Soil salinity hampers plant performance.Elevated atmospheric CO_(2)(e[CO_(2)])could alleviate the detrimental effect of salinity on plants but whether abscisic acid(ABA)is involved in this process is unclear.To addres...Soil salinity hampers plant performance.Elevated atmospheric CO_(2)(e[CO_(2)])could alleviate the detrimental effect of salinity on plants but whether abscisic acid(ABA)is involved in this process is unclear.To address this issue,three tomato(Solanum lycopersicum)genotypes with varying endogenous ABA concentrations(wild-type AC,ABA-deficient mutant flacca and ABA-overproduction line SP5)were grown in pots under ambient(400μmol·mol^(-1))or elevated(800μmol·mol^(-1))CO_(2)with or without the addition of 100 mmol·L-1sodium chloride(NaCl).The results showed that e[CO_(2)]favored ion homeostasis by decreasing root-to-shoot delivery of Na^(+),which was mainly attributed to lowered transpiration rate rather than altered xylem-sap Na^(+)concentration.In AC and SP5,the low transpiration rate of e[CO_(2)]-plants under salinity was accompanied by enhanced endogenous ABA levels,which might play a role in upregulating the abundance of specific transcripts related to Na^(+)homeostasis(i.e.,SALT OVERLY SENSITIVE)under salt stress.In flacca,e[CO_(2)]-induced Na^(+)homeostasis was abolished,which could be ascribed to the low and unaltered ABA levels,albeit the ethylene biosynthesis was enhanced in flacca under salt stress,indicating an antagonistic relationship between ABA and ethylene.Furthermore,e[CO_(2)]inhibited ethylene biosynthesis under salt stress in all three genotypes.The results enrich our comprehension of the fundamental processes of e[CO_(2)]-conferred salt tolerance in tomato.展开更多
Soil salinity is a worldwide problem that adversely affects plant growth and crop productivity. The salt overly sensitive (SOS) pathway is evolutionarily conserved and essential for plant salt tolerance. In this study...Soil salinity is a worldwide problem that adversely affects plant growth and crop productivity. The salt overly sensitive (SOS) pathway is evolutionarily conserved and essential for plant salt tolerance. In this study, we reveal how the maize shaggy/glycogen synthase kinase 3-like kinases ZmSK3 and ZmSK4, orthologs of brassinosteroid insensitive 2 in Arabidopsis thaliana, regulate the maize SOS pathway. ZmSK3 and ZmSK4 interact with and phosphorylate ZmSOS2, a core member of the maize SOS pathway. The mutants defective in ZmSK3 or ZmSK4 are hyposensitive to salt stress, with higher salt-induced activity of ZmSOS2 than that in the wild type. Furthermore, the Ca^(2+) sensors ZmSOS3 and ZmSOS3-like calcium binding protein 8 (ZmSCaBP8) activate ZmSOS2 to maintain Na^(+)/K^(+) homeostasis under salt stress and may participate in the regulation of ZmSOS2 by ZmSK3 and ZmSK4. These findings discover the regulation of the maize SOS pathway and provide important gene targets for breeding salt-tolerant maize.展开更多
Soil salinity is a growing problem around the world with special relevance in farmlands. The ability to sense and respond to environmental stimuli is among the most fundamental processes that enable plants to survive....Soil salinity is a growing problem around the world with special relevance in farmlands. The ability to sense and respond to environmental stimuli is among the most fundamental processes that enable plants to survive. At the cellular level, the Salt Overly Sensitive (SOS) signaling pathway that comprises SOS3, SOS2, and SOS1 has been proposed to mediate cellular signaling under salt stress, to maintain ion homeostasis. Less well known is how cellularly heterog- enous organs couple the salt signals to homeostasis maintenance of different types of cells and to appropriate growth of the entire organ and plant. Recent evidence strongly indicates that different regulatory mechanisms are adopted by roots and shoots in response to salt stress. Several reports have stated that, in roots, the SOS proteins may have novel roles in addition to their functions in sodium homeostasis. SOS3 plays a critical role in plastic development of lateral roots through modulation of auxin gradients and maxima in roots under mild salt conditions. The SOS proteins also play a role in the dynamics of cytoskeleton under stress. These results imply a high complexity of the regulatory networks involved in plant response to salinity. This review focuses on the emerging complexity of the SOS signaling and SOS protein functions, and highlights recent understanding on how the SOS proteins contribute to different responses to salt stress besides ion homeostasis.展开更多
The plant-specific FYVE-domain-containing protein FYVE4,a component of the endosomal sorting complex required for transport III(ESCRT-III),participates in membrane protein sorting.However,the mechanism by which FYVE4 ...The plant-specific FYVE-domain-containing protein FYVE4,a component of the endosomal sorting complex required for transport III(ESCRT-III),participates in membrane protein sorting.However,the mechanism by which FYVE4 coordinates plant growth responses to environmental stress remains unclear.In this study,we reveal a novel function of FYVE4 in positively regulating plant salt resistance by modulating the Salt Overly Sensitive(SOS)signaling pathway.FYVE4 enhances SOS1 phosphorylation by promoting SOS1-SOS2 interactions during salt stress.Loss of FYVE4 reduces the SOS1-SOS2 association,leading to decreased SOS1 phosphorylation and increased plant sensitivity to salt stress.Notably,overexpression of SOS1 does not rescue the salt-sensitive phenotype of fyve4-1,whereas SOS2 overexpression does.In summary,our findings highlight the critical role of FYVE4 in promoting SOS1-SOS2 interactions to mitigate salt stress and reveal a previously unrecognized function of FYVE4 in abiotic stress responses,extending beyond its established role in membrane trafficking regulation.展开更多
The Salt-Overly-Sensitive(SOS)signaling module,comprising the sodium-transport protein SOS1 and the regulatory proteins SOS2 and SOS3,is well known as the central salt excretion system,which helps protect plants again...The Salt-Overly-Sensitive(SOS)signaling module,comprising the sodium-transport protein SOS1 and the regulatory proteins SOS2 and SOS3,is well known as the central salt excretion system,which helps protect plants against salt stress.Here we report that VPS23A,a component of the ESCRT(endosomal sorting complex required for transport),plays an essential role in the function of the SOS module in conferring plant salt tolerance.VPS23A enhances the interaction of SOS2 and SOS3.In the presence of salt stress,VPS23A positively regulates the redistribution of SOS2 to the plasma membrane,which then activates the antiporter activity of SOS1 to reduce Na+accumulation in plant cells.Genetic evidence demonstrated that plant salt tolerance achieved by the overexpression of SOS2 and SOS3 dependeds on VPS23A.Taken together,our results revealed that VPS23A is a crucial regulator of the SOS module and affects the localization of SOS2 to the cell membrane.Moreover,the strong salt tolerance of Arabidopsis seedlings conferred by the engineered membrane-bound SOS2 revealed the significance of SOS2 sorting to the cell membrane in achieving its function,providing a potential strategy for crop salt tolerance engineering.展开更多
基金supported by the Chinese Scholarship Council(CSC).
文摘Soil salinity hampers plant performance.Elevated atmospheric CO_(2)(e[CO_(2)])could alleviate the detrimental effect of salinity on plants but whether abscisic acid(ABA)is involved in this process is unclear.To address this issue,three tomato(Solanum lycopersicum)genotypes with varying endogenous ABA concentrations(wild-type AC,ABA-deficient mutant flacca and ABA-overproduction line SP5)were grown in pots under ambient(400μmol·mol^(-1))or elevated(800μmol·mol^(-1))CO_(2)with or without the addition of 100 mmol·L-1sodium chloride(NaCl).The results showed that e[CO_(2)]favored ion homeostasis by decreasing root-to-shoot delivery of Na^(+),which was mainly attributed to lowered transpiration rate rather than altered xylem-sap Na^(+)concentration.In AC and SP5,the low transpiration rate of e[CO_(2)]-plants under salinity was accompanied by enhanced endogenous ABA levels,which might play a role in upregulating the abundance of specific transcripts related to Na^(+)homeostasis(i.e.,SALT OVERLY SENSITIVE)under salt stress.In flacca,e[CO_(2)]-induced Na^(+)homeostasis was abolished,which could be ascribed to the low and unaltered ABA levels,albeit the ethylene biosynthesis was enhanced in flacca under salt stress,indicating an antagonistic relationship between ABA and ethylene.Furthermore,e[CO_(2)]inhibited ethylene biosynthesis under salt stress in all three genotypes.The results enrich our comprehension of the fundamental processes of e[CO_(2)]-conferred salt tolerance in tomato.
基金This work was supported by grants from the National Key R&D Program of China(2022YFF1001601 and 2022YFA1303400)supported by grants from the National Natural Science Foundation of China(32100234 and 31921001).
文摘Soil salinity is a worldwide problem that adversely affects plant growth and crop productivity. The salt overly sensitive (SOS) pathway is evolutionarily conserved and essential for plant salt tolerance. In this study, we reveal how the maize shaggy/glycogen synthase kinase 3-like kinases ZmSK3 and ZmSK4, orthologs of brassinosteroid insensitive 2 in Arabidopsis thaliana, regulate the maize SOS pathway. ZmSK3 and ZmSK4 interact with and phosphorylate ZmSOS2, a core member of the maize SOS pathway. The mutants defective in ZmSK3 or ZmSK4 are hyposensitive to salt stress, with higher salt-induced activity of ZmSOS2 than that in the wild type. Furthermore, the Ca^(2+) sensors ZmSOS3 and ZmSOS3-like calcium binding protein 8 (ZmSCaBP8) activate ZmSOS2 to maintain Na^(+)/K^(+) homeostasis under salt stress and may participate in the regulation of ZmSOS2 by ZmSK3 and ZmSK4. These findings discover the regulation of the maize SOS pathway and provide important gene targets for breeding salt-tolerant maize.
基金We would like to acknowledge support from the National Science Foundation of China,the National Program on Key Basic Research Project,the Key Basic Research Project of Applied Basic Research Program of Hebei Province,the National Transgenic Key Project of MOA,the Ministry of Science and Innovation of Spain,the International Exchange Program of the University of Naples ‘Federico Ⅱ' to G.B.No conflict of interest declared
文摘Soil salinity is a growing problem around the world with special relevance in farmlands. The ability to sense and respond to environmental stimuli is among the most fundamental processes that enable plants to survive. At the cellular level, the Salt Overly Sensitive (SOS) signaling pathway that comprises SOS3, SOS2, and SOS1 has been proposed to mediate cellular signaling under salt stress, to maintain ion homeostasis. Less well known is how cellularly heterog- enous organs couple the salt signals to homeostasis maintenance of different types of cells and to appropriate growth of the entire organ and plant. Recent evidence strongly indicates that different regulatory mechanisms are adopted by roots and shoots in response to salt stress. Several reports have stated that, in roots, the SOS proteins may have novel roles in addition to their functions in sodium homeostasis. SOS3 plays a critical role in plastic development of lateral roots through modulation of auxin gradients and maxima in roots under mild salt conditions. The SOS proteins also play a role in the dynamics of cytoskeleton under stress. These results imply a high complexity of the regulatory networks involved in plant response to salinity. This review focuses on the emerging complexity of the SOS signaling and SOS protein functions, and highlights recent understanding on how the SOS proteins contribute to different responses to salt stress besides ion homeostasis.
基金supported by grants from the Guangdong Province(grant nos.2021A1515010913 and 2024B1515020043)the National Natural Science Foundation of China(grant no.32370329)to H.L.+4 种基金the China Postdoctoral Science Foundation(grant no.2022M721220)and the Guangdong Basic and Applied Basic Research Foundation(grant no.2023A1515110972)to C.L.the National Natural Science Foundation of China(NSFC,grant nos.32061160467,32270291,and 31870171)the Fok Ying-Tong Education Foundation for Young Teachers in Higher Education Institutions of China(grant no.171014)to C.G.the Open Competition Program of the Top Ten Critical Priorities of Agricultural Science and Technology Innovation for the 14th Five-Year Plan of Guangdong Province(2022SDZG05)as well as the Guangdong Province Rural Revitalization Strategy Special Funding for Seed Industry Vitalization to Y.Z.
文摘The plant-specific FYVE-domain-containing protein FYVE4,a component of the endosomal sorting complex required for transport III(ESCRT-III),participates in membrane protein sorting.However,the mechanism by which FYVE4 coordinates plant growth responses to environmental stress remains unclear.In this study,we reveal a novel function of FYVE4 in positively regulating plant salt resistance by modulating the Salt Overly Sensitive(SOS)signaling pathway.FYVE4 enhances SOS1 phosphorylation by promoting SOS1-SOS2 interactions during salt stress.Loss of FYVE4 reduces the SOS1-SOS2 association,leading to decreased SOS1 phosphorylation and increased plant sensitivity to salt stress.Notably,overexpression of SOS1 does not rescue the salt-sensitive phenotype of fyve4-1,whereas SOS2 overexpression does.In summary,our findings highlight the critical role of FYVE4 in promoting SOS1-SOS2 interactions to mitigate salt stress and reveal a previously unrecognized function of FYVE4 in abiotic stress responses,extending beyond its established role in membrane trafficking regulation.
基金This project was financially supported by grants from the National Key R&D Program of China(2016YFA0500501)the National Natural Science Foundation of China(31800228 and 31571441)also partially supported by the Transgenic Research Projects(2016ZX08009-003).
文摘The Salt-Overly-Sensitive(SOS)signaling module,comprising the sodium-transport protein SOS1 and the regulatory proteins SOS2 and SOS3,is well known as the central salt excretion system,which helps protect plants against salt stress.Here we report that VPS23A,a component of the ESCRT(endosomal sorting complex required for transport),plays an essential role in the function of the SOS module in conferring plant salt tolerance.VPS23A enhances the interaction of SOS2 and SOS3.In the presence of salt stress,VPS23A positively regulates the redistribution of SOS2 to the plasma membrane,which then activates the antiporter activity of SOS1 to reduce Na+accumulation in plant cells.Genetic evidence demonstrated that plant salt tolerance achieved by the overexpression of SOS2 and SOS3 dependeds on VPS23A.Taken together,our results revealed that VPS23A is a crucial regulator of the SOS module and affects the localization of SOS2 to the cell membrane.Moreover,the strong salt tolerance of Arabidopsis seedlings conferred by the engineered membrane-bound SOS2 revealed the significance of SOS2 sorting to the cell membrane in achieving its function,providing a potential strategy for crop salt tolerance engineering.