期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Convergence Analysis of a New MaxMin-SOMO Algorithm
1
作者 Atlas Khan Yan-Peng Qu Zheng-Xue Li 《International Journal of Automation and computing》 EI CSCD 2019年第4期534-542,共9页
The convergence analysis of MaxMin-SOMO algorithm is presented. The SOM-based optimization (SOMO) is an optimization algorithm based on the self-organizing map (SOM) in order to find a winner in the network. Generally... The convergence analysis of MaxMin-SOMO algorithm is presented. The SOM-based optimization (SOMO) is an optimization algorithm based on the self-organizing map (SOM) in order to find a winner in the network. Generally, through a competitive learning process, the SOMO algorithm searches for the minimum of an objective function. The MaxMin-SOMO algorithm is the generalization of SOMO with two winners for simultaneously finding two winning neurons i.e., first winner stands for minimum and second one for maximum of the objective function. In this paper, the convergence analysis of the MaxMin-SOMO is presented. More specifically, we prove that the distance between neurons decreases at each iteration and finally converge to zero. The work is verified with the experimental results. 展开更多
关键词 optimization self ORGANIZING map (SOM) som-based optimization (somo) algorithm particle swarm optimization (PSO) genetic algorithms (GAs)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部