Peripheral neuropathy is a common complication in diabetes,affecting around 50%of the diabetic population.Co-occurrence of diabetic peripheral neuropathy(DPN)and diabetic bone disease has led to the hypothesis that DP...Peripheral neuropathy is a common complication in diabetes,affecting around 50%of the diabetic population.Co-occurrence of diabetic peripheral neuropathy(DPN)and diabetic bone disease has led to the hypothesis that DPN influences bone metabolism,although little experimental evidence has yet supported this premise.To investigate,mice were fed a high-fat diet(HFD)followed by phenotyping of skeletal-innervating neurons and bone architectural parameters.Results showed that HFD feeding resulted in a marked decrease in skeletal innervation(69%–41%reduction in Beta-III-Tubulin-stained nerves,38%reduction in CGRP-stained nerves in long bone periosteum).展开更多
Tibetan singing bowls emit low-frequency sounds and produce perceptible harmonic tones and vibrations through manual tapping.The sounds the singing bowls produce have been shown to enhance relaxation and reduce anxiet...Tibetan singing bowls emit low-frequency sounds and produce perceptible harmonic tones and vibrations through manual tapping.The sounds the singing bowls produce have been shown to enhance relaxation and reduce anxiety.However,the underlying mechanism remains unclear.In this study,we used chronic restraint stress or sleep deprivation to establish mouse models of anxiety that exhibit anxiety-like behaviors.We then supplied treatment with singing bowls in a bottomless cage placed on the top of a cushion.We found that unlike in humans,the combination of harmonic tones and vibrations did not improve anxietylike behaviors in mice,while individual vibration components did.Additionally,the vibration of singing bowls increased the level of N-methyl-D-aspartate receptor 1 in the somatosensory cortex and prefrontal cortex of the mice,decreased the level ofγ-aminobutyric acid A(GABA)receptorα1 subtype,reduced the level of CaMKII in the prefrontal cortex,and increased the number of GABAergic interneurons.At the same time,electrophysiological tests showed that the vibration of singing bowls significantly reduced the abnormal low-frequency gamma oscillation peak frequency in the medial prefrontal cortex caused by stress restraint pressure and sleep deprivation.Results from this study indicate that the vibration of singing bowls can alleviate anxiety-like behaviors by reducing abnormal molecular and electrophysiological events in somatosensory and medial prefrontal cortex.展开更多
Objectives:Somatosensory Interaction Technology(SIT)is used in various aspects of geriatric care.We aimed to conduct a bibliometric analysis to summarize relevant publications and visualize publication characteristics...Objectives:Somatosensory Interaction Technology(SIT)is used in various aspects of geriatric care.We aimed to conduct a bibliometric analysis to summarize relevant publications and visualize publication characteristics,current hotspots,and development trends,thereby inspiring subsequent researches.Methods:We searched theWeb of Science Core Collection database for publications on the application of SIT in geriatric care.Bibliometric visualization and clustering analysis were performed using VOSviewer V1.6.18 Software,while keywords burst detection analysis was conducted with CiteSpace 6.1.R6 Software.Results:After screening,a total of 1,019 publications were included.The number of publications on SIT in geriatric care is gradually increasing,exhibiting a rapid growth rate.The United States,Canada,and Australia led in terms of publication volume.Keyword clustering analysis identified major research hotspots:crisis warning,somatic abilities,rehabilitation training and psychosocial support.Initial studies primarily explored themes such as recovery,movement,systems,and later shifted towards gait analysis,muscle strength,parameters,and home-based care.More recently,research themes have evolved to dementia,machine learning,and gamification.Conclusions:SIT is innovative for promoting active aging,advancing intelligent healthcare,and elevating the daily quality of life for older adults in clinical and domestic settings.Applications of SIT can be categorized into early warning systems for crises,detailed analyses of physical conditions,rehabilitation enhancement,and support for psychosocial health.Research trends have transitioned from whole-body recognition to precise feedback,from a focus on physical health to mental health,and from technical feasibility to user-friendliness.Future research should focus on developing accessible and user-friendly devices,fostering interdisciplinary collaborations for innovation,expanding research to address both the physical and mental health needs of diverse older adults,and integrating emerging technologies to enhance data precision and accelerate the development of intelligent platforms.展开更多
Abnormal SEP reflects dysfunction of the medial lemniscus and posterior cervical cord. These structures are likely to be affected in Chiari malformation. Therefore, SEP abnormalities may provide valuable information i...Abnormal SEP reflects dysfunction of the medial lemniscus and posterior cervical cord. These structures are likely to be affected in Chiari malformation. Therefore, SEP abnormalities may provide valuable information in patients with CM. However, the consistency of SEP abnormality or normality with the damage is a matter of research. Knowing whether median nerve somatosensory evoked potential (SEP) is useful in revealing subclinical damage in patients with Chiari malformation is important in the treatment and follow-up plan of the disease. The aim of this study was to investigate the relationship between median nerve SEP values and the severity of cerebellar ectopia in patients with Chiari type 1 malformation. Median nerve SEP values were obtained from 30 healthy individuals and 146 individuals with Chiari malformation. The cerebellar ectopia degree and McRae line length were measured. SEP values were not significantly different between groups. The McRae line was found to be significantly shorter in the control group than in the Chiari malformation group (p = 0.031). There was no correlation between the degree of cerebellar ectopia and the length of the McRae line (r = 0.002, p = 0.979). Neither cerebellar ectopy degree nor McRae line length had a relationship with SEP values (r = -0.153, p = 0.066;r = -0.056, p = 0.500, respectively). There was no difference in cerebellar ectopy degree or SEP values between the groups with cerebellar ectopy with and without a syrinx (p = 0.899;p = 0.080, respectively). Likewise, McRae line length was not found to be related to the presence of a syrinx (p = 0.139). Median nerve SEP examination was not beneficial for diagnosing asymptomatic-oligosymptomatic Chiari malformation as a subclinical injury, whether accompanied by syringomyelia or not.展开更多
Many studies have investigated the evidence for tactile and visual interactive responses to activation of various brain regions.However,few studies have reported on the effects of visuo-tactile multisensory integratio...Many studies have investigated the evidence for tactile and visual interactive responses to activation of various brain regions.However,few studies have reported on the effects of visuo-tactile multisensory integration on the amount of brain activation on the somatosensory cortical regions.The aim of this study was to examine whether coincidental information obtained by tactile stimulation can affect the somatosensory cortical activation using functional MRI.Ten right-handed healthy subjects were recruited for this study.Two tasks(tactile stimulation and visuotactile stimulation)were performed using a block paradigm during f MRI scanning.In the tactile stimulation task,in subjects with eyes closed,tactile stimulation was applied on the dorsum of the right hand,corresponding to the proximal to distal directions,using a rubber brush.In the visuotactile stimulation task,tactile stimulation was applied to observe the attached mirror in the MRI chamber reflecting their hands being touched with the brush.In the result of SPM group analysis,we found brain activation on the somatosensory cortical area.Tactile stimulation task induced brain activations in the left primary sensory-motor cortex(SM1)and secondary somatosensory cortex(S2).In the visuo-tactile stimulation task,brain activations were observed in the both SM1,both S2,and right posterior parietal cortex.In all tasks,the peak activation was detected in the contralateral SM1.We examined the effects of visuo-tactile multisensory integration on the SM1 and found that visual information during tactile stimulation could enhance activations on SM1 compared to the tactile unisensory stimulation.展开更多
The author introduces a new hypnotherapeutic technique termed “Mental Access/Somatosensory Access” (MASSA). MASSA is designed to utilize an external somatosensory stimulus in the context of hypnotherapy, based on a ...The author introduces a new hypnotherapeutic technique termed “Mental Access/Somatosensory Access” (MASSA). MASSA is designed to utilize an external somatosensory stimulus in the context of hypnotherapy, based on a Bottom-Up/Top-Down Paradigm, which complements and mutually reinforces hypnotic inductions by using imbedded suggestions. The intervention’s algorithm includes a combination of real-time stimulation through one of the following somatosensory modalities: sensorimotor activation of the palms, visual, auditory, vibration, thermal, olfaction or oropharyngeal. These modalities are accompanied by guided hypnotic dissociation and suggestions. Somatosensory stimulation amplifies patients’ engagement in the procedure, focusing their attention on a stimulus and on the hypnotic experience during the intervention. A stream of closed questions with imbedded suggestions, presented by the therapist, is designed using suggestive presuppositions, termed by the author “The Create and Verify Principle” (CVP). This principle facilitates effective pacing and helps transform patients’ sensory and mental experiences. Imbedded suggestions followed by real-time stimulation, maintain a focus on the somatosensory content, boost the hypnotic experience, and gradually combine awareness of the somatosensory stimulation experience (Bottom-Up regulation) with memory, imagination, emotions and meanings, for mental access of resources and adaptive coping (Top-Down regulation). In the first part of this article, the author briefly introduces the neurophysiological mechanism behind the suggestive, somatosensory, attention-management intervention and provides an example of a basic algorithm of the MASSA technique. The second part includes clinical samples with scripts of successfully treated patients, who experienced tension headache, psychogenic balance disorder, tinnitus. .展开更多
Hegu (LI 4) is one of the most frequently used and most important analgesic points in Chinese acupuncture. It is particularly effective for treating disorders of the head and face. According to the meridian theory in ...Hegu (LI 4) is one of the most frequently used and most important analgesic points in Chinese acupuncture. It is particularly effective for treating disorders of the head and face. According to the meridian theory in Traditional Chinese Medicine (TCM), the Large Intestine Meridian to which it belongs originates in the hand and terminates in the face. This theory is based, however, more on thousands of years of clinical experience rather than on scientific evidence. In our study of acupuncture effects on normal human volunteers with the non-invasive BOLD (blood oxygenation level dependant)technique for FMRI (functional magnetic resonance imaging), we demonstrated widespread effects in the brain during acupuncture at Hegu and Zusanli (ST 36). A finding of special interest was observed in the primary somatosensory cortes (SI) during Hegu acupuncture. In additlon to activation of the area representing the hand in response to the sensory impulses arising from the site of stimulation, activation also occurred in the face representation in all 3 subjects brains studied by coronal brain sections. In one of these subjects activation in the face representation was even stronger than that in the hand representation. Areas representing the neck, trunk and other parts of the upper extremity also exhibited increase in signal intensity, subject to individual variability. As compared with Hegu, such effects were either absent or much weaker with acupuncture at Zusanli (ST 36) or with other forms of sensory stimulation to the hand. Functional mapping of the brain with MRI has provided the first direct evidence in support of the important role of Hegu acupuncture in TCM.展开更多
It remains unclear whether spinal cord ischemia-reperfusion injury caused by ischemia and other non-mechanical factors can be monitored by somatosensory evoked potentials. Therefore, we monitored spinal cord ischemia-...It remains unclear whether spinal cord ischemia-reperfusion injury caused by ischemia and other non-mechanical factors can be monitored by somatosensory evoked potentials. Therefore, we monitored spinal cord ischemia-reperfusion injury in rabbits using somatosensory evoked potential detection technology. The results showed that the somatosensory evoked potential latency was significantly prolonged and the amplitude significantly reduced until it disappeared during the period of spinal cord ischemia. After reperfusion for 30-180 minutes, the amplitude and latency began to gradually recover; at 360 minutes of reperfusion, the latency showed no significant difference compared with the pre-ischemic value, while the somatosensory evoked potential amplitude in- creased, and severe hindlimb motor dysfunctions were detected. Experimental findings suggest that changes in somatosensory evoked potentia~ ~atency can reflect the degree of spinat cord ischemic injury, while the amplitude variations are indicators of the late spinal cord reperfusion injury, which provide evidence for the assessment of limb motor function and avoid iatrogenic spinal cord injury.展开更多
Low-level laser therapy(LLLT) may have an effect on the pain associated with orthodontic treatment. The aim of this study was to evaluate the effect of LLLT on pain and somatosensory sensitization induced by orthodont...Low-level laser therapy(LLLT) may have an effect on the pain associated with orthodontic treatment. The aim of this study was to evaluate the effect of LLLT on pain and somatosensory sensitization induced by orthodontic treatment. Forty individuals(12–33 years old; mean ± standard deviations: 20.8 ± 5.9 years) scheduled to receive orthodontic treatment were randomly divided into a laser group(LG) or a placebo group(PG)(1:1). The LG received LLLT(810-nm gallium-aluminium-arsenic diode laser in continuous mode with the power set at 400 mW, 2 J·cm–2) at 0 h, 2 h, 24 h, 4 d, and 7 d after treatment, and the PG received inactive treatment at the same time points. In both groups, the non-treated side served as a control. A numerical rating scale(NRS) of pain, pressure pain thresholds(PPTs), cold detection thresholds(CDTs), warmth detection thresholds(WDTs), cold pain thresholds(CPTs), and heat pain thresholds(HPTs) were tested on both sides at the gingiva and canine tooth and on the hand. The data were analysed by a repeated measures analysis of variance(ANOVA). The NRS pain scores were significantly lower in the LG group(P = 0.01). The CDTs,CPTs, WDTs, HPTs, and PPTs at the gingiva and the PPTs at the canine tooth were significantly less sensitive on the treatment side of the LG compared with that of the PG(P < 0.033). The parameters tested also showed significantly less sensitivity on the nontreatment side of the LG compared to that of the PG(P < 0.043). There were no differences between the groups for any quantitative sensory testing(QST) measures of the hand. The application of LLLT appears to reduce the pain and sensitivity of the tooth and gingiva associated with orthodontic treatment and may have contralateral effects within the trigeminal system but no generalized QST effects. Thus, the present study indicated a significant analgesia effect of LLLT application during orthodontic treatment.Further clinical applications are suggested.展开更多
Acupuncture is a medical treatment that has been widely pra cticed in China for over 3000 years,yet the neural mechanisms of acupuncture are not fully understood.We hypothesized that neurons and astrocytes act indepen...Acupuncture is a medical treatment that has been widely pra cticed in China for over 3000 years,yet the neural mechanisms of acupuncture are not fully understood.We hypothesized that neurons and astrocytes act independently and synergistically under acupuncture stimulation.To investigate this,we used two-photon in vivo calcium reco rding to observe the effects of acupuncture stimulation at ST36(Zusanli)in mice.Acupuncture stimulation in peripheral acupoints potentiated calcium signals of pyramidal neurons and astrocytes in the somatosensory cortex and resulted in late-onset calcium transients in astrocytes.Chemogenetic inhibition of neurons augmented the astrocytic activity.These findings suggest that acupuncture activates neuronal and astrocytic activity in the somatosensory co rtex and provide evidence for the involvement of both neurons and astrocytes in acupuncture treatment.展开更多
A total of 43 prolonged coma patients with diffuse axonal injury received the somatosensory evoked potential examination one month after injury in the First Affiliated Hospital, School of Medicine, Zhejiang University...A total of 43 prolonged coma patients with diffuse axonal injury received the somatosensory evoked potential examination one month after injury in the First Affiliated Hospital, School of Medicine, Zhejiang University in China. Somatosensory evoked potentials were graded as normal, abnormal or absent (grades I-III) according to N20 amplitude and central conduction time. The outcome in patients with grade III somatosensory evoked potential was in each case unfavorable. The prognostic accuracy of grade III somatosensory evoked potential for unfavorable and non-awakening outcome was 100% and 80%, respectively. The prognostic accuracy of grade I somatosensory evoked potential for favorable and wakening outcome was 86% and 100%, respectively. These results suggest that somatosensory evoked potential grade is closely correlated with coma severity and degree of recovery. Somatosensory evoked potential is a valuable diagnostic tool to assess prognosis in prolonged coma patients with diffuse axonal injury.展开更多
Different physical and chemical stimuli are detected by the peripheral sensory receptors of dorsal root ganglion (DRG) neurons, and the generated inputs are transmitted via afferent fibers into the central nervous s...Different physical and chemical stimuli are detected by the peripheral sensory receptors of dorsal root ganglion (DRG) neurons, and the generated inputs are transmitted via afferent fibers into the central nervous system. The gene expression profiles of DRG neurons contribute to the generation, transmission, and regulation of various somatosensory signals. Recently, the single-cell transcriptomes, cell types, and functional annotations of somatosensory neurons have been studied. In this review, we introduce our classification of DRG neurons based on single-cell RNA-sequencing and functional analyses, and discuss the technical approaches. Moreover, studies on the molecular and cellular mechanisms underlying somatic sensations are discussed.展开更多
Diffusion tensor tractography allows the sensory fiber course of the medial lemniscus to be visualized. But diffusion tensor tractography for accurate evaluation of the repair of injured somatosensory tracts in stroke...Diffusion tensor tractography allows the sensory fiber course of the medial lemniscus to be visualized. But diffusion tensor tractography for accurate evaluation of the repair of injured somatosensory tracts in stroke patients has been rarely reported. A 55-year-old female patient presented with severe somatosensory dysfunction of the left side caused by a spontaneous intracerebral hemorrhage on the right side. The somatosensory function of the affected side recovered to a nearly normal state at 7 weeks from onset. Functional magnetic resonance imaging revealed that at 3 weeks from onset, there was no cortical activation by touch at each hand; at 7 weeks, the contralateral cortex centered on the primary sensory cortex was found to be activated during touch and passive movements, and activation by passive movements was increased compared with that at 3 weeks. Diffusion tensor tractography revealed that a medial lemniscus on the affected (right) hemisphere was not observed at 3 weeks from onset, however, at 7 weeks, the unaffected (left) hemisphere passed along the medial lemniscus pathway from the pons to the primary sensory cortex. These findings indicate that combined functional magnetic resonance imaging and diffusion tensor tractography would allow more accurate evaluation of the architecture and integrity of somatosensory tracts and is a useful method to investigate the recovery of somatosensory dysfunction in stroke patients.展开更多
The spinal cord is at risk of injury during spinal surgery.If intraoperative spinal co rd injury is identified early,irreve rsible impairment or loss of neurological function can be prevented.Different types of spinal...The spinal cord is at risk of injury during spinal surgery.If intraoperative spinal co rd injury is identified early,irreve rsible impairment or loss of neurological function can be prevented.Different types of spinal cord injury result in damage to diffe rent spinal cord regions,which may cause diffe rent somatosensory and motor evoked potential signal res ponses.In this study,we examined electrophysiological and histopathological changes between contusion,distra ction,and dislocation spinal cord injuries in a rat model.We found that contusion led to the most severe dorsal white matter injury and caused considerable attenuation of both somatosensory and motor evoked potentials.Dislocation resulted in loss of myelinated axons in the lateral region of the injured spinal cord along the rostrocaudal axis.The amplitude of attenuation in motor evoked potential responses caused by dislocation was greater than that caused by contusion.After distraction injury,extracellular spaces were slightly but not significantly enlarged;somatosensory evoked potential res ponses slightly decreased and motor evoked potential responses were lost.Correlation analysis showed that histological and electrophysiological findings we re significantly correlated and related to injury type.Intraope rative monitoring of both somatosensory and motor evoked potentials has the potential to identify iatrogenic spinal cord injury type during surgery.展开更多
The somatosensory system plays a crucial role in executing precise movements by providing sensory feedback (Farrer et al., 2003; Rabin and Gordon, 2004). Somatosensory dys- function is a common problem following str...The somatosensory system plays a crucial role in executing precise movements by providing sensory feedback (Farrer et al., 2003; Rabin and Gordon, 2004). Somatosensory dys- function is a common problem following stroke. In partic- ular, somatosensory impairments, such as impairment in touch, proprioception, light touch, and vibration have been frequently observed (Carey et al., 1993; Sullivan and Hed- man, 2008; Tyson et al., 2008). Patients with somatosensory dysfunction show negative effects on motor control, and it sometimes becomes difficult to perform daily activities independently.展开更多
Somatosensory dysfunction is associated with a high incidence of functional impairment and safety in patients with stroke. With developments in brain mapping techniques, many studies have addressed the recovery of var...Somatosensory dysfunction is associated with a high incidence of functional impairment and safety in patients with stroke. With developments in brain mapping techniques, many studies have addressed the recovery of various functions in such patients. However, relatively little is known about the mechanisms of recovery of somatosensory function. Based on the previous human studies, a review of 11 relevant studies on the mecha- nisms underlying the recovery of somatosensory function in stroke patients was conducted based on the fol- lowing topics: (1) recovery of an injured somatosensory pathway, (2) peri-lesional reorganization, (3) contribu- tion of the unaffected somatosensory cortex, (4) contribution of the secondary somatosensory cortex, and (5) mechanisms of recovery in patients with thalamic lesions. We believe that further studies in this field using combinations of diffusion tensor imaging, functional neuroimaging, and magnetoencephalography are needed. In addition, the clinical significance, critical period, and facilitatory strategies for each recovery mechanism should be clarified.展开更多
Objective: Optimization of combining electroencephalography (EEG), short latency somatosensory evoked potentials (SLSEP) and transcranial Doppler (TCD) techniques to diagnose brain death. Methods: One hundred and elev...Objective: Optimization of combining electroencephalography (EEG), short latency somatosensory evoked potentials (SLSEP) and transcranial Doppler (TCD) techniques to diagnose brain death. Methods: One hundred and eleven patients (69 males, 42 females) from the major hospitals of Zhejiang Province were examined with portable EEG, SLSEP and TCD devices. Re-examinations occurred ≤12 h later. Results: The first examination revealed that the combination of SLSEP and EEG led to more sensitive diagnoses than the combination of SLSEP and TCD. Re-examination confirmed this and also revealed that the combination of TCD and EEG was the most sensitive. Conclusion: The results show that using multiple techniques to diagnose brain death is superior to using single method, and that the combination of SLSEP and EEG is better than other combinations.展开更多
Aim:The effect of a renewed SS-cream(RSSC)on the treatment of premature ejaculation(PE)was evaluated and compared with the original SS-cream(OSSC).Methods:Sixty male white New Zealand rabbits,weighing 2.5kg-3.0 kg,wer...Aim:The effect of a renewed SS-cream(RSSC)on the treatment of premature ejaculation(PE)was evaluated and compared with the original SS-cream(OSSC).Methods:Sixty male white New Zealand rabbits,weighing 2.5kg-3.0 kg,were divided at random into 3 groups:the RSSC,OSSC and placebo groups.The spinal somatosensory evoked potential(SSEP)elicited by electric stimulation of the glans penis with disk electrode was investigated with an electrophysiograph(Poseidomn,Shanghai,China)before and 10,30 and 60 min after drug or placebo application on the glans.The Onset and the N1 latencies and the amplitude of SSEP were recorded and analyzed.Results:There was no significant difference(P>0.05)in the mean Onset and Nl latency of SSEP among the 3 groups before drug application.Compared with the pre-application value,the mean Onset and Nl latencies in the RSSC and OSSC groups were significantly prolonged at 10,30 and 60 min after treatment(P<0.05),while they were not significantly changed(P>0.05)in the placebo group.The mean Onset latency of RSSC at 10 and 30 min and that of OSSC at 30 min were significantly delayed(P<0.05)compared with the placebo group.The mean Nl latency of RSSC at 30 and 60 min and that of OSSC group at 30 min were also significantly delayed(P<0.05).Conclusion:RSSC delays the latencies of SSEP,suggesting a local desensitizing effect on the sensory receptor of the glans penis dorsal nerve,which provides the potential for PE treatment.The desensitizing effect of RSSC is higher than that of OSSC.展开更多
Objective: To explore the effects of the somatosensory interaction technology combined with virtual reality technology on upper limbs function and activities of daily living (ADL) in cerebrovascular disease patients. ...Objective: To explore the effects of the somatosensory interaction technology combined with virtual reality technology on upper limbs function and activities of daily living (ADL) in cerebrovascular disease patients. Methods: Form January, 2019 to December, 2019, 80 cerebrovascular disease patients were recruited, and had been divided into control group (n = 40) and observation group (n = 40), randomly. The control groups received conventional rehabilitation treatment, for 40 minutes per day, while observation group received conventional rehabilitation treatment, for 20 minutes per day, and virtual reality technology treatment, 20 minutes per day, 5 days a week for 4 weeks. Wolf Motor Function Test (WMFT), Fugl-Meyer Assessment-Upper Extremities (FMA-UE) and modified Barthel index (MBI) were used to assess the motor function of the upper limbs and ADL before and after treatment. Results: Before treatment, the scores of WMFT, FMA-UE and MBI were no significant difference between two groups (P > 0.05). The scores improved in both groups after treatment (P < 0.01), and were higher in the observation group than in the control group (P < 0.05). Conclusion: The somatosensory interaction technology combined with virtual reality technology could facilitate to improve the upper limbs function and ADL in cerebrovascular disease patients.展开更多
基金supported by NIH/NIAMS(P01 AG066603,R01 AR079171,R21 AR078919)NIH/NIDCR(R01 DE031488,R01 DE031028)+4 种基金Alex’s Lemonade Stand Foundation(22-26743)American Cancer Society(DBG-23-1155131-01-IBCD)the Maryland Stem Cell Research Foundation(2021-MSCRFD-5641),and Department of Defense(USAMRAA HT9425-24-1-0051)MC is supported by Merkin Peripheral Neuropathy and Nerve Regeneration Center(23-DF/C2/260)M.K.is supported by NIH(T32HD044355).
文摘Peripheral neuropathy is a common complication in diabetes,affecting around 50%of the diabetic population.Co-occurrence of diabetic peripheral neuropathy(DPN)and diabetic bone disease has led to the hypothesis that DPN influences bone metabolism,although little experimental evidence has yet supported this premise.To investigate,mice were fed a high-fat diet(HFD)followed by phenotyping of skeletal-innervating neurons and bone architectural parameters.Results showed that HFD feeding resulted in a marked decrease in skeletal innervation(69%–41%reduction in Beta-III-Tubulin-stained nerves,38%reduction in CGRP-stained nerves in long bone periosteum).
基金supported by the National Natural Science Foundation of ChinaNos.32170950(to LY),31970915(to LY),31871170(to CL)+4 种基金the Natural Science Foundation of Guangdong Province for Major Cultivation ProjectNo.2018B030336001(to LY)the Natural Science Foundation of Guangdong Province,Nos.2021A1515010804(to CL),2023A1515010899(to CL)the Guangdong Grant‘Key Technologies for Treatment of Brain Disorders’No.2018B030332001(to CL)。
文摘Tibetan singing bowls emit low-frequency sounds and produce perceptible harmonic tones and vibrations through manual tapping.The sounds the singing bowls produce have been shown to enhance relaxation and reduce anxiety.However,the underlying mechanism remains unclear.In this study,we used chronic restraint stress or sleep deprivation to establish mouse models of anxiety that exhibit anxiety-like behaviors.We then supplied treatment with singing bowls in a bottomless cage placed on the top of a cushion.We found that unlike in humans,the combination of harmonic tones and vibrations did not improve anxietylike behaviors in mice,while individual vibration components did.Additionally,the vibration of singing bowls increased the level of N-methyl-D-aspartate receptor 1 in the somatosensory cortex and prefrontal cortex of the mice,decreased the level ofγ-aminobutyric acid A(GABA)receptorα1 subtype,reduced the level of CaMKII in the prefrontal cortex,and increased the number of GABAergic interneurons.At the same time,electrophysiological tests showed that the vibration of singing bowls significantly reduced the abnormal low-frequency gamma oscillation peak frequency in the medial prefrontal cortex caused by stress restraint pressure and sleep deprivation.Results from this study indicate that the vibration of singing bowls can alleviate anxiety-like behaviors by reducing abnormal molecular and electrophysiological events in somatosensory and medial prefrontal cortex.
基金funded by the Chinese Nursing Association(#ZHKYQ202322)the Shanghai Science and Technology Innovation Action Plan Sailing Project(#21YF1447700)the Shanghai Municipal Health Commission(#2024QN026).
文摘Objectives:Somatosensory Interaction Technology(SIT)is used in various aspects of geriatric care.We aimed to conduct a bibliometric analysis to summarize relevant publications and visualize publication characteristics,current hotspots,and development trends,thereby inspiring subsequent researches.Methods:We searched theWeb of Science Core Collection database for publications on the application of SIT in geriatric care.Bibliometric visualization and clustering analysis were performed using VOSviewer V1.6.18 Software,while keywords burst detection analysis was conducted with CiteSpace 6.1.R6 Software.Results:After screening,a total of 1,019 publications were included.The number of publications on SIT in geriatric care is gradually increasing,exhibiting a rapid growth rate.The United States,Canada,and Australia led in terms of publication volume.Keyword clustering analysis identified major research hotspots:crisis warning,somatic abilities,rehabilitation training and psychosocial support.Initial studies primarily explored themes such as recovery,movement,systems,and later shifted towards gait analysis,muscle strength,parameters,and home-based care.More recently,research themes have evolved to dementia,machine learning,and gamification.Conclusions:SIT is innovative for promoting active aging,advancing intelligent healthcare,and elevating the daily quality of life for older adults in clinical and domestic settings.Applications of SIT can be categorized into early warning systems for crises,detailed analyses of physical conditions,rehabilitation enhancement,and support for psychosocial health.Research trends have transitioned from whole-body recognition to precise feedback,from a focus on physical health to mental health,and from technical feasibility to user-friendliness.Future research should focus on developing accessible and user-friendly devices,fostering interdisciplinary collaborations for innovation,expanding research to address both the physical and mental health needs of diverse older adults,and integrating emerging technologies to enhance data precision and accelerate the development of intelligent platforms.
文摘Abnormal SEP reflects dysfunction of the medial lemniscus and posterior cervical cord. These structures are likely to be affected in Chiari malformation. Therefore, SEP abnormalities may provide valuable information in patients with CM. However, the consistency of SEP abnormality or normality with the damage is a matter of research. Knowing whether median nerve somatosensory evoked potential (SEP) is useful in revealing subclinical damage in patients with Chiari malformation is important in the treatment and follow-up plan of the disease. The aim of this study was to investigate the relationship between median nerve SEP values and the severity of cerebellar ectopia in patients with Chiari type 1 malformation. Median nerve SEP values were obtained from 30 healthy individuals and 146 individuals with Chiari malformation. The cerebellar ectopia degree and McRae line length were measured. SEP values were not significantly different between groups. The McRae line was found to be significantly shorter in the control group than in the Chiari malformation group (p = 0.031). There was no correlation between the degree of cerebellar ectopia and the length of the McRae line (r = 0.002, p = 0.979). Neither cerebellar ectopy degree nor McRae line length had a relationship with SEP values (r = -0.153, p = 0.066;r = -0.056, p = 0.500, respectively). There was no difference in cerebellar ectopy degree or SEP values between the groups with cerebellar ectopy with and without a syrinx (p = 0.899;p = 0.080, respectively). Likewise, McRae line length was not found to be related to the presence of a syrinx (p = 0.139). Median nerve SEP examination was not beneficial for diagnosing asymptomatic-oligosymptomatic Chiari malformation as a subclinical injury, whether accompanied by syringomyelia or not.
基金supported by the National Research Foundation of Korea(NRF)Grant funded by the Korean Government(MSIP)(NRF-2015R1A5A7037508)the Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(No.2017R1D1A1B03033985)
文摘Many studies have investigated the evidence for tactile and visual interactive responses to activation of various brain regions.However,few studies have reported on the effects of visuo-tactile multisensory integration on the amount of brain activation on the somatosensory cortical regions.The aim of this study was to examine whether coincidental information obtained by tactile stimulation can affect the somatosensory cortical activation using functional MRI.Ten right-handed healthy subjects were recruited for this study.Two tasks(tactile stimulation and visuotactile stimulation)were performed using a block paradigm during f MRI scanning.In the tactile stimulation task,in subjects with eyes closed,tactile stimulation was applied on the dorsum of the right hand,corresponding to the proximal to distal directions,using a rubber brush.In the visuotactile stimulation task,tactile stimulation was applied to observe the attached mirror in the MRI chamber reflecting their hands being touched with the brush.In the result of SPM group analysis,we found brain activation on the somatosensory cortical area.Tactile stimulation task induced brain activations in the left primary sensory-motor cortex(SM1)and secondary somatosensory cortex(S2).In the visuo-tactile stimulation task,brain activations were observed in the both SM1,both S2,and right posterior parietal cortex.In all tasks,the peak activation was detected in the contralateral SM1.We examined the effects of visuo-tactile multisensory integration on the SM1 and found that visual information during tactile stimulation could enhance activations on SM1 compared to the tactile unisensory stimulation.
文摘The author introduces a new hypnotherapeutic technique termed “Mental Access/Somatosensory Access” (MASSA). MASSA is designed to utilize an external somatosensory stimulus in the context of hypnotherapy, based on a Bottom-Up/Top-Down Paradigm, which complements and mutually reinforces hypnotic inductions by using imbedded suggestions. The intervention’s algorithm includes a combination of real-time stimulation through one of the following somatosensory modalities: sensorimotor activation of the palms, visual, auditory, vibration, thermal, olfaction or oropharyngeal. These modalities are accompanied by guided hypnotic dissociation and suggestions. Somatosensory stimulation amplifies patients’ engagement in the procedure, focusing their attention on a stimulus and on the hypnotic experience during the intervention. A stream of closed questions with imbedded suggestions, presented by the therapist, is designed using suggestive presuppositions, termed by the author “The Create and Verify Principle” (CVP). This principle facilitates effective pacing and helps transform patients’ sensory and mental experiences. Imbedded suggestions followed by real-time stimulation, maintain a focus on the somatosensory content, boost the hypnotic experience, and gradually combine awareness of the somatosensory stimulation experience (Bottom-Up regulation) with memory, imagination, emotions and meanings, for mental access of resources and adaptive coping (Top-Down regulation). In the first part of this article, the author briefly introduces the neurophysiological mechanism behind the suggestive, somatosensory, attention-management intervention and provides an example of a basic algorithm of the MASSA technique. The second part includes clinical samples with scripts of successfully treated patients, who experienced tension headache, psychogenic balance disorder, tinnitus. .
文摘Hegu (LI 4) is one of the most frequently used and most important analgesic points in Chinese acupuncture. It is particularly effective for treating disorders of the head and face. According to the meridian theory in Traditional Chinese Medicine (TCM), the Large Intestine Meridian to which it belongs originates in the hand and terminates in the face. This theory is based, however, more on thousands of years of clinical experience rather than on scientific evidence. In our study of acupuncture effects on normal human volunteers with the non-invasive BOLD (blood oxygenation level dependant)technique for FMRI (functional magnetic resonance imaging), we demonstrated widespread effects in the brain during acupuncture at Hegu and Zusanli (ST 36). A finding of special interest was observed in the primary somatosensory cortes (SI) during Hegu acupuncture. In additlon to activation of the area representing the hand in response to the sensory impulses arising from the site of stimulation, activation also occurred in the face representation in all 3 subjects brains studied by coronal brain sections. In one of these subjects activation in the face representation was even stronger than that in the hand representation. Areas representing the neck, trunk and other parts of the upper extremity also exhibited increase in signal intensity, subject to individual variability. As compared with Hegu, such effects were either absent or much weaker with acupuncture at Zusanli (ST 36) or with other forms of sensory stimulation to the hand. Functional mapping of the brain with MRI has provided the first direct evidence in support of the important role of Hegu acupuncture in TCM.
基金supported by the National Natural Science Foundation of China,No.81101370,81101399,81272018the Natural Science Foundation of Jiangsu Province in China,No.BK2011303+2 种基金Jiangsu Province Science and Technology Support Program(Social Development)in China,No.BE2011672University Natural Science Research Foundation of Jiangsu Province for Higher Education,No.12KJB320008College Graduate Research and Innovation Plan of Jiangsu Province in China,No.CXZZ11_0126
文摘It remains unclear whether spinal cord ischemia-reperfusion injury caused by ischemia and other non-mechanical factors can be monitored by somatosensory evoked potentials. Therefore, we monitored spinal cord ischemia-reperfusion injury in rabbits using somatosensory evoked potential detection technology. The results showed that the somatosensory evoked potential latency was significantly prolonged and the amplitude significantly reduced until it disappeared during the period of spinal cord ischemia. After reperfusion for 30-180 minutes, the amplitude and latency began to gradually recover; at 360 minutes of reperfusion, the latency showed no significant difference compared with the pre-ischemic value, while the somatosensory evoked potential amplitude in- creased, and severe hindlimb motor dysfunctions were detected. Experimental findings suggest that changes in somatosensory evoked potentia~ ~atency can reflect the degree of spinat cord ischemic injury, while the amplitude variations are indicators of the late spinal cord reperfusion injury, which provide evidence for the assessment of limb motor function and avoid iatrogenic spinal cord injury.
基金funded by the Priority Academic Program Development of Jiangsu Higher Education Institution(Grant No.2014-37)the Jiangsu Provincial Health and Family Planning Commission(No.H201535)Orofacial Pain and TMD Research Unit,Institute of Stomatology,Affiliated Hospital of Stomatology,Nanjing Medical University,for their support
文摘Low-level laser therapy(LLLT) may have an effect on the pain associated with orthodontic treatment. The aim of this study was to evaluate the effect of LLLT on pain and somatosensory sensitization induced by orthodontic treatment. Forty individuals(12–33 years old; mean ± standard deviations: 20.8 ± 5.9 years) scheduled to receive orthodontic treatment were randomly divided into a laser group(LG) or a placebo group(PG)(1:1). The LG received LLLT(810-nm gallium-aluminium-arsenic diode laser in continuous mode with the power set at 400 mW, 2 J·cm–2) at 0 h, 2 h, 24 h, 4 d, and 7 d after treatment, and the PG received inactive treatment at the same time points. In both groups, the non-treated side served as a control. A numerical rating scale(NRS) of pain, pressure pain thresholds(PPTs), cold detection thresholds(CDTs), warmth detection thresholds(WDTs), cold pain thresholds(CPTs), and heat pain thresholds(HPTs) were tested on both sides at the gingiva and canine tooth and on the hand. The data were analysed by a repeated measures analysis of variance(ANOVA). The NRS pain scores were significantly lower in the LG group(P = 0.01). The CDTs,CPTs, WDTs, HPTs, and PPTs at the gingiva and the PPTs at the canine tooth were significantly less sensitive on the treatment side of the LG compared with that of the PG(P < 0.033). The parameters tested also showed significantly less sensitivity on the nontreatment side of the LG compared to that of the PG(P < 0.043). There were no differences between the groups for any quantitative sensory testing(QST) measures of the hand. The application of LLLT appears to reduce the pain and sensitivity of the tooth and gingiva associated with orthodontic treatment and may have contralateral effects within the trigeminal system but no generalized QST effects. Thus, the present study indicated a significant analgesia effect of LLLT application during orthodontic treatment.Further clinical applications are suggested.
基金National Key Research and Development Program of China,No.2016YFC1306702(to KFS and LZ)the National Natural Science Foundation of China,No.81771455(to KFS)+1 种基金Science and Technology Program of Guangdong Province of China,No.2018B030334001(to KFS)the Natural Science Foundation of Guangdong of China,No.2019A1515011772(to LZ)。
文摘Acupuncture is a medical treatment that has been widely pra cticed in China for over 3000 years,yet the neural mechanisms of acupuncture are not fully understood.We hypothesized that neurons and astrocytes act independently and synergistically under acupuncture stimulation.To investigate this,we used two-photon in vivo calcium reco rding to observe the effects of acupuncture stimulation at ST36(Zusanli)in mice.Acupuncture stimulation in peripheral acupoints potentiated calcium signals of pyramidal neurons and astrocytes in the somatosensory cortex and resulted in late-onset calcium transients in astrocytes.Chemogenetic inhibition of neurons augmented the astrocytic activity.These findings suggest that acupuncture activates neuronal and astrocytic activity in the somatosensory co rtex and provide evidence for the involvement of both neurons and astrocytes in acupuncture treatment.
基金funded by Zhejiang Medicines &Health Sciences Research Fund (Class A) in 2009, No.2009A086
文摘A total of 43 prolonged coma patients with diffuse axonal injury received the somatosensory evoked potential examination one month after injury in the First Affiliated Hospital, School of Medicine, Zhejiang University in China. Somatosensory evoked potentials were graded as normal, abnormal or absent (grades I-III) according to N20 amplitude and central conduction time. The outcome in patients with grade III somatosensory evoked potential was in each case unfavorable. The prognostic accuracy of grade III somatosensory evoked potential for unfavorable and non-awakening outcome was 100% and 80%, respectively. The prognostic accuracy of grade I somatosensory evoked potential for favorable and wakening outcome was 86% and 100%, respectively. These results suggest that somatosensory evoked potential grade is closely correlated with coma severity and degree of recovery. Somatosensory evoked potential is a valuable diagnostic tool to assess prognosis in prolonged coma patients with diffuse axonal injury.
基金supported by grants from the National Natural Science Foundation of China(31630033,31130066,31671094,and 81300961)the Chinese Academy of Sciences(XDB02010000 and QYZDY-SSW-SMC007)the Shanghai Science and Technology Committee(16JC1420500)
文摘Different physical and chemical stimuli are detected by the peripheral sensory receptors of dorsal root ganglion (DRG) neurons, and the generated inputs are transmitted via afferent fibers into the central nervous system. The gene expression profiles of DRG neurons contribute to the generation, transmission, and regulation of various somatosensory signals. Recently, the single-cell transcriptomes, cell types, and functional annotations of somatosensory neurons have been studied. In this review, we introduce our classification of DRG neurons based on single-cell RNA-sequencing and functional analyses, and discuss the technical approaches. Moreover, studies on the molecular and cellular mechanisms underlying somatic sensations are discussed.
基金the National Research Foundation of Korea Grant Funded by the Korean Government,No.KRF-2008-314-E00173
文摘Diffusion tensor tractography allows the sensory fiber course of the medial lemniscus to be visualized. But diffusion tensor tractography for accurate evaluation of the repair of injured somatosensory tracts in stroke patients has been rarely reported. A 55-year-old female patient presented with severe somatosensory dysfunction of the left side caused by a spontaneous intracerebral hemorrhage on the right side. The somatosensory function of the affected side recovered to a nearly normal state at 7 weeks from onset. Functional magnetic resonance imaging revealed that at 3 weeks from onset, there was no cortical activation by touch at each hand; at 7 weeks, the contralateral cortex centered on the primary sensory cortex was found to be activated during touch and passive movements, and activation by passive movements was increased compared with that at 3 weeks. Diffusion tensor tractography revealed that a medial lemniscus on the affected (right) hemisphere was not observed at 3 weeks from onset, however, at 7 weeks, the unaffected (left) hemisphere passed along the medial lemniscus pathway from the pons to the primary sensory cortex. These findings indicate that combined functional magnetic resonance imaging and diffusion tensor tractography would allow more accurate evaluation of the architecture and integrity of somatosensory tracts and is a useful method to investigate the recovery of somatosensory dysfunction in stroke patients.
基金supported by the National Natural Science Foundation of China,No.81871768(to YH)Natural Science Foundation of Tianjin,China,No.18JCYBJC29600(to HYC)High Level-Hospital Program,Health Commission of Guangdong Province,China,No.HKUSZH201902011(to YH)。
文摘The spinal cord is at risk of injury during spinal surgery.If intraoperative spinal co rd injury is identified early,irreve rsible impairment or loss of neurological function can be prevented.Different types of spinal cord injury result in damage to diffe rent spinal cord regions,which may cause diffe rent somatosensory and motor evoked potential signal res ponses.In this study,we examined electrophysiological and histopathological changes between contusion,distra ction,and dislocation spinal cord injuries in a rat model.We found that contusion led to the most severe dorsal white matter injury and caused considerable attenuation of both somatosensory and motor evoked potentials.Dislocation resulted in loss of myelinated axons in the lateral region of the injured spinal cord along the rostrocaudal axis.The amplitude of attenuation in motor evoked potential responses caused by dislocation was greater than that caused by contusion.After distraction injury,extracellular spaces were slightly but not significantly enlarged;somatosensory evoked potential res ponses slightly decreased and motor evoked potential responses were lost.Correlation analysis showed that histological and electrophysiological findings we re significantly correlated and related to injury type.Intraope rative monitoring of both somatosensory and motor evoked potentials has the potential to identify iatrogenic spinal cord injury type during surgery.
基金supported by the Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Science,ICT&Future Planning,No.2013R1A1A3007734
文摘The somatosensory system plays a crucial role in executing precise movements by providing sensory feedback (Farrer et al., 2003; Rabin and Gordon, 2004). Somatosensory dys- function is a common problem following stroke. In partic- ular, somatosensory impairments, such as impairment in touch, proprioception, light touch, and vibration have been frequently observed (Carey et al., 1993; Sullivan and Hed- man, 2008; Tyson et al., 2008). Patients with somatosensory dysfunction show negative effects on motor control, and it sometimes becomes difficult to perform daily activities independently.
基金supported by the DGiST R&D Program of the Ministry of Education, Science and Technology of Korea(13-BD-0401)
文摘Somatosensory dysfunction is associated with a high incidence of functional impairment and safety in patients with stroke. With developments in brain mapping techniques, many studies have addressed the recovery of various functions in such patients. However, relatively little is known about the mechanisms of recovery of somatosensory function. Based on the previous human studies, a review of 11 relevant studies on the mecha- nisms underlying the recovery of somatosensory function in stroke patients was conducted based on the fol- lowing topics: (1) recovery of an injured somatosensory pathway, (2) peri-lesional reorganization, (3) contribu- tion of the unaffected somatosensory cortex, (4) contribution of the secondary somatosensory cortex, and (5) mechanisms of recovery in patients with thalamic lesions. We believe that further studies in this field using combinations of diffusion tensor imaging, functional neuroimaging, and magnetoencephalography are needed. In addition, the clinical significance, critical period, and facilitatory strategies for each recovery mechanism should be clarified.
文摘Objective: Optimization of combining electroencephalography (EEG), short latency somatosensory evoked potentials (SLSEP) and transcranial Doppler (TCD) techniques to diagnose brain death. Methods: One hundred and eleven patients (69 males, 42 females) from the major hospitals of Zhejiang Province were examined with portable EEG, SLSEP and TCD devices. Re-examinations occurred ≤12 h later. Results: The first examination revealed that the combination of SLSEP and EEG led to more sensitive diagnoses than the combination of SLSEP and TCD. Re-examination confirmed this and also revealed that the combination of TCD and EEG was the most sensitive. Conclusion: The results show that using multiple techniques to diagnose brain death is superior to using single method, and that the combination of SLSEP and EEG is better than other combinations.
文摘Aim:The effect of a renewed SS-cream(RSSC)on the treatment of premature ejaculation(PE)was evaluated and compared with the original SS-cream(OSSC).Methods:Sixty male white New Zealand rabbits,weighing 2.5kg-3.0 kg,were divided at random into 3 groups:the RSSC,OSSC and placebo groups.The spinal somatosensory evoked potential(SSEP)elicited by electric stimulation of the glans penis with disk electrode was investigated with an electrophysiograph(Poseidomn,Shanghai,China)before and 10,30 and 60 min after drug or placebo application on the glans.The Onset and the N1 latencies and the amplitude of SSEP were recorded and analyzed.Results:There was no significant difference(P>0.05)in the mean Onset and Nl latency of SSEP among the 3 groups before drug application.Compared with the pre-application value,the mean Onset and Nl latencies in the RSSC and OSSC groups were significantly prolonged at 10,30 and 60 min after treatment(P<0.05),while they were not significantly changed(P>0.05)in the placebo group.The mean Onset latency of RSSC at 10 and 30 min and that of OSSC at 30 min were significantly delayed(P<0.05)compared with the placebo group.The mean Nl latency of RSSC at 30 and 60 min and that of OSSC group at 30 min were also significantly delayed(P<0.05).Conclusion:RSSC delays the latencies of SSEP,suggesting a local desensitizing effect on the sensory receptor of the glans penis dorsal nerve,which provides the potential for PE treatment.The desensitizing effect of RSSC is higher than that of OSSC.
文摘Objective: To explore the effects of the somatosensory interaction technology combined with virtual reality technology on upper limbs function and activities of daily living (ADL) in cerebrovascular disease patients. Methods: Form January, 2019 to December, 2019, 80 cerebrovascular disease patients were recruited, and had been divided into control group (n = 40) and observation group (n = 40), randomly. The control groups received conventional rehabilitation treatment, for 40 minutes per day, while observation group received conventional rehabilitation treatment, for 20 minutes per day, and virtual reality technology treatment, 20 minutes per day, 5 days a week for 4 weeks. Wolf Motor Function Test (WMFT), Fugl-Meyer Assessment-Upper Extremities (FMA-UE) and modified Barthel index (MBI) were used to assess the motor function of the upper limbs and ADL before and after treatment. Results: Before treatment, the scores of WMFT, FMA-UE and MBI were no significant difference between two groups (P > 0.05). The scores improved in both groups after treatment (P < 0.01), and were higher in the observation group than in the control group (P < 0.05). Conclusion: The somatosensory interaction technology combined with virtual reality technology could facilitate to improve the upper limbs function and ADL in cerebrovascular disease patients.