty interference Sparse factor graph Message passing neural network
在线阅读 下载PDF
Hysteresis modeling and compensation of piezo actuator with sparse regression
9
作者 JIN Yu WANG Xucheng +3 位作者 XU Yunlang YU Jianbo LU Qiaodan YANG Xiaofeng 《Journal of Systems Engineering and Electronics》 2025年第1期48-61,共14页
Piezo actuators are widely used in ultra-precision fields because of their high response and nano-scale step length.However,their hysteresis characteristics seriously affect the accuracy and stability of piezo actuato... Piezo actuators are widely used in ultra-precision fields because of their high response and nano-scale step length.However,their hysteresis characteristics seriously affect the accuracy and stability of piezo actuators.Existing methods for fitting hysteresis loops include operator class,differential equation class,and machine learning class.The modeling cost of operator class and differential equation class methods is high,the model complexity is high,and the process of machine learning,such as neural network calculation,is opaque.The physical model framework cannot be directly extracted.Therefore,the sparse identification of nonlinear dynamics(SINDy)algorithm is proposed to fit hysteresis loops.Furthermore,the SINDy algorithm is improved.While the SINDy algorithm builds an orthogonal candidate database for modeling,the sparse regression model is simplified,and the Relay operator is introduced for piecewise fitting to solve the distortion problem of the SINDy algorithm fitting singularities.The Relay-SINDy algorithm proposed in this paper is applied to fitting hysteresis loops.Good performance is obtained with the experimental results of open and closed loops.Compared with the existing methods,the modeling cost and model complexity are reduced,and the modeling accuracy of the hysteresis loop is improved. 展开更多
关键词 sparse identification of nonlinear dynamics(SINDy) hysteresis loop relay operator sparse regression piezo actuator
在线阅读 下载PDF
Sparse Recovery of Decaying Signals by the Piecewise Generalized Orthogonal Matching Pursuit Algorithm
10
作者 Hanbing LIU Chongjun LI 《Journal of Mathematical Research with Applications》 2025年第6期813-834,共22页
In this paper,we focus on the recovery of piecewise sparse signals containing both fast-decaying and slow-decaying nonzero entries.In order to improve the performance of classic Orthogonal Matching Pursuit(OMP)and Gen... In this paper,we focus on the recovery of piecewise sparse signals containing both fast-decaying and slow-decaying nonzero entries.In order to improve the performance of classic Orthogonal Matching Pursuit(OMP)and Generalized Orthogonal Matching Pursuit(GOMP)algorithms for solving this problem,we propose the Piecewise Generalized Orthogonal Matching Pursuit(PGOMP)algorithm,by considering the mixed-decaying sparse signals as piecewise sparse signals with two components containing nonzero entries with different decay factors.The algorithm incorporates piecewise selection and deletion to retain the most significant entries according to the sparsity of each component.We provide a theoretical analysis based on the mutual coherence of the measurement matrix and the decay factors of the nonzero entries,establishing a sufficient condition for the PGOMP algorithm to select at least two correct indices in each iteration.Numerical simulations and an image decomposition experiment demonstrate that the proposed algorithm significantly improves the support recovery probability by effectively matching piecewise sparsity with decay factors. 展开更多
关键词 piecewise sparse recovery decaying sparse signals mutual coherence greedy algorithm
原文传递
Adaptive backward stepwise selection of fast sparse identification of nonlinear dynamics
11
作者 Feng JIANG Lin DU +2 位作者 Qing XUE Zichen DENG C.GREBOGI 《Applied Mathematics and Mechanics(English Edition)》 2025年第12期2361-2384,共24页
Sparse identification of nonlinear dynamics(SINDy)has made significant progress in data-driven dynamics modeling.However,determining appropriate hyperparameters and addressing the time-consuming symbolic regression pr... Sparse identification of nonlinear dynamics(SINDy)has made significant progress in data-driven dynamics modeling.However,determining appropriate hyperparameters and addressing the time-consuming symbolic regression process remain substantial challenges.This study proposes the adaptive backward stepwise selection of fast SINDy(ABSS-FSINDy),which integrates statistical learning-based estimation and technical advancements to significantly reduce simulation time.This approach not only provides insights into the conditions under which SINDy performs optimally but also highlights potential failure points,particularly in the context of backward stepwise selection(BSS).By decoding predefined features into textual expressions,ABSS-FSINDy significantly reduces the simulation time compared with conventional symbolic regression methods.We validate the proposed method through a series of numerical experiments involving both planar/spatial dynamics and high-dimensional chaotic systems,including Lotka-Volterra,hyperchaotic Rossler,coupled Lorenz,and Lorenz 96 benchmark systems.The experimental results demonstrate that ABSS-FSINDy autonomously determines optimal hyperparameters within the SINDy framework,overcoming the curse of dimensionality in high-dimensional simulations.This improvement is substantial across both lowand high-dimensional systems,yielding efficiency gains of one to three orders of magnitude.For instance,in a 20D dynamical system,the simulation time is reduced from 107.63 s to just 0.093 s,resulting in a 3-order-of-magnitude improvement in simulation efficiency.This advancement broadens the applicability of SINDy for the identification and reconstruction of high-dimensional dynamical systems. 展开更多
关键词 data-driven dynamics modeling backward stepwise selection(BSS) sparse identification of nonlinear dynamics(SINDy) sparse regression hyperparameter determination curse of dimensionality
在线阅读 下载PDF
Deblending by sparse inversion and its applications to high-productivity seismic acquisition:Case studies
12
作者 Shao-Hua Zhang Jia-Wen Song 《Petroleum Science》 2025年第4期1548-1565,共18页
Deblending is a data processing procedure used to separate the source interferences of blended seismic data,which are obtained by simultaneous sources with random time delays to reduce the cost of seismic acquisition.... Deblending is a data processing procedure used to separate the source interferences of blended seismic data,which are obtained by simultaneous sources with random time delays to reduce the cost of seismic acquisition.There are three types of deblending algorithms,i.e.,filtering-type noise suppression algorithm,inversion-based algorithm and deep-learning based algorithm.We review the merits of these techniques,and propose to use a sparse inversion method for seismic data deblending.Filtering-based deblending approach is applicable to blended data with a low blending fold and simple geometry.Otherwise,it can suffer from signal distortion and noise leakage.At present,the deep learning based deblending methods are still under development and field data applications are limited due to the lack of high-quality training labels.In contrast,the inversion-based deblending approaches have gained industrial acceptance.Our used inversion approach transforms the pseudo-deblended data into the frequency-wavenumber-wavenumher(FKK)domain,and a sparse constraint is imposed for the coherent signal estimation.The estimated signal is used to predict the interference noise for subtraction from the original pseudo-deblended data.Via minimizing the data misfit,the signal can be iteratively updated with a shrinking threshold until the signal and interference are fully separated.The used FKK sparse inversion algorithm is very accurate and efficient compared with other sparse inversion methods,and it is widely applied in field cases.Synthetic example shows that the deblending error is less than 1%in average amplitudes and less than-40 dB in amplitude spectra.We present three field data examples of land,marine OBN(Ocean Bottom Nodes)and streamer acquisitions to demonstrate its successful applications in separating the source interferences efficiently and accurately. 展开更多
关键词 Deblending Sparse inversion Simultaneous sources High-productivity Seismic acquisition
原文传递
DC Disturbance Classification Method Based on Compressed Sensing and Encoder
13
作者 Huanan Yu Xiang Zhang Jian Wang 《Energy Engineering》 2025年第12期5055-5071,共17页
Recent advances in AC/DC hybrid power distribution systems have enhanced convenience in daily life.However,DC distribution introduces significant power quality challenges.To address the identification and classificati... Recent advances in AC/DC hybrid power distribution systems have enhanced convenience in daily life.However,DC distribution introduces significant power quality challenges.To address the identification and classification of DC power quality disturbances,this paper proposes a novel methodology integrating Compressed Sensing(CS)with an enhanced Stacked Denoising Autoencoder(SDAE).The proposed approach first employs MATLAB/SIMULINK to model the DC distribution network and generate DC power quality disturbance signals.The measured original signals are then reconstructed using the compressive sensing-based generalized orthogonal matching pursuit(GOMP)algorithm to obtain sparse vectors as the final dataset.Subsequently,a Stacked Denoising Autoencoder model is constructed.The Root Mean Square Propagation(RMSprop)optimization algorithm is introduced to finetune network parameters,thereby reducing the probability of convergence to local optima.Finally,simulation analyses are conducted on five common types of DC power quality disturbance signals.Both raw signals and sparse vectors are utilized as datasets and fed into the encoder model.The results indicate that this method effectively reduces the feature dimensionality for DC power quality disturbance classification while improving both recognition efficiency and accuracy,with additional advantages in noise resistance. 展开更多
关键词 DC power quality disturbance classification compressed sensing sparse vector ENCODER
在线阅读 下载PDF
Face recognition algorithm using collaborative sparse representation based on CNN features
14
作者 ZHAO Shilin XU Chengjun LIU Changrong 《Journal of Measurement Science and Instrumentation》 2025年第1期85-95,共11页
Considering that the algorithm accuracy of the traditional sparse representation models is not high under the influence of multiple complex environmental factors,this study focuses on the improvement of feature extrac... Considering that the algorithm accuracy of the traditional sparse representation models is not high under the influence of multiple complex environmental factors,this study focuses on the improvement of feature extraction and model construction.Firstly,the convolutional neural network(CNN)features of the face are extracted by the trained deep learning network.Next,the steady-state and dynamic classifiers for face recognition are constructed based on the CNN features and Haar features respectively,with two-stage sparse representation introduced in the process of constructing the steady-state classifier and the feature templates with high reliability are dynamically selected as alternative templates from the sparse representation template dictionary constructed using the CNN features.Finally,the results of face recognition are given based on the classification results of the steady-state classifier and the dynamic classifier together.Based on this,the feature weights of the steady-state classifier template are adjusted in real time and the dictionary set is dynamically updated to reduce the probability of irrelevant features entering the dictionary set.The average recognition accuracy of this method is 94.45%on the CMU PIE face database and 96.58%on the AR face database,which is significantly improved compared with that of the traditional face recognition methods. 展开更多
关键词 sparse representation deep learning face recognition dictionary update feature extraction
在线阅读 下载PDF
Ship Path Planning Based on Sparse A^(*)Algorithm
15
作者 Yongjian Zhai Jianhui Cui +3 位作者 Fanbin Meng Huawei Xie Chunyan Hou Bin Li 《哈尔滨工程大学学报(英文版)》 2025年第1期238-248,共11页
An improved version of the sparse A^(*)algorithm is proposed to address the common issue of excessive expansion of nodes and failure to consider current ship status and parameters in traditional path planning algorith... An improved version of the sparse A^(*)algorithm is proposed to address the common issue of excessive expansion of nodes and failure to consider current ship status and parameters in traditional path planning algorithms.This algorithm considers factors such as initial position and orientation of the ship,safety range,and ship draft to determine the optimal obstacle-avoiding route from the current to the destination point for ship planning.A coordinate transformation algorithm is also applied to convert commonly used latitude and longitude coordinates of ship travel paths to easily utilized and analyzed Cartesian coordinates.The algorithm incorporates a hierarchical chart processing algorithm to handle multilayered chart data.Furthermore,the algorithm considers the impact of ship length on grid size and density when implementing chart gridification,adjusting the grid size and density accordingly based on ship length.Simulation results show that compared to traditional path planning algorithms,the sparse A^(*)algorithm reduces the average number of path points by 25%,decreases the average maximum storage node number by 17%,and raises the average path turning angle by approximately 10°,effectively improving the safety of ship planning paths. 展开更多
关键词 Sparse A^(*)algorithm Path planning RASTERIZATION Coordinate transformation Image preprocessing
在线阅读 下载PDF
Efficient and lightweight 3D building reconstruction from drone imagery using sparse line and point clouds
16
作者 Xiongjie YIN Jinquan HE Zhanglin CHENG 《虚拟现实与智能硬件(中英文)》 2025年第2期111-126,共16页
Efficient three-dimensional(3D)building reconstruction from drone imagery often faces data acquisition,storage,and computational challenges because of its reliance on dense point clouds.In this study,we introduced a n... Efficient three-dimensional(3D)building reconstruction from drone imagery often faces data acquisition,storage,and computational challenges because of its reliance on dense point clouds.In this study,we introduced a novel method for efficient and lightweight 3D building reconstruction from drone imagery using line clouds and sparse point clouds.Our approach eliminates the need to generate dense point clouds,and thus significantly reduces the computational burden by reconstructing 3D models directly from sparse data.We addressed the limitations of line clouds for plane detection and reconstruction by using a new algorithm.This algorithm projects 3D line clouds onto a 2D plane,clusters the projections to identify potential planes,and refines them using sparse point clouds to ensure an accurate and efficient model reconstruction.Extensive qualitative and quantitative experiments demonstrated the effectiveness of our method,demonstrating its superiority over existing techniques in terms of simplicity and efficiency. 展开更多
关键词 3D reconstruction Line clouds Sparse clouds Lightweight models
在线阅读 下载PDF
Sparse optimization of planar radio antenna arrays using a genetic algorithm
17
作者 Jiarui Di Liang Dong Wei He 《Astronomical Techniques and Instruments》 2025年第2期100-110,共11页
Radio antenna arrays have many advantages for astronomical observations,such as high resolution,high sensitivity,multi-target simultaneous observation,and flexible beam formation.Problems surrounding key indices,such ... Radio antenna arrays have many advantages for astronomical observations,such as high resolution,high sensitivity,multi-target simultaneous observation,and flexible beam formation.Problems surrounding key indices,such as sensitivity enhancement,scanning range extension,and sidelobe level suppression,need to be solved urgently.Here,we propose a sparse optimization scheme based on a genetic algorithm for a 64-array element planar radio antenna array.As optimization targets for the iterative process of the genetic algorithm,we use the maximum sidelobe levels and beamwidth of multiple cross-section patterns that pass through the main beam in three-dimensions,with the maximum sidelobe levels of the patterns at several different scanning angles.Element positions are adjusted for iterations,to select the optimal array configuration.Following sparse layout optimization,the simulated 64-element planar radio antenna array shows that the maximum sidelobe level decreases by 1.79 dB,and the beamwidth narrows by 3°.Within the scan range of±30°,after sparse array optimization,all sidelobe levels decrease,and all beamwidths narrow.This performance improvement can potentially enhance the sensitivity and spatial resolution of radio telescope systems. 展开更多
关键词 Planar antenna array Sparse optimization Genetic algorithm Wide-angle scanning
在线阅读 下载PDF
2D-DOA for a Monostatic ULA EMVS-MIMO Radar Based on RC-ESPRIT
18
作者 Jianlong Wang Junpeng Shi +1 位作者 Fangqing Wen Shuyun Shi 《Journal of Beijing Institute of Technology》 2025年第4期362-372,共11页
Electromagnetic vector sensor(EMVS)embedded multiple-input multiple-output(MIMO)radar is an emerging technology that enables two-dimensional(2D)direction of arrival(DOA)estimation.In this paper,we proposed a low-compl... Electromagnetic vector sensor(EMVS)embedded multiple-input multiple-output(MIMO)radar is an emerging technology that enables two-dimensional(2D)direction of arrival(DOA)estimation.In this paper,we proposed a low-complexity estimation of signal parameters via rotational invariance techniques(ESPRIT)algorithm for uniform linear array(ULA)EMVSMIMO radar at a monostatic,enabling rapid estimation of 2D target angles.Initially,by employing a selection matrix,complexity reduction is applied to the array data,thereby eliminating redundancy in the array data.Subsequently,leveraging the rotation invariance propagator method(PM)algorithm,obtain the estimation of the elevation angle,but due to array sparsity,this estimation exhibits ambiguity.Then,the vector cross-product(VCP)technique is employed to achieve unambiguous 2D-DOA estimation.Finally,the aforementioned estimates are synthesized to obtain highresolution,unambiguous elevation angle estimation.The proposed algorithm is applicable to largescale and spare EMVS-MIMO radar systems and provides higher estimation accuracy compared to existing ESPRIT algorithms.The effectiveness of the algorithm is verified through matrix laboratory(MATLAB)simulations. 展开更多
关键词 electromagnetic vector sensors sparse array DOA estimation reduced complexity propagator method
在线阅读 下载PDF
Improved Spectral Amplitude Modulation Based on Sparse Feature Adaptive Convolution for Variable Speed Fault Diagnosis of Bearing
19
作者 Jiawei Lin Changkun Han +3 位作者 Wei Lu Liuyang Song Peng Chen Huaqing Wang 《Journal of Dynamics, Monitoring and Diagnostics》 2025年第1期31-43,共13页
Difficulty in extracting nonlinear sparse impulse features due to variable speed conditions and redundant noise interference leads to challenges in diagnosing variable speed faults.Therefore,an improved spectral amplit... Difficulty in extracting nonlinear sparse impulse features due to variable speed conditions and redundant noise interference leads to challenges in diagnosing variable speed faults.Therefore,an improved spectral amplitude modulation(ISAM)based on sparse feature adaptive convolution(SFAC)is proposed to enhance the fault features under variable speed conditions.First,an optimal bi-damped wavelet construction method is proposed to learn signal impulse features,which selects the optimal bi-damped wavelet parameters with correlation criterion and particle swarm optimization.Second,a convolutional basis pursuit denoising model based on an optimal bi-damped wavelet is proposed for resolving sparse impulses.A model regularization parameter selection method based on weighted fault characteristic amplitude ratio assistance is proposed.Then,an ISAM method based on kurtosis threshold is proposed to further enhance the fault information of sparse signal.Finally,the type of variable speed faults is determined by order spectrum analysis.Various experimental results,such as spectral amplitude modulation and Morlet wavelet matching,verify the effectiveness and advantages of the ISAM-SFAC method. 展开更多
关键词 bearing fault diagnosis feature enhancement sparse representation spectral amplitude modulation variable speed
在线阅读 下载PDF
Adaptive Fusion Neural Networks for Sparse-Angle X-Ray 3D Reconstruction
20
作者 Shaoyong Hong Bo Yang +4 位作者 Yan Chen Hao Quan Shan Liu Minyi Tang Jiawei Tian 《Computer Modeling in Engineering & Sciences》 2025年第7期1091-1112,共22页
3D medical image reconstruction has significantly enhanced diagnostic accuracy,yet the reliance on densely sampled projection data remains a major limitation in clinical practice.Sparse-angle X-ray imaging,though safe... 3D medical image reconstruction has significantly enhanced diagnostic accuracy,yet the reliance on densely sampled projection data remains a major limitation in clinical practice.Sparse-angle X-ray imaging,though safer and faster,poses challenges for accurate volumetric reconstruction due to limited spatial information.This study proposes a 3D reconstruction neural network based on adaptive weight fusion(AdapFusionNet)to achieve high-quality 3D medical image reconstruction from sparse-angle X-ray images.To address the issue of spatial inconsistency in multi-angle image reconstruction,an innovative adaptive fusion module was designed to score initial reconstruction results during the inference stage and perform weighted fusion,thereby improving the final reconstruction quality.The reconstruction network is built on an autoencoder(AE)framework and uses orthogonal-angle X-ray images(frontal and lateral projections)as inputs.The encoder extracts 2D features,which the decoder maps into 3D space.This study utilizes a lung CT dataset to obtain complete three-dimensional volumetric data,from which digitally reconstructed radiographs(DRR)are generated at various angles to simulate X-ray images.Since real-world clinical X-ray images rarely come with perfectly corresponding 3D“ground truth,”using CT scans as the three-dimensional reference effectively supports the training and evaluation of deep networks for sparse-angle X-ray 3D reconstruction.Experiments conducted on the LIDC-IDRI dataset with simulated X-ray images(DRR images)as training data demonstrate the superior performance of AdapFusionNet compared to other fusion methods.Quantitative results show that AdapFusionNet achieves SSIM,PSNR,and MAE values of 0.332,13.404,and 0.163,respectively,outperforming other methods(SingleViewNet:0.289,12.363,0.182;AvgFusionNet:0.306,13.384,0.159).Qualitative analysis further confirms that AdapFusionNet significantly enhances the reconstruction of lung and chest contours while effectively reducing noise during the reconstruction process.The findings demonstrate that AdapFusionNet offers significant advantages in 3D reconstruction of sparse-angle X-ray images. 展开更多
关键词 3D reconstruction adaptive fusion X-ray imaging medical imaging deep learning neural networks sparse angles autoencoder
暂未订购
上一页 1 2 42 下一页 到第
使用帮助 返回顶部