期刊文献+
共找到1,909篇文章
< 1 2 96 >
每页显示 20 50 100
Smart Bubble Sort:A Novel and Dynamic Variant of Bubble Sort Algorithm
1
作者 Mohammad Khalid Imam Rahmani 《Computers, Materials & Continua》 SCIE EI 2022年第6期4895-4913,共19页
In the present era,a very huge volume of data is being stored in online and offline databases.Enterprise houses,research,medical as well as healthcare organizations,and academic institutions store data in databases an... In the present era,a very huge volume of data is being stored in online and offline databases.Enterprise houses,research,medical as well as healthcare organizations,and academic institutions store data in databases and their subsequent retrievals are performed for further processing.Finding the required data from a given database within the minimum possible time is one of the key factors in achieving the best possible performance of any computer-based application.If the data is already sorted,finding or searching is comparatively faster.In real-life scenarios,the data collected from different sources may not be in sorted order.Sorting algorithms are required to arrange the data in some order in the least possible time.In this paper,I propose an intelligent approach towards designing a smart variant of the bubble sort algorithm.I call it Smart Bubble sort that exhibits dynamic footprint:The capability of adapting itself from the average-case to the best-case scenario.It is an in-place sorting algorithm and its best-case time complexity isΩ(n).It is linear and better than bubble sort,selection sort,and merge sort.In averagecase and worst-case analyses,the complexity estimates are based on its static footprint analyses.Its complexity in worst-case is O(n2)and in average-case isΘ(n^(2)).Smart Bubble sort is capable of adapting itself to the best-case scenario from the average-case scenario at any subsequent stages due to its dynamic and intelligent nature.The Smart Bubble sort outperforms bubble sort,selection sort,and merge sort in the best-case scenario whereas it outperforms bubble sort in the average-case scenario. 展开更多
关键词 sorting algorithms smart bubble sort FOOTPRINT dynamic footprint time complexity asymptotic analysis
在线阅读 下载PDF
Improvement of Counting Sorting Algorithm
2
作者 Chenglong Song Haiming Li 《Journal of Computer and Communications》 2023年第10期12-22,共11页
By analyzing the internal features of counting sorting algorithm. Two improvements of counting sorting algorithms are proposed, which have a wide range of applications and better efficiency than the original counting ... By analyzing the internal features of counting sorting algorithm. Two improvements of counting sorting algorithms are proposed, which have a wide range of applications and better efficiency than the original counting sort while maintaining the original stability. Compared with the original counting sort, it has a wider scope of application and better time and space efficiency. In addition, the accuracy of the above conclusions can be proved by a large amount of experimental data. 展开更多
关键词 sort algorithm Counting sorting algorithms COMPLEXITY Internal Features
在线阅读 下载PDF
Improved non-dominated sorting genetic algorithm (NSGA)-II in multi-objective optimization studies of wind turbine blades 被引量:30
3
作者 王珑 王同光 罗源 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2011年第6期739-748,共10页
The non-dominated sorting genetic algorithm (NSGA) is improved with the controlled elitism and dynamic crowding distance. A novel multi-objective optimization algorithm is obtained for wind turbine blades. As an exa... The non-dominated sorting genetic algorithm (NSGA) is improved with the controlled elitism and dynamic crowding distance. A novel multi-objective optimization algorithm is obtained for wind turbine blades. As an example, a 5 MW wind turbine blade design is presented by taking the maximum power coefficient and the minimum blade mass as the optimization objectives. The optimal results show that this algorithm has good performance in handling the multi-objective optimization of wind turbines, and it gives a Pareto-optimal solution set rather than the optimum solutions to the conventional multi objective optimization problems. The wind turbine blade optimization method presented in this paper provides a new and general algorithm for the multi-objective optimization of wind turbines. 展开更多
关键词 wind turbine multi-objective optimization Pareto-optimal solution non-dominated sorting genetic algorithm (NSGA)-II
在线阅读 下载PDF
基于改进BOT-Sort算法的多目标追踪方法
4
作者 李书钦 王一凡 《北方工业大学学报》 2025年第6期37-48,共12页
针对社区复杂环境下多目标追踪精度低与轨迹连续性差的问题,本文提出一种基于改进Boosted SORT with Stronger ReID(BOT-Sort)的多目标追踪算法,通过在Split-Attention Networks(ResNeSt)不同层级中加入自适应图通道聚合网络,并将其作为... 针对社区复杂环境下多目标追踪精度低与轨迹连续性差的问题,本文提出一种基于改进Boosted SORT with Stronger ReID(BOT-Sort)的多目标追踪算法,通过在Split-Attention Networks(ResNeSt)不同层级中加入自适应图通道聚合网络,并将其作为BOT-Sort算法的特征提取器,提高模型对于行人的全局和局部特征特征提取能力;同时将基于局部-全局上下文的行人重识别(Partial-Global Context Network for Person Re-Identification, PGCID)算法作为BOT-Sort算法的行人重识别模块,提升模型的特征融合能力。基于MOT17数据集对改进模型进行端到端训练,并在MOT17和MOT20数据集上进行对比实验。结果显示,改进的BOT-Sort算法的多目标跟踪精度(Multiple Object Tracking Accuracy, MOTA)指标、识别(Identification F1 Score, IDF1)指标、高阶跟踪精度(Higher Order Tracking Accuracy, HOTA)指标分别达到了80.6%、80.3%和66.2%,追踪目标身份交换次数(Identity Switches, IDsw)降至1 065次,提升了社区复杂场景下多目标追踪的精度与轨迹连续性。 展开更多
关键词 BOT-sort算法 行人追踪 多目标追踪
在线阅读 下载PDF
Multi-objective optimization of water supply network rehabilitation with non-dominated sorting Genetic Algorithm-II 被引量:3
5
作者 Xi JIN Jie ZHANG +1 位作者 Jin-liang GAO Wen-yan WU 《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》 SCIE EI CAS CSCD 2008年第3期391-400,共10页
Through the transformation of hydraulic constraints into the objective functions associated with a water supply network rehabilitation problem, a non-dominated sorting Genetic Algorithm-II (NSGA-II) can be used to sol... Through the transformation of hydraulic constraints into the objective functions associated with a water supply network rehabilitation problem, a non-dominated sorting Genetic Algorithm-II (NSGA-II) can be used to solve the altered multi-objective optimization model. The introduction of NSGA-II into water supply network optimal rehabilitation problem solves the conflict between one fitness value of standard genetic algorithm (SGA) and multi-objectives of rehabilitation problem. And the uncertainties brought by using weight coefficients or punish functions in conventional methods are controlled. And also by in-troduction of artificial inducement mutation (AIM) operation, the convergence speed of population is accelerated;this operation not only improves the convergence speed, but also improves the rationality and feasibility of solutions. 展开更多
关键词 Water supply system Water supply network Optimal rehabilitation MULTI-OBJECTIVE Non-dominated sorting Ge-netic algorithm (NSGA)
在线阅读 下载PDF
An Only-Once-Sorting Algorithm
6
作者 Xu Xusong Zhou Jianqin Guo Feng (School of Management,Wuhan University, Wuhan 430072,China) 《Wuhan University Journal of Natural Sciences》 CAS 1996年第1期38-41,共4页
This paper provides a new sorting algorithm called 'Only-Once-Sorting' algorithm a mathemati cal formula,this algorithm can put elements in the positions they should be stored only once,then compacts them.The ... This paper provides a new sorting algorithm called 'Only-Once-Sorting' algorithm a mathemati cal formula,this algorithm can put elements in the positions they should be stored only once,then compacts them.The algorithm completes sorting a sequence of n elements in a calculation time of O(n ). 展开更多
关键词 mathematical formula onlv-once-sorting sorting algorithm
在线阅读 下载PDF
PMS-Sorting:A New Sorting Algorithm Based on Similarity
7
作者 Hongbin Wang Lianke Zhou +4 位作者 Guodong Zhao Nianbin Wang Jianguo Sun Yue Zheng Lei Chen 《Computers, Materials & Continua》 SCIE EI 2019年第4期229-237,共9页
Borda sorting algorithm is a kind of improvement algorithm based on weighted position sorting algorithm,it is mainly suitable for the high duplication of search results,for the independent search results,the effect is... Borda sorting algorithm is a kind of improvement algorithm based on weighted position sorting algorithm,it is mainly suitable for the high duplication of search results,for the independent search results,the effect is not very good and the computing method of relative score in Borda sorting algorithm is according to the rule of the linear regressive,but position relationship cannot fully represent the correlation changes.aimed at this drawback,the new sorting algorithm is proposed in this paper,named PMS-Sorting algorithm,firstly the position score of the returned results is standardized processing,and the similarity retrieval word string with the query results is combined into the algorithm,the similarity calculation method is also improved,through the experiment,the improved algorithm is superior to traditional sorting algorithm. 展开更多
关键词 Meta search engine result sorting query similarity Borda sorting algorithm position relationship
在线阅读 下载PDF
An improved non-dominated sorting biogeography-based optimization algorithm for multi-objective land-use allocation:a case study in Kigali-Rwanda 被引量:1
8
作者 Olive Niyomubyeyi Mozafar Veysipanah +2 位作者 Sam Sarwat Petter Pilesjö Ali Mansourian 《Geo-Spatial Information Science》 CSCD 2024年第4期968-982,共15页
With the continuous increase of rapid urbanization and population growth,sustainable urban land-use planning is becoming a more complex and challenging task for urban planners and decision-makers.Multi-objective land-... With the continuous increase of rapid urbanization and population growth,sustainable urban land-use planning is becoming a more complex and challenging task for urban planners and decision-makers.Multi-objective land-use allocation can be regarded as a complex spatial optimization problem that aims to achieve the possible trade-offs among multiple and conflicting objectives.This paper proposes an improved Non-dominated Sorting Biogeography-Based Optimization(NSBBO)algorithm for solving the multi-objective land-use allocation problem,in which maximum accessibility,maximum compactness,and maximum spatial integration were formulated as spatial objectives;and space syntax analysis was used to analyze the potential movement patterns in the new urban planning area of the city of Kigali,Rwanda.Efficient Non-dominated Sorting(ENS)algorithm and crossover operator were integrated into classical NSBBO to improve the quality of non-dominated solutions,and local search ability,and to accelerate the convergence speed of the algorithm.The results showed that the proposed NSBBO exhibited good optimal solutions with a high hypervolume index compared to the classical NSBBO.Furthermore,the proposed algorithm could generate optimal land use scenarios according to the preferred objectives,thus having the potential to support the decision-making of urban planners and stockholders in revising and updating the existing detailed master plan of land use. 展开更多
关键词 Multi-objective land-use allocation spatial optimization sustainable urban planning Non-dominated sorting Biogeography-Based Optimization(NSBBO)algorithm
原文传递
An Optimization Approach for Convolutional Neural Network Using Non-Dominated Sorted Genetic Algorithm-Ⅱ
9
作者 Afia Zafar Muhammad Aamir +6 位作者 Nazri Mohd Nawi Ali Arshad Saman Riaz Abdulrahman Alruban Ashit Kumar Dutta Badr Almutairi Sultan Almotairi 《Computers, Materials & Continua》 SCIE EI 2023年第3期5641-5661,共21页
In computer vision,convolutional neural networks have a wide range of uses.Images representmost of today’s data,so it’s important to know how to handle these large amounts of data efficiently.Convolutional neural ne... In computer vision,convolutional neural networks have a wide range of uses.Images representmost of today’s data,so it’s important to know how to handle these large amounts of data efficiently.Convolutional neural networks have been shown to solve image processing problems effectively.However,when designing the network structure for a particular problem,you need to adjust the hyperparameters for higher accuracy.This technique is time consuming and requires a lot of work and domain knowledge.Designing a convolutional neural network architecture is a classic NP-hard optimization challenge.On the other hand,different datasets require different combinations of models or hyperparameters,which can be time consuming and inconvenient.Various approaches have been proposed to overcome this problem,such as grid search limited to low-dimensional space and queuing by random selection.To address this issue,we propose an evolutionary algorithm-based approach that dynamically enhances the structure of Convolution Neural Networks(CNNs)using optimized hyperparameters.This study proposes a method using Non-dominated sorted genetic algorithms(NSGA)to improve the hyperparameters of the CNN model.In addition,different types and parameter ranges of existing genetic algorithms are used.Acomparative study was conducted with various state-of-the-art methodologies and algorithms.Experiments have shown that our proposed approach is superior to previous methods in terms of classification accuracy,and the results are published in modern computing literature. 展开更多
关键词 Non-dominated sorted genetic algorithm convolutional neural network hyper-parameter OPTIMIZATION
在线阅读 下载PDF
Improving path planning efficiency for underwater gravity-aided navigation based on a new depth sorting fast search algorithm
10
作者 Xiaocong Zhou Wei Zheng +2 位作者 Zhaowei Li Panlong Wu Yongjin Sun 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期285-296,共12页
This study focuses on the improvement of path planning efficiency for underwater gravity-aided navigation.Firstly,a Depth Sorting Fast Search(DSFS)algorithm was proposed to improve the planning speed of the Quick Rapi... This study focuses on the improvement of path planning efficiency for underwater gravity-aided navigation.Firstly,a Depth Sorting Fast Search(DSFS)algorithm was proposed to improve the planning speed of the Quick Rapidly-exploring Random Trees*(Q-RRT*)algorithm.A cost inequality relationship between an ancestor and its descendants was derived,and the ancestors were filtered accordingly.Secondly,the underwater gravity-aided navigation path planning system was designed based on the DSFS algorithm,taking into account the fitness,safety,and asymptotic optimality of the routes,according to the gravity suitability distribution of the navigation space.Finally,experimental comparisons of the computing performance of the ChooseParent procedure,the Rewire procedure,and the combination of the two procedures for Q-RRT*and DSFS were conducted under the same planning environment and parameter conditions,respectively.The results showed that the computational efficiency of the DSFS algorithm was improved by about 1.2 times compared with the Q-RRT*algorithm while ensuring correct computational results. 展开更多
关键词 Depth sorting Fast Search algorithm Underwater gravity-aided navigation Path planning efficiency Quick Rapidly-exploring Random Trees*(QRRT*)
在线阅读 下载PDF
Modeling and Optimization of Electrical Discharge Machining of SiC Parameters, Using Neural Network and Non-Dominating Sorting Genetic Algorithm (NSGA II)
11
作者 Ramezan Ali MahdaviNejad 《Materials Sciences and Applications》 2011年第6期669-675,共7页
Silicon Carbide (SiC) machining by traditional methods with regards to its high hardness is not possible. Electro Discharge Machining, among non-traditional machining methods, is used for machining of SiC. The present... Silicon Carbide (SiC) machining by traditional methods with regards to its high hardness is not possible. Electro Discharge Machining, among non-traditional machining methods, is used for machining of SiC. The present work is aimed to optimize the surface roughness and material removal rate of electro discharge machining of SiC parameters simultaneously. As the output parameters are conflicting in nature, so there is no single combination of machining parameters, which provides the best machining performance. Artificial neural network (ANN) with back propagation algorithm is used to model the process. A multi-objective optimization method, non-dominating sorting genetic algorithm-II is used to optimize the process. Affects of three important input parameters of process viz., discharge current, pulse on time (Ton), pulse off time (Toff) on electric discharge machining of SiC are considered. Experiments have been conducted over a wide range of considered input parameters for training and verification of the model. Testing results demonstrate that the model is suitable for predicting the response parameters. A pareto-optimal set has been predicted in this work. 展开更多
关键词 Electro DISCHARGE MACHINING Non-Dominating sortING algorithm Neural Network REFEL SIC
暂未订购
Accelerating Large-Scale Sorting through Parallel Algorithms
12
作者 Yahya Alhabboub Fares Almutairi +3 位作者 Mohammed Safhi Yazan Alqahtani Adam Almeedani Yasir Alguwaifli 《Journal of Computer and Communications》 2024年第1期131-138,共8页
This study explores the application of parallel algorithms to enhance large-scale sorting, focusing on the QuickSort method. Implemented in both sequential and parallel forms, the paper provides a detailed comparison ... This study explores the application of parallel algorithms to enhance large-scale sorting, focusing on the QuickSort method. Implemented in both sequential and parallel forms, the paper provides a detailed comparison of their performance. This study investigates the efficacy of both techniques through the lens of array generation and pivot selection to manage datasets of varying sizes. This study meticulously documents the performance metrics, recording 16,499.2 milliseconds for the serial implementation and 16,339 milliseconds for the parallel implementation when sorting an array by using C++ chrono library. These results suggest that while the performance gains of the parallel approach over its serial counterpart are not immediately pronounced for smaller datasets, the benefits are expected to be more substantial as the dataset size increases. 展开更多
关键词 sorting algorithm Quick sort Quicksort Parallel Parallel algorithms
在线阅读 下载PDF
An NC Algorithm for Sorting Real Numbers in <em>O</em>(nlogn/√<span style="font-size: 14px;font-weight: bold;margin-left:-2px;margin-right:2px;border-top:2px solid black;">loglogn</span>) Operations
13
作者 Yijie Han Sneha Mishra Md Usman Gani Syed 《Open Journal of Applied Sciences》 2019年第5期403-408,共6页
We apply the recent important result of serial sorting of n real numbers in time to the design of a parallel algorithm for sorting real numbers in time and operations. This is the first NC algorithm known to take oper... We apply the recent important result of serial sorting of n real numbers in time to the design of a parallel algorithm for sorting real numbers in time and operations. This is the first NC algorithm known to take operations for sorting real numbers. 展开更多
关键词 Parallel algorithms sortING sort Real Numbers Complexity
暂未订购
A decoupled multi-objective optimization algorithm for cut order planning of multi-color garment
14
作者 DONG Hui LYU Jinyang +3 位作者 LIN Wenjie WU Xiang WU Mincheng HUANG Guangpu 《High Technology Letters》 2025年第1期53-62,共10页
This work addresses the cut order planning(COP)problem for multi-color garment production,which is the first step in the clothing industry.First,a multi-objective optimization model of multicolor COP(MCOP)is establish... This work addresses the cut order planning(COP)problem for multi-color garment production,which is the first step in the clothing industry.First,a multi-objective optimization model of multicolor COP(MCOP)is established with production error and production cost as optimization objectives,combined with constraints such as the number of equipment and the number of layers.Second,a decoupled multi-objective optimization algorithm(DMOA)is proposed based on the linear programming decoupling strategy and non-dominated sorting in genetic algorithmsⅡ(NSGAII).The size-combination matrix and the fabric-layer matrix are decoupled to improve the accuracy of the algorithm.Meanwhile,an improved NSGAII algorithm is designed to obtain the optimal Pareto solution to the MCOP problem,thereby constructing a practical intelligent production optimization algorithm.Finally,the effectiveness and superiority of the proposed DMOA are verified through practical cases and comparative experiments,which can effectively optimize the production process for garment enterprises. 展开更多
关键词 multi-objective optimization non-dominated sorting in genetic algorithmsⅡ(NSGAII) cut order planning(COP) multi-color garment linear programming decoupling strategy
在线阅读 下载PDF
基于改进YOLO v3模型与Deep-SORT算法的道路车辆检测方法 被引量:33
15
作者 马永杰 马芸婷 +1 位作者 程时升 马义德 《交通运输工程学报》 EI CSCD 北大核心 2021年第2期222-231,共10页
针对道路车辆实时检测遮挡严重与小目标车辆漏检率高的问题,提出了基于改进YOLO v3模型和Deep-SORT算法的车辆检测方法;为提高模型对道路车辆的检测能力,采用K-meansSymbolk@pSymbolk@p聚类算法对目标候选框进行聚类分析,选择合适的... 针对道路车辆实时检测遮挡严重与小目标车辆漏检率高的问题,提出了基于改进YOLO v3模型和Deep-SORT算法的车辆检测方法;为提高模型对道路车辆的检测能力,采用K-meansSymbolk@pSymbolk@p聚类算法对目标候选框进行聚类分析,选择合适的Anchor box数量,并在网络浅层增加了特征提取层,可提取到更精细的车辆特征;为加强网络对远近不同目标的鲁棒性,在保留原YOLO v3模型输出层的同时,增加了一层输出层,将52像素×52像素输出特征图经过上采样后得到104像素×104像素特征图,并将其与浅层同尺寸特征图进行拼接,实现车辆目标的检测;为了降低目标遮挡对检测效果的影响,提高对视频上下帧之间关联信息的关注度,将改进YOLO v3模型和Deep-SORT算法相结合,以此来弥补两者之间的不足。试验结果表明:改进YOLO v3模型有效地提高了车辆检测的性能,与在网络浅层增加特征提取层的模型相比,平均精度提高了1.4%,与增加一层输出层的模型相比,平均精确度提高了0.8%,说明改进YOLO v3模型提取的特征表达能力更强,增强了网络对小目标的检测能力;改进YOLO v3模型在引入Deep-SORT算法后,查准率和召回率分别达到90.16%和91.34%,相比改进YOLO v3模型,查准率和召回率分别提高了1.48%和4.20%,同时保证了检测速度,对于不同大小目标的检测具有良好的鲁棒性。 展开更多
关键词 交通图像识别 卷积神经网络 车辆检测 YOLO v3模型 Deep-sort算法 K-means++聚类算法
原文传递
基于YOLO v5s和改进SORT算法的黑水虻幼虫计数方法 被引量:8
16
作者 赵新龙 顾臻奇 李军 《农业机械学报》 EI CAS CSCD 北大核心 2023年第7期339-346,共8页
目前农业环境下的无序目标的精确计数有很高的应用需求,这种计数对其生物量、生物密度管理起到了重要的指导作用。如黑水虻幼虫目标追踪过程中,追踪对象具有高速和非线性的特征,常规算法存在追踪目标速度不足和丢失目标后的再识别困难... 目前农业环境下的无序目标的精确计数有很高的应用需求,这种计数对其生物量、生物密度管理起到了重要的指导作用。如黑水虻幼虫目标追踪过程中,追踪对象具有高速和非线性的特征,常规算法存在追踪目标速度不足和丢失目标后的再识别困难等问题。针对以上问题,本文提出了一种改进SORT算法,通过改进卡尔曼滤波模型的方式提升目标追踪算法的快速性和准确性,提升了计数的精度。另外,针对黑水虻幼虫目标识别过程中幼虫性状的多样性和混料导致的复杂背景问题,本文通过实验对比多种深度学习网络性能选定YOLO v5s算法提取图像多维度特征,提升了目标识别精度。实验结果表明:在划线计数方面,本文提出的改进SORT算法与原模型相比,平均精度从91.36%提升到95.55%,提升4.19个百分点,通过仿真和实际应用,证明了本文模型的有效性;在目标识别方面,使用YOLO v5s模型在训练集上帧率为156 f/s,mAP@0.5为99.10%,精度为90.11%,召回率为99.22%,综合性能优于其他网络。 展开更多
关键词 黑水虻幼虫 目标识别 目标追踪 划线计数 YOLO v5s sort算法
在线阅读 下载PDF
基于YOLOv3和Deep SORT的草原牛跟踪系统 被引量:5
17
作者 李琦 尚绛岚 李宝山 《传感器与微系统》 CSCD 北大核心 2021年第6期83-85,88,共4页
设计了一种基于深度学习算法的草原牛跟踪系统。融合YOLOv3目标检测算法与Deep SORT目标跟踪算法实现对草原牛的检测跟踪,结合比例—积分—微分(PID)算法控制云台(PTZ)摄像头稳定跟随草原牛转动。在内蒙古苏尼特左旗牧场进行现场实验测... 设计了一种基于深度学习算法的草原牛跟踪系统。融合YOLOv3目标检测算法与Deep SORT目标跟踪算法实现对草原牛的检测跟踪,结合比例—积分—微分(PID)算法控制云台(PTZ)摄像头稳定跟随草原牛转动。在内蒙古苏尼特左旗牧场进行现场实验测试,实验结果表明:系统运行稳定,对草原牛检测准确率较高,跟踪效果较好,可以实现未检测到草原牛时自动巡航、对多只草原牛自动跟踪、以及指定跟踪单只草原牛的功能。 展开更多
关键词 YOLOv3算法 Deep sort算法 比例—积分—微分 自动跟踪
在线阅读 下载PDF
XPSort——树形数据多核并行外存排序算法 被引量:1
18
作者 杨良怀 王靖 +1 位作者 周为钢 边继东 《电子学报》 EI CAS CSCD 北大核心 2014年第2期292-300,共9页
XML数据处理中一个基本问题是树形数据排序.本文针对已有算法的不足提出了一种XML文档多核并行外存排序算法——XPSort.XPSort扫描XML文档产生相互独立的排序任务,利用多核CPU对任务进行并行处理;同时,利用数据压缩、单临时文件以及避... XML数据处理中一个基本问题是树形数据排序.本文针对已有算法的不足提出了一种XML文档多核并行外存排序算法——XPSort.XPSort扫描XML文档产生相互独立的排序任务,利用多核CPU对任务进行并行处理;同时,利用数据压缩、单临时文件以及避免子树匹配等策略,有效地减少磁盘I/O,提高排序性能;它克服了NEXSORT算法没能有效利用内存空间、存在大量随机I/O的问题以及难以处理"右深树"的缺陷,也克服了HERMES的数据冗余、大量磁盘开销等缺点.文章对不同特性的XML文档开展了大量比较实验,结果表明XPSort优于已有算法,所提优化方法是有效可行的. 展开更多
关键词 XML文档 树形数据 排序算法 并行算法
在线阅读 下载PDF
基于Quick Sorting的快速分页排序算法 被引量:1
19
作者 杨建武 刘缙 《计算机工程》 EI CAS CSCD 北大核心 2005年第4期82-84,共3页
提出了分页排序的概念和基于Quick Sorting的快速分页排序算法(Quick Page Sorting) 以及基于Hint缓存机制的算法实现技术。实验表明,在数万至数百万数据总量情况下,Quick Page Soring的速度比Quick Sorting快10倍左右,大大提高了应用... 提出了分页排序的概念和基于Quick Sorting的快速分页排序算法(Quick Page Sorting) 以及基于Hint缓存机制的算法实现技术。实验表明,在数万至数百万数据总量情况下,Quick Page Soring的速度比Quick Sorting快10倍左右,大大提高了应用系统的响应速度。 展开更多
关键词 排序 分页排序 算法 快速分页排序
在线阅读 下载PDF
利用无人机航拍视频结合YOLOv3模型和SORT算法统计云杉数量 被引量:8
20
作者 陈锋军 朱学岩 +3 位作者 周文静 郑一力 顾梦梦 赵燕东 《农业工程学报》 EI CAS CSCD 北大核心 2021年第20期81-89,共9页
准确、快速地统计苗木数量对苗圃的运营和管理具有重要意义,是提高苗圃运营和管理水平的有效方式。为快速准确统计完整地块内苗木数量,该研究选取云杉为研究对象,以无人机航拍完整地块云杉视频为数据源,提出一种基于YOLOv3(You Only Loo... 准确、快速地统计苗木数量对苗圃的运营和管理具有重要意义,是提高苗圃运营和管理水平的有效方式。为快速准确统计完整地块内苗木数量,该研究选取云杉为研究对象,以无人机航拍完整地块云杉视频为数据源,提出一种基于YOLOv3(You Only Look Once v3,YOLOv3)和SORT(Simple Online and Realtime Tracking,SORT)的云杉数量统计方法。主要内容包括数据采集、YOLOv3检测模型构建、SORT跟踪算法和越线计数算法设计。以平均计数准确率(Mean Counting Accuracy,MCA)、平均绝对误差(Mean Absolute Error,MAE)、均方根误差(Root Mean Square Error,RMSE)和帧率(Frame Rate,FR)为评价指标,该方法对测试集中对应6个不同试验地块的视频内云杉进行数量统计的平均计数准确率MCA为92.30%,平均绝对误差MAE为72,均方根误差RMSE为98.85,帧率FR 11.5帧/s。试验结果表明该方法能够快速准确统计完整地块的云杉数量。相比SSD+SORT算法,该方法在4项评价指标中优势显著,平均计数准确率MCA高12.36个百分点,帧率FR高7.8帧/s,平均绝对误差MAE和均方根误差RMSE分别降低125.83和173.78。对比Faster R-CNN+SORT算法,该方法在保证准确率的基础上更加快速,平均计数准确率MCA仅降低1.33个百分点,但帧率FR提高了10.1帧/s。该研究从无人机航拍视频的角度为解决完整地块的苗木数量统计问题做出了有效探索。 展开更多
关键词 无人机 模型 算法 云杉 数量统计 YOLOv3 sort
在线阅读 下载PDF
上一页 1 2 96 下一页 到第
使用帮助 返回顶部