Existing orthogonal space-time block coding(OSTBC)schemes for backscatter communication systems cannot achieve a full transmission code rate when the tag is equipped with more than two antennas.In this paper,we propos...Existing orthogonal space-time block coding(OSTBC)schemes for backscatter communication systems cannot achieve a full transmission code rate when the tag is equipped with more than two antennas.In this paper,we propose a quasi-orthogonal spacetime block code(QOSTBC)that can achieve a full transmission code rate for backscatter communication systems with a four-antenna tag and then extend the scheme to support tags with 2i antennas.Specifically,we first present the system model for the backscatter system.Next,we propose the QOSTBC scheme to encode the tag signals.Then,we provide the corresponding maximum likelihood detection algorithms to recover the tag signals.Finally,simulation results are provided to demonstrate that our proposed QOSTBC scheme and the detection algorithm can achieve a better transmission code rate or symbol error rate performance for backscatter communication systems compared with benchmark schemes.展开更多
This paper proposes a new step-by-step Chebyshev space-time spectral method to analyze the force vibration of functionally graded material structures.Although traditional space-time spectral methods can reduce the acc...This paper proposes a new step-by-step Chebyshev space-time spectral method to analyze the force vibration of functionally graded material structures.Although traditional space-time spectral methods can reduce the accuracy mismatch between tem-poral low-order finite difference and spatial high-order discre tization,the ir time collocation points must increase dramatically to solve highly oscillatory solutions of structural vibration,which results in a surge in computing time and a decrease in accuracy.To address this problem,we introduced the step-by-step idea in the space-time spectral method.The Chebyshev polynomials and Lagrange's equation were applied to derive discrete spatial goverming equations,and a matrix projection method was used to map the calculation results of prev ious steps as the initial conditions of the subsequent steps.A series of numerical experiments were carried out.The results of the proposed method were compared with those obtained by traditional space-time spectral methods,which showed that higher accuracy could be achieved in a shorter computation time than the latter in highly oscillatory cases.展开更多
In this paper,we propose a hybrid decode-and-forward and soft information relaying(HDFSIR)strategy to mitigate error propagation in coded cooperative communications.In the HDFSIR approach,the relay operates in decode-...In this paper,we propose a hybrid decode-and-forward and soft information relaying(HDFSIR)strategy to mitigate error propagation in coded cooperative communications.In the HDFSIR approach,the relay operates in decode-and-forward(DF)mode when it successfully decodes the received message;otherwise,it switches to soft information relaying(SIR)mode.The benefits of the DF and SIR forwarding strategies are combined to achieve better performance than deploying the DF or SIR strategy alone.Closed-form expressions for the outage probability and symbol error rate(SER)are derived for coded cooperative communication with HDFSIR and energy-harvesting relays.Additionally,we introduce a novel normalized log-likelihood-ratio based soft estimation symbol(NL-SES)mapping technique,which enhances soft symbol accuracy for higher-order modulation,and propose a model characterizing the relationship between the estimated complex soft symbol and the actual high-order modulated symbol.Further-more,the hybrid DF-SIR strategy is extended to a distributed Alamouti space-time-coded cooperative network.To evaluate the~performance of the proposed HDFSIR strategy,we implement extensive Monte Carlo simulations under varying channel conditions.Results demonstrate significant improvements with the hybrid technique outperforming individual DF and SIR strategies in both conventional and distributed Alamouti space-time coded cooperative networks.Moreover,at a SER of 10^(-3),the proposed NL-SES mapping demonstrated a 3.5 dB performance gain over the conventional averaging one,highlighting its superior accuracy in estimating soft symbols for quadrature phase-shift keying modulation.展开更多
In Section 1, the authors establish the models of two kinds of Markov chains in space-time random environments (MCSTRE and MCSTRE(+)) with abstract state space. In Section 2, the authors construct a MCSTRE and a MCSTR...In Section 1, the authors establish the models of two kinds of Markov chains in space-time random environments (MCSTRE and MCSTRE(+)) with abstract state space. In Section 2, the authors construct a MCSTRE and a MCSTRE(+) by an initial distribution Φ and a random Markov kernel (RMK) p(γ). In Section 3, the authors es-tablish several equivalence theorems on MCSTRE and MCSTRE(+). Finally, the authors give two very important examples of MCMSTRE, the random walk in spce-time random environment and the Markov br...展开更多
In this paper, STC with water-filling transmit power distribution in MISO system is proposed when the partial channel information feedback is possible, for example, at slow fading scenario. The performances of the wat...In this paper, STC with water-filling transmit power distribution in MISO system is proposed when the partial channel information feedback is possible, for example, at slow fading scenario. The performances of the water-filling STC including water-filling STTC and water-filling STBC are analyzed. Performance comparison of the Ungerboeck's 2/3 trellis coded 8PSK modulated 2-STBC and 2-STTCs with QPSK is given out in different channel correlation.展开更多
A new scheme combining a scalable transcoder with space time block codes (STBC) for an orthogonal frequency division multiplexing (OFDM) system is proposed for robust video transmission in dispersive fading channe...A new scheme combining a scalable transcoder with space time block codes (STBC) for an orthogonal frequency division multiplexing (OFDM) system is proposed for robust video transmission in dispersive fading channels. The target application for such a scalable transcoder is to provide successful access to the pre-encoded high quality video MPEG-2 from mobile wireless terminals. In the scalable transcoder, besides outputting the MPEG-4 fine granular scalability (FGS) bitstream, both the size of video frames and the bit rate are reduced. And an array processing algorithm of layer interference suppression is used at the receiver which makes the system structure provide different levels of protection to different layers. Furthermore, by considering the important level of scalable bitstream, the different bitstreams can be given different level protection by the system structure and channel coding. With the proposed system, the concurrent large diversity gain characteristic of STBC and alleviation of the frequency-selective fading effect of OFDM can be achieved. The simulation results show that the proposed schemes integrating scalable transcoding can provide a basic quality of video transmission and outperform the conventional single layer transcoding transmitted under the random and bursty error channel conditions.展开更多
The space-time spreading (SIS), superimposed training sequences and space-time coding (STC) are adopted to obtain a closed-form of average error probability upper bound and maximum likelihood esti- mation expressi...The space-time spreading (SIS), superimposed training sequences and space-time coding (STC) are adopted to obtain a closed-form of average error probability upper bound and maximum likelihood esti- mation expression for multiple input and multiple output (MIMO) correlated frequency-selective channel in the presence of interference (colored interference). Moreover, the correlation at both ends of the wire- less link that can be incorporated equivalently into correlation at the transmit end is derived. Finally, the mean square error (MSE) of the maximum likelihood estimate is also derived.展开更多
The performance loss of an approximately 3 dB signal-to-noise ratio is always paid with conventional differential detection compared to the related coherent detection. A new detection scheme consisting of two steps is...The performance loss of an approximately 3 dB signal-to-noise ratio is always paid with conventional differential detection compared to the related coherent detection. A new detection scheme consisting of two steps is proposed for the differential unitary space-time modulation (DUSTM) system. In the first step, the data sequence is estimated by conventional unitary space-time demodulation (DUSTD) and differentially encoded again to produce an initial estimate of the transmitted symbol stream. In the second step, the initial estimate of the symbol stream is utilized to initialize an expectation maximization (EM)-based iterative detector. In each iteration, the most recent detected symbol stream is employed to estimate the channel, which is then used to implement coherent sequence detection to refine the symbol stream. Simulation results show that the proposed detection scheme performs much better than the conventional DUSTD after several iterations.展开更多
MIMO-DFE(Multiple-Input-Multiple-Output Decision Feedback Equalizer) based receiver architectures are researched recently to detect signals in BLAST(Bell laboratories LAyered Space-Time) over frequency-selective chann...MIMO-DFE(Multiple-Input-Multiple-Output Decision Feedback Equalizer) based receiver architectures are researched recently to detect signals in BLAST(Bell laboratories LAyered Space-Time) over frequency-selective channels. Due to their recursive structure, these receivers may suffer from error propagation which results in an overall mean square error degradation. An MIMO-DFE based BLAST receiver with limited error propagation to combat frequencyselective channel is proposed, which employs both norm constraint on feedback filter taps and soft decision device. Simulation results show that the proposed receiver outperforms conventional ones in various frequency selective channels.展开更多
A design of super-orthogonal space-time trellis codes (SOSTTCs) based on the trace criterion (TC) is proposed for improving the design of SOSTTCs. The shortcomings of the rank and determinant criteria based design...A design of super-orthogonal space-time trellis codes (SOSTTCs) based on the trace criterion (TC) is proposed for improving the design of SOSTTCs. The shortcomings of the rank and determinant criteria based design and the advantages of the TC-based design are analyzed. The optimization principle of four factors is presented, which includes the space-time block coding (STBC) scheme, set partitioning, trellis structure, and the assignment of signal subsets and STBC schemes in the trellis. According to this principle, systematical and handcrafted design steps are given in detail. By constellation expansion, the code performance can be further improved. The code design results are given, and the new codes outperform others in the simulation.展开更多
A method of space-time block coding (STBC) system based on adaptive beamforming of cyclostationarity signal algorithm is proposed.The method uses cyclostationarity of signals to achieve adaptive beamforming,then con...A method of space-time block coding (STBC) system based on adaptive beamforming of cyclostationarity signal algorithm is proposed.The method uses cyclostationarity of signals to achieve adaptive beamforming,then constructs a pair of low correlated transmit beams based on beamform estimation of multiple component signals of uplink.Using these two selected transmit beams,signals encoded by STBC are transmitted to achieve diversity gain and beamforming gain at the same time,and increase the signal to noise ratio (SNR) of downlink.With simple computation and fast convergence performance,the proposed scheme is applicable for time division multiple access (TDMA) wireless communication operated in a complex interference environment.Simulation results show that the proposed scheme has better performance than conventional STBC,and can obtain a gain of about 5 dB when the bit error ratio (BER) is 10-4.展开更多
Space-time signal processing based on multiple-input multiple-output(MIMO) systems is an active research field in which interfering signals are cancelled and multiuser detection is achieved using space diversity. In...Space-time signal processing based on multiple-input multiple-output(MIMO) systems is an active research field in which interfering signals are cancelled and multiuser detection is achieved using space diversity. In a Rayleigh fading channel, space-time block cedes using multiple transmitting antennas can improve system performance and reduce bit-error-rate for multiuser detection. In this paper, several antenna configurations are designed for DS-CDMA communication in MIMO systems. Space-time linear multinser detection and space-time serial interference cancellation multiuser detection are simulated. Bit-error-rate and computation complexities of the two methods are compared. Conclusions are given in the end.展开更多
This paper presents an extension of certain forms of the real Paley-Wiener theorems to the Minkowski space-time algebra. Our emphasis is dedicated to determining the space-time valued functions whose space-time Fourie...This paper presents an extension of certain forms of the real Paley-Wiener theorems to the Minkowski space-time algebra. Our emphasis is dedicated to determining the space-time valued functions whose space-time Fourier transforms(SFT) have compact support using the partial derivatives operator and the Dirac operator of higher order.展开更多
A new architecture of space-time codes as a combination of orthogonal space-time block codes (OSTBC) and linear dispersion codes (LDC) is proposed in order to improve the bit error rate(BER) performance of OSTBC...A new architecture of space-time codes as a combination of orthogonal space-time block codes (OSTBC) and linear dispersion codes (LDC) is proposed in order to improve the bit error rate(BER) performance of OSTBC.The scheme proposed is named linear dispersion orthogonal space-time block codes (LDOSTBC).In LDOSTBC scheme,firstly,the data is coded into LDC codewords.Then,the coded LDC substreams are coded into OSTBC codewords again.The decoding algorithm of LDOSTBC combines linear decoding of OSTBC and ML decoding or suboptimum detection algorithms of LDC.Compared with OSTBC scheme when the rate of LDC is MtR,the performance of LDOSTBC scheme can be improved without decreasing the data rate,where Mt is the number of transmit antennas and R is the spectral efficiency of the modulation constellation.If some rate penalty is allowed,when the rate of LDC is less than MtR the performance of LDOSTBC can be improved further.展开更多
This paper proposes a closed-form joint space-time channel and Direction Of Arrival (DOA) blind estimation algorithm for space-thne coded Multi-Carrier Code Division Multiple Access (MC-CDMA) systems equipped with...This paper proposes a closed-form joint space-time channel and Direction Of Arrival (DOA) blind estimation algorithm for space-thne coded Multi-Carrier Code Division Multiple Access (MC-CDMA) systems equipped with a Uniform Linear Array (ULA) at the base station in frequency-selective fading environments. The algorithm uses an ESPRIT-like method to separate multiple co-channel users with different impinging DOAs. As a result, the DOAs for multiple users are obtained. In particular, a set of signal subspaces, every one of which is spanned by the space-time vector channels of an individual user, are also obtained. From these signal subspaces, the space-time channels of multiple users are estimated using the subspace method. Computer simulations illustrate both the validity and the overall performance of the proposed scheme.展开更多
Space-time trellis codes can achieve the best tradeoff among bandwidth efficiency, diversity gain, constellation size and trellis complexity. In this paper, some optimum low rate space-time trellis codes are proposed....Space-time trellis codes can achieve the best tradeoff among bandwidth efficiency, diversity gain, constellation size and trellis complexity. In this paper, some optimum low rate space-time trellis codes are proposed. Performance analysis and simulation show that the low rate space-time trellis codes outperform space-time block codes concatenated with convolutional code at the same bandwidth efficiency, and are more suitable for the power limited wireless communication system.展开更多
A new high-order accurate staggered semi-implicit space-time discontinuous Galerkin(DG)method is presented for the simulation of viscous incompressible flows on unstructured triangular grids in two space dimensions.Th...A new high-order accurate staggered semi-implicit space-time discontinuous Galerkin(DG)method is presented for the simulation of viscous incompressible flows on unstructured triangular grids in two space dimensions.The staggered DG scheme defines the discrete pressure on the primal triangular mesh,while the discrete velocity is defined on a staggered edge-based dual quadrilateral mesh.In this paper,a new pair of equal-order-interpolation velocity-pressure finite elements is proposed.On the primary triangular mesh(the pressure elements),the basis functions are piecewise polynomials of degree N and are allowed to jump on the boundaries of each triangle.On the dual mesh instead(the velocity elements),the basis functions consist in the union of piecewise polynomials of degree N on the two subtriangles that compose each quadrilateral and are allowed to jump only on the dual element boundaries,while they are continuous inside.In other words,the basis functions on the dual mesh arc built by continuous finite elements on the subtriangles.This choice allows the construction of an efficient,quadrature-free and memory saving algorithm.In our coupled space-time pressure correction formulation for the incompressible Navier-Stokes equations,the arbitrary high order of accuracy in time is achieved through tire use of time-dependent test and basis functions,in combination with simple and efficient Picard iterations.Several numerical tests on classical benchmarks confirm that the proposed method outperforms existing staggered semi-implicit space-time DG schemes,not only from a computer memory point of view,but also concerning the computational time.展开更多
In Newton’s classical physics, space and time are treated as absolute quantities. Space and time are treated as independent quantities and can be discussed sepa-rately. With his theory of relativity, Einstein proved ...In Newton’s classical physics, space and time are treated as absolute quantities. Space and time are treated as independent quantities and can be discussed sepa-rately. With his theory of relativity, Einstein proved that space and time are de-pendent and must be treated inseparably. Minkowski adopted a four-dimensional space-time frame and indirectly revealed the dependency of space and time by adding a constraint for an event interval. Since space and time are inseparable, a three-dimensional space-time frame can be constructed by embedding time into space to directly show the interdependency of space and time. The formula for time dilation, length contraction, and the Lorenz transformation can be derived from graphs utilizing this new frame. The proposed three-dimensional space-time frame is an alternate frame that can be used to describe motions of objects, and it may improve teaching and learning Special Relativity and provide additional insights into space and time.展开更多
The battlefield environment is changing rapidly,and fast and accurate identification of the tactical intention of enemy targets is an important condition for gaining a decision-making advantage.The current Intention R...The battlefield environment is changing rapidly,and fast and accurate identification of the tactical intention of enemy targets is an important condition for gaining a decision-making advantage.The current Intention Recognition(IR)method for air targets has shortcomings in temporality,interpretability and back-and-forth dependency of intentions.To address these problems,this paper designs a novel air target intention recognition method named STABC-IR,which is based on Bidirectional Gated Recurrent Unit(Bi GRU)and Conditional Random Field(CRF)with Space-Time Attention mechanism(STA).First,the problem of intention recognition of air targets is described and analyzed in detail.Then,a temporal network based on Bi GRU is constructed to achieve the temporal requirement.Subsequently,STA is proposed to focus on the key parts of the features and timing information to meet certain interpretability requirements while strengthening the timing requirements.Finally,an intention transformation network based on CRF is proposed to solve the back-and-forth dependency and transformation problem by jointly modeling the tactical intention of the target at each moment.The experimental results show that the recognition accuracy of the jointly trained STABC-IR model can reach 95.7%,which is higher than other latest intention recognition methods.STABC-IR solves the problem of intention transformation for the first time and considers both temporality and interpretability,which is important for improving the tactical intention recognition capability and has reference value for the construction of command and control auxiliary decision-making system.展开更多
基金supported by Beijing Municipal Natural Science Foundation(L222002)the Natural Science Foundation of China(U22B2004).
文摘Existing orthogonal space-time block coding(OSTBC)schemes for backscatter communication systems cannot achieve a full transmission code rate when the tag is equipped with more than two antennas.In this paper,we propose a quasi-orthogonal spacetime block code(QOSTBC)that can achieve a full transmission code rate for backscatter communication systems with a four-antenna tag and then extend the scheme to support tags with 2i antennas.Specifically,we first present the system model for the backscatter system.Next,we propose the QOSTBC scheme to encode the tag signals.Then,we provide the corresponding maximum likelihood detection algorithms to recover the tag signals.Finally,simulation results are provided to demonstrate that our proposed QOSTBC scheme and the detection algorithm can achieve a better transmission code rate or symbol error rate performance for backscatter communication systems compared with benchmark schemes.
基金supported by the Advance Research Project of Civil Aerospace Technology(Grant No.D020304)National Nat-ural Science Foundation of China(Grant Nos.52205257 and U22B2083).
文摘This paper proposes a new step-by-step Chebyshev space-time spectral method to analyze the force vibration of functionally graded material structures.Although traditional space-time spectral methods can reduce the accuracy mismatch between tem-poral low-order finite difference and spatial high-order discre tization,the ir time collocation points must increase dramatically to solve highly oscillatory solutions of structural vibration,which results in a surge in computing time and a decrease in accuracy.To address this problem,we introduced the step-by-step idea in the space-time spectral method.The Chebyshev polynomials and Lagrange's equation were applied to derive discrete spatial goverming equations,and a matrix projection method was used to map the calculation results of prev ious steps as the initial conditions of the subsequent steps.A series of numerical experiments were carried out.The results of the proposed method were compared with those obtained by traditional space-time spectral methods,which showed that higher accuracy could be achieved in a shorter computation time than the latter in highly oscillatory cases.
基金funded by the Deanship of Graduate Studies and Scientific Research at Jouf University under grant No.(DGSSR-2024-02-02160).
文摘In this paper,we propose a hybrid decode-and-forward and soft information relaying(HDFSIR)strategy to mitigate error propagation in coded cooperative communications.In the HDFSIR approach,the relay operates in decode-and-forward(DF)mode when it successfully decodes the received message;otherwise,it switches to soft information relaying(SIR)mode.The benefits of the DF and SIR forwarding strategies are combined to achieve better performance than deploying the DF or SIR strategy alone.Closed-form expressions for the outage probability and symbol error rate(SER)are derived for coded cooperative communication with HDFSIR and energy-harvesting relays.Additionally,we introduce a novel normalized log-likelihood-ratio based soft estimation symbol(NL-SES)mapping technique,which enhances soft symbol accuracy for higher-order modulation,and propose a model characterizing the relationship between the estimated complex soft symbol and the actual high-order modulated symbol.Further-more,the hybrid DF-SIR strategy is extended to a distributed Alamouti space-time-coded cooperative network.To evaluate the~performance of the proposed HDFSIR strategy,we implement extensive Monte Carlo simulations under varying channel conditions.Results demonstrate significant improvements with the hybrid technique outperforming individual DF and SIR strategies in both conventional and distributed Alamouti space-time coded cooperative networks.Moreover,at a SER of 10^(-3),the proposed NL-SES mapping demonstrated a 3.5 dB performance gain over the conventional averaging one,highlighting its superior accuracy in estimating soft symbols for quadrature phase-shift keying modulation.
基金Supported by the National Natural Science Foundation of China (10771185 and 10871200)
文摘In Section 1, the authors establish the models of two kinds of Markov chains in space-time random environments (MCSTRE and MCSTRE(+)) with abstract state space. In Section 2, the authors construct a MCSTRE and a MCSTRE(+) by an initial distribution Φ and a random Markov kernel (RMK) p(γ). In Section 3, the authors es-tablish several equivalence theorems on MCSTRE and MCSTRE(+). Finally, the authors give two very important examples of MCMSTRE, the random walk in spce-time random environment and the Markov br...
文摘In this paper, STC with water-filling transmit power distribution in MISO system is proposed when the partial channel information feedback is possible, for example, at slow fading scenario. The performances of the water-filling STC including water-filling STTC and water-filling STBC are analyzed. Performance comparison of the Ungerboeck's 2/3 trellis coded 8PSK modulated 2-STBC and 2-STTCs with QPSK is given out in different channel correlation.
文摘A new scheme combining a scalable transcoder with space time block codes (STBC) for an orthogonal frequency division multiplexing (OFDM) system is proposed for robust video transmission in dispersive fading channels. The target application for such a scalable transcoder is to provide successful access to the pre-encoded high quality video MPEG-2 from mobile wireless terminals. In the scalable transcoder, besides outputting the MPEG-4 fine granular scalability (FGS) bitstream, both the size of video frames and the bit rate are reduced. And an array processing algorithm of layer interference suppression is used at the receiver which makes the system structure provide different levels of protection to different layers. Furthermore, by considering the important level of scalable bitstream, the different bitstreams can be given different level protection by the system structure and channel coding. With the proposed system, the concurrent large diversity gain characteristic of STBC and alleviation of the frequency-selective fading effect of OFDM can be achieved. The simulation results show that the proposed schemes integrating scalable transcoding can provide a basic quality of video transmission and outperform the conventional single layer transcoding transmitted under the random and bursty error channel conditions.
基金the National High Technology Research and Development Program of China(2002AA123032)
文摘The space-time spreading (SIS), superimposed training sequences and space-time coding (STC) are adopted to obtain a closed-form of average error probability upper bound and maximum likelihood esti- mation expression for multiple input and multiple output (MIMO) correlated frequency-selective channel in the presence of interference (colored interference). Moreover, the correlation at both ends of the wire- less link that can be incorporated equivalently into correlation at the transmit end is derived. Finally, the mean square error (MSE) of the maximum likelihood estimate is also derived.
基金The National Natural Science Foundation of China(No60572072,60496311)the National High Technology Research and Development Program of China (863Program) (No2006AA01Z264)+1 种基金the National Basic Research Program of China (973Program) (No2007CB310603)the PhD Programs Foundation of Ministry of Educa-tion of China (No20060286016)
文摘The performance loss of an approximately 3 dB signal-to-noise ratio is always paid with conventional differential detection compared to the related coherent detection. A new detection scheme consisting of two steps is proposed for the differential unitary space-time modulation (DUSTM) system. In the first step, the data sequence is estimated by conventional unitary space-time demodulation (DUSTD) and differentially encoded again to produce an initial estimate of the transmitted symbol stream. In the second step, the initial estimate of the symbol stream is utilized to initialize an expectation maximization (EM)-based iterative detector. In each iteration, the most recent detected symbol stream is employed to estimate the channel, which is then used to implement coherent sequence detection to refine the symbol stream. Simulation results show that the proposed detection scheme performs much better than the conventional DUSTD after several iterations.
文摘MIMO-DFE(Multiple-Input-Multiple-Output Decision Feedback Equalizer) based receiver architectures are researched recently to detect signals in BLAST(Bell laboratories LAyered Space-Time) over frequency-selective channels. Due to their recursive structure, these receivers may suffer from error propagation which results in an overall mean square error degradation. An MIMO-DFE based BLAST receiver with limited error propagation to combat frequencyselective channel is proposed, which employs both norm constraint on feedback filter taps and soft decision device. Simulation results show that the proposed receiver outperforms conventional ones in various frequency selective channels.
文摘A design of super-orthogonal space-time trellis codes (SOSTTCs) based on the trace criterion (TC) is proposed for improving the design of SOSTTCs. The shortcomings of the rank and determinant criteria based design and the advantages of the TC-based design are analyzed. The optimization principle of four factors is presented, which includes the space-time block coding (STBC) scheme, set partitioning, trellis structure, and the assignment of signal subsets and STBC schemes in the trellis. According to this principle, systematical and handcrafted design steps are given in detail. By constellation expansion, the code performance can be further improved. The code design results are given, and the new codes outperform others in the simulation.
文摘A method of space-time block coding (STBC) system based on adaptive beamforming of cyclostationarity signal algorithm is proposed.The method uses cyclostationarity of signals to achieve adaptive beamforming,then constructs a pair of low correlated transmit beams based on beamform estimation of multiple component signals of uplink.Using these two selected transmit beams,signals encoded by STBC are transmitted to achieve diversity gain and beamforming gain at the same time,and increase the signal to noise ratio (SNR) of downlink.With simple computation and fast convergence performance,the proposed scheme is applicable for time division multiple access (TDMA) wireless communication operated in a complex interference environment.Simulation results show that the proposed scheme has better performance than conventional STBC,and can obtain a gain of about 5 dB when the bit error ratio (BER) is 10-4.
文摘Space-time signal processing based on multiple-input multiple-output(MIMO) systems is an active research field in which interfering signals are cancelled and multiuser detection is achieved using space diversity. In a Rayleigh fading channel, space-time block cedes using multiple transmitting antennas can improve system performance and reduce bit-error-rate for multiuser detection. In this paper, several antenna configurations are designed for DS-CDMA communication in MIMO systems. Space-time linear multinser detection and space-time serial interference cancellation multiuser detection are simulated. Bit-error-rate and computation complexities of the two methods are compared. Conclusions are given in the end.
基金supported by the Deanship of Scientific Research at King Khalid University,Saudi Arabia (R.G.P.1/207/43)。
文摘This paper presents an extension of certain forms of the real Paley-Wiener theorems to the Minkowski space-time algebra. Our emphasis is dedicated to determining the space-time valued functions whose space-time Fourier transforms(SFT) have compact support using the partial derivatives operator and the Dirac operator of higher order.
基金Sponsored by the "111" Project of China (B08038)Important National Science & Technology Specific Projects (2009ZX03003-003+2 种基金2009ZX03003-004) the NSFC-Guangdong (U0635003)Program for Changjiang Scholars and Innovative Research Team in University(IRT0852)
文摘A new architecture of space-time codes as a combination of orthogonal space-time block codes (OSTBC) and linear dispersion codes (LDC) is proposed in order to improve the bit error rate(BER) performance of OSTBC.The scheme proposed is named linear dispersion orthogonal space-time block codes (LDOSTBC).In LDOSTBC scheme,firstly,the data is coded into LDC codewords.Then,the coded LDC substreams are coded into OSTBC codewords again.The decoding algorithm of LDOSTBC combines linear decoding of OSTBC and ML decoding or suboptimum detection algorithms of LDC.Compared with OSTBC scheme when the rate of LDC is MtR,the performance of LDOSTBC scheme can be improved without decreasing the data rate,where Mt is the number of transmit antennas and R is the spectral efficiency of the modulation constellation.If some rate penalty is allowed,when the rate of LDC is less than MtR the performance of LDOSTBC can be improved further.
基金Partially supported by the National Natural Science Foundation of China (No.60272071)the Research Fund for Doctoral Program of Higher Education of China (No.20020698024 & 20030698027).
文摘This paper proposes a closed-form joint space-time channel and Direction Of Arrival (DOA) blind estimation algorithm for space-thne coded Multi-Carrier Code Division Multiple Access (MC-CDMA) systems equipped with a Uniform Linear Array (ULA) at the base station in frequency-selective fading environments. The algorithm uses an ESPRIT-like method to separate multiple co-channel users with different impinging DOAs. As a result, the DOAs for multiple users are obtained. In particular, a set of signal subspaces, every one of which is spanned by the space-time vector channels of an individual user, are also obtained. From these signal subspaces, the space-time channels of multiple users are estimated using the subspace method. Computer simulations illustrate both the validity and the overall performance of the proposed scheme.
文摘Space-time trellis codes can achieve the best tradeoff among bandwidth efficiency, diversity gain, constellation size and trellis complexity. In this paper, some optimum low rate space-time trellis codes are proposed. Performance analysis and simulation show that the low rate space-time trellis codes outperform space-time block codes concatenated with convolutional code at the same bandwidth efficiency, and are more suitable for the power limited wireless communication system.
基金funded by the research project STiMulUs,ERC Grant agreement no.278267Financial support has also been provided by the Italian Ministry of Education,University and Research(MIUR)in the frame of the Departments of Excellence Initiative 2018-2022 attributed to DICAM of the University of Trento(Grant L.232/2016)the PRIN2017 project.The authors have also received funding from the University of Trento via the Strategic Initiative Modeling and Simulation.
文摘A new high-order accurate staggered semi-implicit space-time discontinuous Galerkin(DG)method is presented for the simulation of viscous incompressible flows on unstructured triangular grids in two space dimensions.The staggered DG scheme defines the discrete pressure on the primal triangular mesh,while the discrete velocity is defined on a staggered edge-based dual quadrilateral mesh.In this paper,a new pair of equal-order-interpolation velocity-pressure finite elements is proposed.On the primary triangular mesh(the pressure elements),the basis functions are piecewise polynomials of degree N and are allowed to jump on the boundaries of each triangle.On the dual mesh instead(the velocity elements),the basis functions consist in the union of piecewise polynomials of degree N on the two subtriangles that compose each quadrilateral and are allowed to jump only on the dual element boundaries,while they are continuous inside.In other words,the basis functions on the dual mesh arc built by continuous finite elements on the subtriangles.This choice allows the construction of an efficient,quadrature-free and memory saving algorithm.In our coupled space-time pressure correction formulation for the incompressible Navier-Stokes equations,the arbitrary high order of accuracy in time is achieved through tire use of time-dependent test and basis functions,in combination with simple and efficient Picard iterations.Several numerical tests on classical benchmarks confirm that the proposed method outperforms existing staggered semi-implicit space-time DG schemes,not only from a computer memory point of view,but also concerning the computational time.
文摘In Newton’s classical physics, space and time are treated as absolute quantities. Space and time are treated as independent quantities and can be discussed sepa-rately. With his theory of relativity, Einstein proved that space and time are de-pendent and must be treated inseparably. Minkowski adopted a four-dimensional space-time frame and indirectly revealed the dependency of space and time by adding a constraint for an event interval. Since space and time are inseparable, a three-dimensional space-time frame can be constructed by embedding time into space to directly show the interdependency of space and time. The formula for time dilation, length contraction, and the Lorenz transformation can be derived from graphs utilizing this new frame. The proposed three-dimensional space-time frame is an alternate frame that can be used to describe motions of objects, and it may improve teaching and learning Special Relativity and provide additional insights into space and time.
基金supported by the National Natural Science Foundation of China(Nos.62106283 and 72001214)。
文摘The battlefield environment is changing rapidly,and fast and accurate identification of the tactical intention of enemy targets is an important condition for gaining a decision-making advantage.The current Intention Recognition(IR)method for air targets has shortcomings in temporality,interpretability and back-and-forth dependency of intentions.To address these problems,this paper designs a novel air target intention recognition method named STABC-IR,which is based on Bidirectional Gated Recurrent Unit(Bi GRU)and Conditional Random Field(CRF)with Space-Time Attention mechanism(STA).First,the problem of intention recognition of air targets is described and analyzed in detail.Then,a temporal network based on Bi GRU is constructed to achieve the temporal requirement.Subsequently,STA is proposed to focus on the key parts of the features and timing information to meet certain interpretability requirements while strengthening the timing requirements.Finally,an intention transformation network based on CRF is proposed to solve the back-and-forth dependency and transformation problem by jointly modeling the tactical intention of the target at each moment.The experimental results show that the recognition accuracy of the jointly trained STABC-IR model can reach 95.7%,which is higher than other latest intention recognition methods.STABC-IR solves the problem of intention transformation for the first time and considers both temporality and interpretability,which is important for improving the tactical intention recognition capability and has reference value for the construction of command and control auxiliary decision-making system.